
COVER FE ATURE

31OCTOBER 2011Published by the IEEE Computer Society0018-9162/11/$26.00 © 2011 IEEE

ciplines. However, perhaps surprisingly, until the past 10
years, comparatively little work delved into the application
of evolutionary computation (and other related search-
based optimization) techniques to software engineering.
This was the motivation for the foundation of the field now
known as search-based software engineering, which focuses
on the application of search-based optimization techniques
to problems in software engineering.

In the past decade, researchers have applied SBSE
to a wide range of software engineering topics, includ-
ing requirements,2,3 estimation and prediction,4 design,5
testing,6-9 and refactoring.10,11 Numerous search-based
optimization techniques have been used, with a recent
comprehensive survey reporting 15 different techniques.12

There is no reason why SBSE must be concerned solely
with evolutionary computation; other optimization al-
gorithms can and have been used. For example, in the
830 papers in the SBSE repository as of June 2011, 587
use one or more optimization techniques (http://crestweb.
cs.ucl.ac.uk/resources/sbse repository). The percentages
of papers using each technique are as follows: evolution-
ary algorithms (no specific style mentioned), 9.0 percent;
genetic algorithms, 45.5 percent; genetic programming,
13.5 percent; evolution strategies, 0.6 percent; particle
swarm optimization, 1.8 percent; estimation of distribution
algorithms, 1.4 percent; and scatter search, 0.8 percent.
However, evolutionary computation has been used in 71
percent of all papers on SBSE, and it is the only optimi-
zation technique to have been applied to every software
engineering application area.12

S oftware evolves. This fact was recognized early
in the history of software engineering.1 Although
the term “software evolution” has come to refer
to the process by which successful software

installations continually adapt to cater to the changing
requirements and environments in which they operate,
this is a figurative allusion to Darwinian evolution, not a
specifically technical term.

Independently, an entire computer science community
has developed that uses the term evolutionary computation
with a specifically technical meaning: the study of algo-
rithms that incorporate aspects of fitness-guided selection
to search a space of candidate solutions for those well-
adapted to solving a specific problem. This community
has its own conferences and journals that constitute a
considerable body of knowledge concerning the best way
to develop and apply evolution as a driver for innovation
and adaption in an automated metaheuristic optimization
process.

Computer scientists have used evolutionary computa-
tion to optimize the design of artifacts and processes from
an astonishingly wide variety of general engineering dis-

The concept of evolutionary computation
has affected virtually every area of soft-
ware design, not merely as a metaphor, but
as a realistic algorithm for exploration, in-
sight, and improvement.

Mark Harman, University College London

Software
Engineering
Meets
Evolutionary
Computation

COVER FE ATURE

COMPUTER 32

THE GROWTH OF A FIELD
This interest in SBSE in general and evolutionary

computation for software engineering in particular has
increased rapidly in the past 10 years. Figure 1 shows
the growth in publications in SBSE and the concomitant
increase in papers within the SBSE field that use evolution-
ary computation.

SBSE is not only an academic research area—it increas-
ingly provides a set of methods, tools, and techniques that
are finding widespread industrial application. The first
(and still the most widely) studied area of research targets
the application of SBSE to automated test data genera-
tion.12 Known as search-based software testing, this widely
surveyed area has its own coherent body of literature,
and SBST serves as the topic area for a dedicated annual
workshop.6-9

One of the earliest industrial examples of the applica-
tion of SBST in industrial practice was at Daimler Chrysler,
where Joachim Wegener and his research team imple-
mented a system for evolutionary testing.13 This system
used a genetic algorithm to search for branch-adequate
test data, returning a set of test data and associated cover-
age metrics to the developer. Daimler also experimented
with search-based techniques for the functional testing
of a parking system14 and the temporal testing of air bag
controllers.15

More recently, Microsoft incorporated search-based
techniques for incorporating floating-point computa-
tion into its PeX software testing tool,16,17 while Google
incorporated multiobjective regression test optimization
into its test process.18 NASA,19 Motorola,20 and Ericsson21

have experimented with SBSE for requirements analysis
and optimization, while Ericsson has also used genetic

programming (GP) to predict
fault slip-through on two large
projects.22

EVOLUTIONARY
COMPUTATION

As with so much of signifi-
cance in computer science,
Alan Turing23 was the first to in-
troduce the idea that Darwin’s
theory of evolution might find
a sympathetic counterpart in
computation, although this very
initial formulation was arguably
more Lamarckian than Darwin-
ian. John Holland’s subsequent
experiments with evolutionary
computation played an important
role in popularizing the field.24

It is hard to overstate the
impact of evolutionary computa-

tion on computational thinking. To give some quantifiable
indication of this impact, on 22 June 2011, Holland’s
book had attracted 24,597 citations (according to Google
Scholar), while David E. Goldberg’s more recent account
had 38,706 citations.25 These citations come from varied
fields of engineering and design, not just from software
engineers and computer scientists. There is hardly any
aspect of design that has not been profoundly affected by
the concept of evolutionary optimization, not merely as
a metaphor, but as a realistic algorithm for exploration,
insight, and improvement.

