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ciplines. However, perhaps surprisingly, until the past 10 
years, comparatively little work delved into the application 
of evolutionary computation (and other related search-
based optimization) techniques to software engineering. 
This was the motivation for the foundation of the field now 
known as search-based software engineering, which focuses 
on the application of search-based optimization techniques 
to problems in software engineering. 

In the past decade, researchers have applied SBSE 
to a wide range of software engineering topics, includ-
ing requirements,2,3 estimation and prediction,4 design,5 
testing,6-9 and refactoring.10,11 Numerous search-based 
optimization techniques have been used, with a recent 
comprehensive survey reporting 15 different techniques.12

There is no reason why SBSE must be concerned solely 
with evolutionary computation; other optimization al-
gorithms can and have been used. For example, in the 
830 papers in the SBSE repository as of June 2011, 587 
use one or more optimization techniques (http://crestweb.
cs.ucl.ac.uk/resources/sbse repository). The percentages 
of papers using each technique are as follows: evolution-
ary algorithms (no specific style mentioned), 9.0 percent; 
genetic algorithms, 45.5 percent; genetic programming, 
13.5 percent; evolution strategies, 0.6 percent; particle 
swarm optimization, 1.8 percent; estimation of distribution 
algorithms, 1.4 percent; and scatter search, 0.8 percent. 
However, evolutionary computation has been used in 71 
percent of all papers on SBSE, and it is the only optimi-
zation technique to have been applied to every software 
engineering application area.12

S oftware evolves. This fact was recognized early 
in the history of software engineering.1 Although 
the term “software evolution” has come to refer 
to the process by which successful software 

installations continually adapt to cater to the changing 
requirements and environments in which they operate, 
this is a figurative allusion to Darwinian evolution, not a 
specifically technical term.

Independently, an entire computer science community 
has developed that uses the term evolutionary computation 
with a specifically technical meaning: the study of algo-
rithms that incorporate aspects of fitness-guided selection 
to search a space of candidate solutions for those well-
adapted to solving a specific problem. This community 
has its own conferences and journals that constitute a 
considerable body of knowledge concerning the best way 
to develop and apply evolution as a driver for innovation 
and adaption in an automated metaheuristic optimization 
process.

Computer scientists have used evolutionary computa-
tion to optimize the design of artifacts and processes from 
an astonishingly wide variety of general engineering dis-
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THE GROWTH OF A FIELD
This interest in SBSE in general and evolutionary 

computation for software engineering in particular has 
increased rapidly in the past 10 years. Figure 1 shows 
the growth in publications in SBSE and the concomitant 
increase in papers within the SBSE field that use evolution-
ary computation.

SBSE is not only an academic research area—it increas-
ingly provides a set of methods, tools, and techniques that 
are finding widespread industrial application. The first 
(and still the most widely) studied area of research targets 
the application of SBSE to automated test data genera-
tion.12 Known as search-based software testing, this widely 
surveyed area has its own coherent body of literature, 
and SBST serves as the topic area for a dedicated annual 
workshop.6-9

One of the earliest industrial examples of the applica-
tion of SBST in industrial practice was at Daimler Chrysler, 
where Joachim Wegener and his research team imple-
mented a system for evolutionary testing.13 This system 
used a genetic algorithm to search for branch-adequate 
test data, returning a set of test data and associated cover-
age metrics to the developer. Daimler also experimented 
with search-based techniques for the functional testing 
of a parking system14 and the temporal testing of air bag 
controllers.15

More recently, Microsoft incorporated search-based 
techniques for incorporating floating-point computa-
tion into its PeX software testing tool,16,17 while Google 
incorporated multiobjective regression test optimization 
into its test process.18 NASA,19 Motorola,20 and Ericsson21 

have experimented with SBSE for requirements analysis 
and optimization, while Ericsson has also used genetic 

programming (GP) to predict 
fault slip-through on two large 
projects.22

EVOLUTIONARY 
COMPUTATION

As with so much of signifi-
cance in computer science, 
Alan Turing23 was the first to in-
troduce the idea that Darwin’s 
theory of evolution might find 
a sympathetic counterpart in 
computation, although this very 
initial formulation was arguably 
more Lamarckian than Darwin-
ian. John Holland’s subsequent 
experiments with evolutionary 
computation played an important 
role in popularizing the field.24

It is hard to overstate the 
impact of evolutionary computa-

tion on computational thinking. To give some quantifiable 
indication of this impact, on 22 June 2011, Holland’s 
book had attracted 24,597 citations (according to Google 
Scholar), while David E. Goldberg’s more recent account 
had 38,706 citations.25 These citations come from varied 
fields of engineering and design, not just from software 
engineers and computer scientists. There is hardly any 
aspect of design that has not been profoundly affected by 
the concept of evolutionary optimization, not merely as 
a metaphor, but as a realistic algorithm for exploration, 
insight, and improvement.

With such exceptional and far-reaching impact, it is 
not surprising that software engineering would also fall 
under the evolutionary spell. The only surprising aspect 
of this history is that it took so long. With the benefit of 
hindsight, it is extraordinary that what is essentially a 
software technique could have failed to find application 
to software engineering for so many years. Perhaps this 
is simply a reflection of the time it took for the research 
community to recognize that activities associated with 
software development are, indeed, essentially engineer-
ing activities and that, consequently, optimization was a 
natural approach.

Fortunately, despite its slowness to take up evolutionary 
computation, the software engineering community has re-
cently made up for this sluggishness. Recently, it has even 
been argued that software’s “virtual” nature renders it the 
most suitable of all engineering materials for optimization 
techniques.26

The formulation of the generic genetic algorithm shown 
in Figure 2 is taken from a 2003 survey of SBSE.27 Although 
there might be variations on the theme in the extensive 
literature on the topic, the central principles of fitness com-
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Figure 1. Increase in papers on SBSE and concomitant growth in papers using evolu-
tionary computation for software engineering.
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putation and selection can be found in most formulations 
of evolutionary computation.

The most widely studied variations on this theme are 
evolution strategies28 (which have been used in test data 
generation29) and GP,30 in which the artifact to be optimized 
is not a list but a tree—the abstract syntax tree of some 
programming notation. Of these, GP has been more widely 
used in SBSE. 

The first authors to suggest evolutionary algorithms for 
software engineering were S. Xanthakis and colleagues,31 
who advocated the use of genetic algorithms for software 
test data generation. Soon after, Carl Chang and colleagues 
developed SPMNet, a tool for software project planning 
based on evolutionary algorithms.32 In an editorial that 
presaged the advent of SBSE as an integral field of study, 
Chang argued for the more widespread application of evo-
lutionary computation in software engineering.33

The term SBSE was coined in 2001 to capture the gen-
eral application of search-based optimization techniques, 
including evolutionary computation, to software engi-
neering problems.34 This paper first articulated a vision 
for a research field of SBSE, arguing that search-based 
optimization offered a potentially generic, unifying, and 
potent approach to the spectrum of software engineer-
ing activities and products. A recent 10-year retrospective 
study confirms the growing importance of SBSE research 
activity.35

THE ROLE OF TESTING 
Of all the areas of software engineering activity to 

which researchers have applied SBSE techniques, software 
testing is both the first area to be tackled and the area that 
has received the most widespread study.

The general idea behind all approaches to search-based 
test data generation is that the set of test cases forms a 
search space and that the test adequacy criterion is coded 
as a fitness function. For example, to achieve branch cover-
age, the fitness function assesses how close a test 
input comes to executing an uncovered branch. In 
contrast, to find worst case execution time, fitness 
is simply the duration of execution for the test case 
in question.

Researchers have used search to attack a variety 
of testing goals, including structural testing,36,37 
functional testing,14 safety testing,38 security 
testing,39 robustness testing,40 stress testing,41 in-
tegration testing,42 Web application testing,43 and 
quality-of-service testing.44 Most of this work has 
concerned the problem of generating inputs that 
provide a test suite that meets a test adequacy crite-
rion. Although the problem of test input generation 
is often called automated test data generation 
(ATDG), strictly speaking, without an oracle, only 
the input is generated. Figure 3 illustrates the ge-

neric form of the most common approach in the literature, 
in which test inputs are generated according to a test ad-
equacy criterion. The test adequacy criterion, the human 
input to the process, determines the testing goal.