With such exceptional and far-reaching impact, it is
not surprising that software engineering would also fall
under the evolutionary spell. The only surprising aspect
of this history is that it took so long. With the benefit of
hindsight, it is extraordinary that what is essentially a
software technique could have failed to find application
to software engineering for so many years. Perhaps this
is simply a reflection of the time it took for the research
community to recognize that activities associated with
software development are, indeed, essentially engineer-
ing activities and that, consequently, optimization was a
natural approach.

Fortunately, despite its slowness to take up evolutionary
computation, the software engineering community has re-
cently made up for this sluggishness. Recently, it has even
been argued that software’s “virtual” nature renders it the
most suitable of all engineering materials for optimization
techniques.26

The formulation of the generic genetic algorithm shown
in Figure 2 is taken from a 2003 survey of SBSE.27 Although
there might be variations on the theme in the extensive
literature on the topic, the central principles of fitness com-

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Year

2002 2003 2004 2005 2006 2007 2008 2009 2010

150
140
130
120
110
100

90
80
70
60
50
40
30
20
10

0

160

Nu
m

be
r o

f p
ub

lic
at

ion
s

All SBSE papers
SBSE papers using evolutionary computation

Figure 1. Increase in papers on SBSE and concomitant growth in papers using evolu-
tionary computation for software engineering.

33OCTOBER 2011

putation and selection can be found in most formulations
of evolutionary computation.

The most widely studied variations on this theme are
evolution strategies28 (which have been used in test data
generation29) and GP,30 in which the artifact to be optimized
is not a list but a tree—the abstract syntax tree of some
programming notation. Of these, GP has been more widely
used in SBSE.

The first authors to suggest evolutionary algorithms for
software engineering were S. Xanthakis and colleagues,31
who advocated the use of genetic algorithms for software
test data generation. Soon after, Carl Chang and colleagues
developed SPMNet, a tool for software project planning
based on evolutionary algorithms.32 In an editorial that
presaged the advent of SBSE as an integral field of study,
Chang argued for the more widespread application of evo-
lutionary computation in software engineering.33

The term SBSE was coined in 2001 to capture the gen-
eral application of search-based optimization techniques,
including evolutionary computation, to software engi-
neering problems.34 This paper first articulated a vision
for a research field of SBSE, arguing that search-based
optimization offered a potentially generic, unifying, and
potent approach to the spectrum of software engineer-
ing activities and products. A recent 10-year retrospective
study confirms the growing importance of SBSE research
activity.35

THE ROLE OF TESTING
Of all the areas of software engineering activity to

which researchers have applied SBSE techniques, software
testing is both the first area to be tackled and the area that
has received the most widespread study.

The general idea behind all approaches to search-based
test data generation is that the set of test cases forms a
search space and that the test adequacy criterion is coded
as a fitness function. For example, to achieve branch cover-
age, the fitness function assesses how close a test
input comes to executing an uncovered branch. In
contrast, to find worst case execution time, fitness
is simply the duration of execution for the test case
in question.

Researchers have used search to attack a variety
of testing goals, including structural testing,36,37
functional testing,14 safety testing,38 security
testing,39 robustness testing,40 stress testing,41 in-
tegration testing,42 Web application testing,43 and
quality-of-service testing.44 Most of this work has
concerned the problem of generating inputs that
provide a test suite that meets a test adequacy crite-
rion. Although the problem of test input generation
is often called automated test data generation
(ATDG), strictly speaking, without an oracle, only
the input is generated. Figure 3 illustrates the ge-

neric form of the most common approach in the literature,
in which test inputs are generated according to a test ad-
equacy criterion. The test adequacy criterion, the human
input to the process, determines the testing goal.