The adequacy criterion can be almost any form of test-
ing goal that can be defined and assessed numerically. 
For example, it can be structural (covering branches, 
paths, statements), functional (covering scenarios), tem-
poral (finding worst/best case execution times), and so on. 
SBST’s generic nature is a considerable advantage and one 
reason why many researchers have been able to adapt it 
to different testing problems.

A human-defined fitness function must capture the 
adequacy criteria. Once the fitness function for a test ad-
equacy criterion, C, has been defined, the generation of 
C-adequate test inputs can be automated using SBSE. The 
SBSE tools that implement different forms of testing all 
follow the broad structure outlined in Figure 3. They code 
the adequacy as a fitness, using it to assess the fitness of 

Figure 2. A generic genetic algorithm.
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Figure 3. A generic search-based test generation scheme. 

Set generation number, m := 0
Choose the initial population, P (0)
Evaluate fitness P (0), F (Pi (0))
loop
Recombine: P (m) := R(P (m)) 
Mutate: P (m) := M (P (m)) 
Evaluate: F (P (m))
Select: P (m + 1) := S(P (m))
m := m + 1
exit when goal or stopping condition is satisfied
end loop;
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candidate test inputs. To assess fitness, the ATDG system 
must cause the program to be executed for the candidate 
inputs. The ATDG system then monitors the execution 
to assess fitness: how well does the input meet the test 
adequacy criterion?

GENETIC PROGRAMMING 
Since program notation is one of the engineering ma-

terials with which software engineering is principally 
concerned, we might expect that GP would have found 
widespread application in software engineering. Indeed, 
there has been much work in GP for software engineering, 
but not always to create the program code for the software 
system itself. Program construction remains a largely and 
stubbornly human-centric activity. One goal of the SBSE 

research agenda is the creation of optimization techniques 
that can maximally automate the program construction.

This remains an open grand challenge for SBSE, as it 
does for several other related research communities. Al-
though full achievement of this grand challenge remains 
some way off, there are many highly effective ways to use 
GP in SBSE. 

Predictive modeling
It is not necessary for GP to evolve a complete program 

for it to be useful; it merely needs to generate a set of rules 
that capture some important property of a problem. GP is 
very good at this. It was first used in software engineering 
to capture the equations that define good software cost-
estimation models.45 This is a natural fit because these 
models are often highly nonlinear and exhibit piecewise 
behavior. The equations that define them are nevertheless 
relatively small and there is a natural fitness function: the 
degree of “fit” of the equation to the observed data for 
a set of projects. Consequently, the space of all possible 
software cost models forms a natural target for GP work.

Mutation testing 
Recent work has shown how GP can be used to search 

for subtle software faults.46 A strongly typed GP system 
uses a restricted C grammar to generate complex faults. 
The system computes fitness for two objectives: one syn-
tactic and the other semantic. 

The syntactic fitness function measures the syntactic 
similarity of the original program and the faulty version 

to minimize the difference between the two. The semantic 
fitness uses a set of test cases to measure the degree of 
semantic similarity between the two programs, seeking a 
faulty version that is almost (but not quite) identical to the 
original program. In this manner, the approach seeks faults 
that are hard to detect either syntactically or semantically.

Automated bug fixing
Most work on SBSE applied to testing has been con-

cerned with the discovery of faults in software. However, 
more recently, authors have also turned their attention to 
the use of SBSE to patch software and fix bugs.47,48

Wesley Weimer and colleagues45 used GP to evolve 
patches that fix real bugs, winning a Gold Medal at the 
2009 Genetic and Evolution Computation Conference for 
the achievement of human competitive results. The patch-
ing process uses what might be called “plastic surgery” to 
scavenge fragments of code for fault fixing from elsewhere 
within the program under test. The patches are evolved 
using GP, for which fitness is computed in terms of passing 
and failing test cases, thereby fixing the fault and avoiding 
regression.

OPEN PROBLEMS AND  
REMAINING CHALLENGES

In previous work on evolutionary computation for soft-
ware engineering, the evolution model was an extremely 
simple one. Whether the technique used was a genetic 
algorithm or a variant such as genetic programming, there 
was but a single population, evolving according to a single 
fitness function. Real-world evolution is far more complex 
because multiple populations interact with one another, 
effectively solving multiple objective problems with several 
different fitness functions. Furthermore, in the real world 
of coevolution, the fitness of one population can critically 
impact the fitness of another.

Coevolutionary computation
In coevolutionary computation, two or more popu-

lations evolve simultaneously, with the fitness of each 
depending upon the current population of the other.  
Coevolution takes two forms: cooperative and competitive. 

In cooperative coevolution, the two populations are 
sympathetic to each other, and the overall system seeks a 
symbiotic balance between the two. Biology offers many 
examples of this, such as the symbiotic relationship be-
tween pollinating insects and the plants they pollinate. By 
contrast, in competitive coevolution, one population plays 
the role of predator and the other is its prey. This coevolu-
tion model’s goal is to create an “arms race” between the 
two populations so that each continually improves its fit-
ness with respect to the other.

Researchers have applied both cooperative and com-
petitive coevolution to software engineering problems, 
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with the competitive form the first to be studied. Konstan-
tinos Adamopoulos and coauthors49 used it to evolve sets 
of mutants and sets of test cases, where the test cases act 
as predators and the mutants as their prey.

Andrea Arcuri and Xin Ya47 also developed a competitive 
coevolutionary model of bug fixing, in which one popula-
tion essentially seeks out patches that can pass test cases, 
while an oracle produces cases to test the current popula-
tion of potential patches. In this way, the patch is the prey, 
while the test cases act as predators.

In the work of both Adamopoulos and colleagues and 
Arcuri and Yao, the two populations consist of code frag-
ments and test cases. The primary difference is that for 
Adamopoulos and colleagues, the goal is to find models 
of faults, whereas in the work of Arcuri and Yao, the goal 
is to find patches that fix faults.

Any situation in which code and test cases coevolve 
offers a natural candidate for a competitive, predator-prey 
model of coevolution. We can expect much more work on 
this model because it is well-suited to the way software 
testing takes place. Indeed, many software developers 
will already be familiar with the feeling that they are the 
prey for some demanding “testing predator.” In software 
security, too, a similar predator-prey culture is prevalent, 
and we can expect competitive coevolution to make this 
more than mere analogy.

Many other aspects of software engineering problems 
lend themselves to a coevolutionary optimization model 
because software systems are complex and rich in potential 
populations that could be productively coevolved using both 
competitive and cooperative coevolution. While software 
testing and security problems naturally fit a competitive 
instantiation, many other software engineering problems 
are better suited to a cooperative model. For example, com-
ponents, agents, stakeholder behavior models, designs, 
cognitive models, requirements, test cases, use cases, and 
management plans are all important aspects of software 
systems for which optimization is an important concern. 

If they can find a suitable fitness function, researchers 
could use SBSE to constructively and sympathetically co-
evolve collaborating subsolutions. For example, in recent 
work on cooperative coevolution in SBSE, Jian Ren and 
coauthors50 explored the way in which different aspects 
of a software project could be cooperatively coevolved.

Although work on coevolution in software engineering 
is in its infancy, it seems likely that this area will be the 
subject of much interest over the coming years because of 
the close fit to complex software engineering problems. 

Scalability
Scalability is probably the biggest generic challenge 

facing software engineering. Although processing power is 
increasing, the scale and complexity of software systems 
is increasing at least as fast. Techniques for software de-

velopment, testing, and verification are required that can 
scale to meet this challenge.

Fortunately, SBSE techniques such as evolutionary com-
putation are highly scalable because they can be easily 
parallelized. Genetic algorithms involve a population to 
which the same fitness function is applied repeatedly. 
There is no reason why the entire population’s fitness 
cannot be evaluated on an SIMD architecture in a single 
step. Several authors have demonstrated that this paral-
lelism can be exploited in SBSE work to obtain scalability 
through distributed computation.51-53

Recent work has shown how this parallelism can be 
exploited on general-purpose graphical processing units 
(GPGPUs). Shin Yoo and coauthors54 showed how to map 
the problem of regression testing onto a GPGPU, solv-
ing multiobjective regression test selection problems up 
to 20 times faster than conventional architectures. The 
results also outperformed multicore CPU computation 
and made possible large-scale, real-world smoke-testing  
optimization that would have been impossible without  
the scalability offered by GPGPUs.