The adequacy criterion can be almost any form of test-
ing goal that can be defined and assessed numerically.
For example, it can be structural (covering branches,
paths, statements), functional (covering scenarios), tem-
poral (finding worst/best case execution times), and so on.
SBST’s generic nature is a considerable advantage and one
reason why many researchers have been able to adapt it
to different testing problems.

A human-defined fitness function must capture the
adequacy criteria. Once the fitness function for a test ad-
equacy criterion, C, has been defined, the generation of
C-adequate test inputs can be automated using SBSE. The
SBSE tools that implement different forms of testing all
follow the broad structure outlined in Figure 3. They code
the adequacy as a fitness, using it to assess the fitness of

Figure 2. A generic genetic algorithm.

Software test engineer

de�nes

Test adequacy criteria

de�nes

Fitness function

uses

Search-based
optimization algorithms

Test input

executes

Program under test

monitors

executes

creates

Output

Search-based test input generation

Figure 3. A generic search-based test generation scheme.

Set generation number, m := 0
Choose the initial population, P (0)
Evaluate fitness P (0), F (Pi (0))
loop
Recombine: P (m) := R(P (m))
Mutate: P (m) := M (P (m))
Evaluate: F (P (m))
Select: P (m + 1) := S(P (m))
m := m + 1
exit when goal or stopping condition is satisfied
end loop;

There has been much work in
genetic programming for software
engineering, but not always to create
the program code for the software
system itself.

COVER FE ATURE

COMPUTER 34

candidate test inputs. To assess fitness, the ATDG system
must cause the program to be executed for the candidate
inputs. The ATDG system then monitors the execution
to assess fitness: how well does the input meet the test
adequacy criterion?

GENETIC PROGRAMMING
Since program notation is one of the engineering ma-

terials with which software engineering is principally
concerned, we might expect that GP would have found
widespread application in software engineering. Indeed,
there has been much work in GP for software engineering,
but not always to create the program code for the software
system itself. Program construction remains a largely and
stubbornly human-centric activity. One goal of the SBSE

research agenda is the creation of optimization techniques
that can maximally automate the program construction.

This remains an open grand challenge for SBSE, as it
does for several other related research communities. Al-
though full achievement of this grand challenge remains
some way off, there are many highly effective ways to use
GP in SBSE.

Predictive modeling
It is not necessary for GP to evolve a complete program

for it to be useful; it merely needs to generate a set of rules
that capture some important property of a problem. GP is
very good at this. It was first used in software engineering
to capture the equations that define good software cost-
estimation models.45 This is a natural fit because these
models are often highly nonlinear and exhibit piecewise
behavior. The equations that define them are nevertheless
relatively small and there is a natural fitness function: the
degree of “fit” of the equation to the observed data for
a set of projects. Consequently, the space of all possible
software cost models forms a natural target for GP work.

Mutation testing
Recent work has shown how GP can be used to search

for subtle software faults.46 A strongly typed GP system
uses a restricted C grammar to generate complex faults.
The system computes fitness for two objectives: one syn-
tactic and the other semantic.

The syntactic fitness function measures the syntactic
similarity of the original program and the faulty version

to minimize the difference between the two. The semantic
fitness uses a set of test cases to measure the degree of
semantic similarity between the two programs, seeking a
faulty version that is almost (but not quite) identical to the
original program. In this manner, the approach seeks faults
that are hard to detect either syntactically or semantically.

Automated bug fixing
Most work on SBSE applied to testing has been con-

cerned with the discovery of faults in software. However,
more recently, authors have also turned their attention to
the use of SBSE to patch software and fix bugs.47,48

Wesley Weimer and colleagues45 used GP to evolve
patches that fix real bugs, winning a Gold Medal at the
2009 Genetic and Evolution Computation Conference for
the achievement of human competitive results. The patch-
ing process uses what might be called “plastic surgery” to
scavenge fragments of code for fault fixing from elsewhere
within the program under test. The patches are evolved
using GP, for which fitness is computed in terms of passing
and failing test cases, thereby fixing the fault and avoiding
regression.

OPEN PROBLEMS AND
REMAINING CHALLENGES

In previous work on evolutionary computation for soft-
ware engineering, the evolution model was an extremely
simple one. Whether the technique used was a genetic
algorithm or a variant such as genetic programming, there
was but a single population, evolving according to a single
fitness function. Real-world evolution is far more complex
because multiple populations interact with one another,
effectively solving multiple objective problems with several
different fitness functions. Furthermore, in the real world
of coevolution, the fitness of one population can critically
impact the fitness of another.