This work opens up the prospect of an inexpensive and 
effective means of unleashing the parallelism latent in 
evolutionary computation and harnessing its scalability for 
software engineering applications. The importance of scal-
ability and the rapid industry-wide migration to multicore 
computing indicate that parallel SBSE is a topic likely to 
receive considerable attention in the coming years.

Interactive evolution
Although researchers have successfully applied SBSE 

to the automation of many areas of software engineer-
ing, some aspects of this discipline cannot be automated. 
The designs we create are ultimately intended for human 
consumption, and human judgment will always play a 
critical role in almost every design process. It is difficult 
to capture some design aspects in a fitness function, and 
software engineering design challenges are no exception. 

Interactive evolution offers an approach that places the 
human in the fitness computation loop.55 SBSE research-
ers have used interactive evolution to allow humans to 
play a role in defining a software engineering design’s fit-
ness. For example, Christopher L. Simons and coauthors 
used interactive evolution to search for good designs for 
an object-oriented class diagram.56
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This work is intended to support early life-cycle design 
activity in which human judgment is critical. Since soft-
ware engineering design involves many aspects of human 
judgment and remains a labor-intensive engineering activ-
ity, we can expect much future interest in interactive forms 
of evolutionary computation for software engineering.

Characterization of landscapes and problems
As in any field, SBSE generated initial excitement that 

led to widespread uptake and development of a broad 
range of applications. Researchers attacked many different 
aspects of software engineering using evolutionary com-
putation, with early successes stimulating further work 
and wider development. However, after the initial “gold 
rush,” there comes a time for consolidation.

In fact, this closely mirrors the behavior of the evolu-
tionary compilation process itself. That is, the early stages 
of the evolutionary process tend to favor exploration of 

new parts of the search space, while the later phases tend 
to favor the exploitation of productive areas, seeking im-
proved fitness within them.

There is evidence for the emergence of this second 
phase of activity in the software engineering research 
community. Although work continues on developing 
exciting new areas for applying SBSE for the first time, 
a consistent effort is emerging that seeks to develop a 
deeper understanding and scientific basis for the results 
obtained thus far. Both the theoretical study of algorithm 
performance and the theoretical and empirical analysis 
of problems is now common in the well-explored areas 
of SBST.36,37,57 But as the field matures, we can expect that 
there will be an increasing proportion of activity in the 
area of theoretical characterization of problems and algo-
rithms that can be used to resolve them.

Hyperheuristic optimization
Seeking optimal and near-optimal solutions is natural 

because it lies at the core of all engineering approaches 
and pervades all engineering activity. We have seen from 
SBSE’s widespread application that its generic and highly 
applicable nature has led to many tailor-made optimiza-
tion algorithms for problem instances across the spectrum 
of software engineering activities.

These algorithms have proved to be astonishingly effec-
tive, and researchers and practitioners alike are using them. 

However, custom-made development will always remain a 
slow and expensive process compared to the potential of-
fered by hyperheuristics—algorithms devised by combining 
simpler heuristics to efficiently solve computational search 
problems—making hyperheuristic software engineering a 
natural next step for the research community.58

A primary goal of SBST work is test input generation. 
However, this work does not address the problem of the 
generation of test cases, which are, in their most abstract 
form, input-output pairs. SBST tends to generate inputs 
that achieve various test adequacy criteria but not the ex-
pected outputs; checking the test cases therefore typically 
remains an unautomated aspect of the overall test activ-
ity. Determining the correct output for a given input is the 
“oracle problem” in software testing. While there has been 
work on using SBST to reduce the cost of human oracle 
checking,59 little work has combined SBST with oracle con-
struction. One promising recent approach is the work by 
Gordon Fraser and Andreas Zeller,60 which uses SBST to 
generate test data to kill mutants and simultaneously seeks 
to construct a partial oracle.

Applications in emerging areas 
Much of the SBSE literature focuses on what might be 

termed “traditional” software engineering application 
areas, such as requirements, project planning, design, im-
plementation, testing, and maintenance. However, there is 
no reason why SBSE cannot be applied to other forms of 
software development. Any software engineering problem 
in which there are objectives to be optimized offers op-
portunities for search-based optimization.