Coevolutionary computation
In coevolutionary computation, two or more popu-

lations evolve simultaneously, with the fitness of each
depending upon the current population of the other.
Coevolution takes two forms: cooperative and competitive.

In cooperative coevolution, the two populations are
sympathetic to each other, and the overall system seeks a
symbiotic balance between the two. Biology offers many
examples of this, such as the symbiotic relationship be-
tween pollinating insects and the plants they pollinate. By
contrast, in competitive coevolution, one population plays
the role of predator and the other is its prey. This coevolu-
tion model’s goal is to create an “arms race” between the
two populations so that each continually improves its fit-
ness with respect to the other.

Researchers have applied both cooperative and com-
petitive coevolution to software engineering problems,

If they can find a suitable fitness
function, researchers could use
SBSE to constructively and
sympathetically coevolve
collaborating subsolutions.

35OCTOBER 2011

with the competitive form the first to be studied. Konstan-
tinos Adamopoulos and coauthors49 used it to evolve sets
of mutants and sets of test cases, where the test cases act
as predators and the mutants as their prey.

Andrea Arcuri and Xin Ya47 also developed a competitive
coevolutionary model of bug fixing, in which one popula-
tion essentially seeks out patches that can pass test cases,
while an oracle produces cases to test the current popula-
tion of potential patches. In this way, the patch is the prey,
while the test cases act as predators.

In the work of both Adamopoulos and colleagues and
Arcuri and Yao, the two populations consist of code frag-
ments and test cases. The primary difference is that for
Adamopoulos and colleagues, the goal is to find models
of faults, whereas in the work of Arcuri and Yao, the goal
is to find patches that fix faults.

Any situation in which code and test cases coevolve
offers a natural candidate for a competitive, predator-prey
model of coevolution. We can expect much more work on
this model because it is well-suited to the way software
testing takes place. Indeed, many software developers
will already be familiar with the feeling that they are the
prey for some demanding “testing predator.” In software
security, too, a similar predator-prey culture is prevalent,
and we can expect competitive coevolution to make this
more than mere analogy.

Many other aspects of software engineering problems
lend themselves to a coevolutionary optimization model
because software systems are complex and rich in potential
populations that could be productively coevolved using both
competitive and cooperative coevolution. While software
testing and security problems naturally fit a competitive
instantiation, many other software engineering problems
are better suited to a cooperative model. For example, com-
ponents, agents, stakeholder behavior models, designs,
cognitive models, requirements, test cases, use cases, and
management plans are all important aspects of software
systems for which optimization is an important concern.

If they can find a suitable fitness function, researchers
could use SBSE to constructively and sympathetically co-
evolve collaborating subsolutions. For example, in recent
work on cooperative coevolution in SBSE, Jian Ren and
coauthors50 explored the way in which different aspects
of a software project could be cooperatively coevolved.

Although work on coevolution in software engineering
is in its infancy, it seems likely that this area will be the
subject of much interest over the coming years because of
the close fit to complex software engineering problems.

Scalability
Scalability is probably the biggest generic challenge

facing software engineering. Although processing power is
increasing, the scale and complexity of software systems
is increasing at least as fast. Techniques for software de-

velopment, testing, and verification are required that can
scale to meet this challenge.

Fortunately, SBSE techniques such as evolutionary com-
putation are highly scalable because they can be easily
parallelized. Genetic algorithms involve a population to
which the same fitness function is applied repeatedly.
There is no reason why the entire population’s fitness
cannot be evaluated on an SIMD architecture in a single
step. Several authors have demonstrated that this paral-
lelism can be exploited in SBSE work to obtain scalability
through distributed computation.51-53

Recent work has shown how this parallelism can be
exploited on general-purpose graphical processing units
(GPGPUs). Shin Yoo and coauthors54 showed how to map
the problem of regression testing onto a GPGPU, solv-
ing multiobjective regression test selection problems up
to 20 times faster than conventional architectures. The
results also outperformed multicore CPU computation
and made possible large-scale, real-world smoke-testing
optimization that would have been impossible without
the scalability offered by GPGPUs.

This work opens up the prospect of an inexpensive and
effective means of unleashing the parallelism latent in
evolutionary computation and harnessing its scalability for
software engineering applications. The importance of scal-
ability and the rapid industry-wide migration to multicore
computing indicate that parallel SBSE is a topic likely to
receive considerable attention in the coming years.