For example, because researchers could optimize many 
competing objectives for agile computing paradigms, the 
application of evolutionary computation to these para-
digms cannot be far off. In addition, initial work has 
been reported formulating the challenges related to the 
emerging cloud-based paradigm.61 It is also likely that the 
increasing use of mobile and embedded systems will lead 
to increased nonfunctional properties, for which SBSE has 
already been applied.6 Even in the comparatively “blue 
sky” field of quantum computation, SBSE has proved 
to be a potential source of both solutions to potential 
challenges62 as well as a beneficiary of developments in 
quantum computation.63

WHY IS EVOLUTIONARY  
COMPUTATION SO POPULAR?

Evolutionary algorithms have proved to be the most 
widely applied of all SBSE techniques.12 However, this 
raises the question of why evolutionary search algorithms 
should have proved so popular. Is there a particular techni-
cal reason for this prevalence?

It is true that these algorithms are widely applicable 
because they can cater to single and multiple objectives, 
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they can incorporate human fitness evaluation, and they 
can be easily parallelized. These important technical 
considerations provide compelling motivations for the 
consideration of evolutionary computation as a natural 
technique for optimizing software engineering. However, 
evolutionary algorithms also offer many interesting varia-
tions and numerous parameters to be tuned and explored. 
These can prove to be as enticing to researchers as they 
are frustrating to practitioners.

We must be wary of the unquestioning adoption of 
evolutionary algorithms merely because they are popu-
lar and widely applicable or because, historically, other 
researchers have adopted them for SBSE problems; none 
of these are scientific motivations for adoption. Part of the 
importance of the second phase of research activity con-
centrating on characterization and algorithmic complexity 
analysis lies in the way in which it can help determine the 
best algorithm for a particular software engineering prob-
lem. This will not always be an evolutionary algorithm. 
For example, there is evidence to suggest that, for branch-
adequate test data generation, local search algorithms may 
be better suited to fast and effective coverage.37

PREVIOUS RESEARCH 
Since the term SBSE was coined in 2001, there has been 

an explosion of interest and activity in this area, creating 
a considerable body of literature. 

Surveys covering requirements,3 predictive modeling,4 
design,5 and testing6-9 provide an excellent analysis of the 
application of SBSE to these topic-specific areas. Other 
surveys of specific software testing topics include sec-
tions devoted to search-based techniques, such as recent 
reports covering mutation testing64 and regression test 
optimization.65

Some reports focus on specific aspects of SBSE, for ex-
ample, the use of metrics as fitness functions,66 structured 
reviews of the empirical evidence concerning test data 
generation,7 nonfunctional testing,6 and predictive model-
ing.4 Other reports identify open problems and future SBSE 
research agendas for program comprehension,67 predictive 
modeling,68 and testability transformation.69

The systematic reviews provide a convenient summary 
of the current empirical evidence base for SBSE, while 
the agenda-defining papers may provide potential topics 
and ideas for future research projects and PhD theses. 
Students interested in finding a more introductory tuto-
rial might consider a forthcoming summary that provides 
a self-contained introduction to SBSE and offers practi-
cal guidance and advice.70 Finally, some surveys seek to 
cover the entire area of SBSE. A 2003 survey that covered 
project planning, design, maintenance, and testing,27 and 
the overview and introductory paper from ICSE 2007,71 are 
both widely cited sources of general information about 
SBSE. A comprehensive 2009 survey mapped the entire 

field, providing the first data on emerging SBSE trends,12 
and a 2011 retrospective provides a bibliometric analysis 
of the SBSE literature.35

R esearchers can use evolutionary computation algo-
rithms to optimize any artifact of design for which 
a suitable fitness function can be defined. Software 

engineering provides a rich and varied source of such 
artifacts together with metrics that can be readily adapted 
to their new role as fitness functions. This has led to 10 
years of rapid developments in search-based software 
engineering. Evolutionary computation for software engi-
neering forms a substantial part of this overall growth in 
SBSE research and practice. There are also many exciting 
emerging developments in evolutionary computation for 
software engineering for which we can expect a great deal 
of future work. 
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