Interactive evolution
Although researchers have successfully applied SBSE

to the automation of many areas of software engineer-
ing, some aspects of this discipline cannot be automated.
The designs we create are ultimately intended for human
consumption, and human judgment will always play a
critical role in almost every design process. It is difficult
to capture some design aspects in a fitness function, and
software engineering design challenges are no exception.

Interactive evolution offers an approach that places the
human in the fitness computation loop.55 SBSE research-
ers have used interactive evolution to allow humans to
play a role in defining a software engineering design’s fit-
ness. For example, Christopher L. Simons and coauthors
used interactive evolution to search for good designs for
an object-oriented class diagram.56

Seeking optimal and near-optimal
solutions is natural because it lies
at the core of all engineering
approaches and pervades all
engineering activity.

COVER FE ATURE

COMPUTER 36

This work is intended to support early life-cycle design
activity in which human judgment is critical. Since soft-
ware engineering design involves many aspects of human
judgment and remains a labor-intensive engineering activ-
ity, we can expect much future interest in interactive forms
of evolutionary computation for software engineering.

Characterization of landscapes and problems
As in any field, SBSE generated initial excitement that

led to widespread uptake and development of a broad
range of applications. Researchers attacked many different
aspects of software engineering using evolutionary com-
putation, with early successes stimulating further work
and wider development. However, after the initial “gold
rush,” there comes a time for consolidation.

In fact, this closely mirrors the behavior of the evolu-
tionary compilation process itself. That is, the early stages
of the evolutionary process tend to favor exploration of

new parts of the search space, while the later phases tend
to favor the exploitation of productive areas, seeking im-
proved fitness within them.

There is evidence for the emergence of this second
phase of activity in the software engineering research
community. Although work continues on developing
exciting new areas for applying SBSE for the first time,
a consistent effort is emerging that seeks to develop a
deeper understanding and scientific basis for the results
obtained thus far. Both the theoretical study of algorithm
performance and the theoretical and empirical analysis
of problems is now common in the well-explored areas
of SBST.36,37,57 But as the field matures, we can expect that
there will be an increasing proportion of activity in the
area of theoretical characterization of problems and algo-
rithms that can be used to resolve them.

Hyperheuristic optimization
Seeking optimal and near-optimal solutions is natural

because it lies at the core of all engineering approaches
and pervades all engineering activity. We have seen from
SBSE’s widespread application that its generic and highly
applicable nature has led to many tailor-made optimiza-
tion algorithms for problem instances across the spectrum
of software engineering activities.

These algorithms have proved to be astonishingly effec-
tive, and researchers and practitioners alike are using them.

However, custom-made development will always remain a
slow and expensive process compared to the potential of-
fered by hyperheuristics—algorithms devised by combining
simpler heuristics to efficiently solve computational search
problems—making hyperheuristic software engineering a
natural next step for the research community.58

A primary goal of SBST work is test input generation.
However, this work does not address the problem of the
generation of test cases, which are, in their most abstract
form, input-output pairs. SBST tends to generate inputs
that achieve various test adequacy criteria but not the ex-
pected outputs; checking the test cases therefore typically
remains an unautomated aspect of the overall test activ-
ity. Determining the correct output for a given input is the
“oracle problem” in software testing. While there has been
work on using SBST to reduce the cost of human oracle
checking,59 little work has combined SBST with oracle con-
struction. One promising recent approach is the work by
Gordon Fraser and Andreas Zeller,60 which uses SBST to
generate test data to kill mutants and simultaneously seeks
to construct a partial oracle.

Applications in emerging areas
Much of the SBSE literature focuses on what might be

termed “traditional” software engineering application
areas, such as requirements, project planning, design, im-
plementation, testing, and maintenance. However, there is
no reason why SBSE cannot be applied to other forms of
software development. Any software engineering problem
in which there are objectives to be optimized offers op-
portunities for search-based optimization.

For example, because researchers could optimize many
competing objectives for agile computing paradigms, the
application of evolutionary computation to these para-
digms cannot be far off. In addition, initial work has
been reported formulating the challenges related to the
emerging cloud-based paradigm.61 It is also likely that the
increasing use of mobile and embedded systems will lead
to increased nonfunctional properties, for which SBSE has
already been applied.6 Even in the comparatively “blue
sky” field of quantum computation, SBSE has proved
to be a potential source of both solutions to potential
challenges62 as well as a beneficiary of developments in
quantum computation.63

WHY IS EVOLUTIONARY
COMPUTATION SO POPULAR?

Evolutionary algorithms have proved to be the most
widely applied of all SBSE techniques.12 However, this
raises the question of why evolutionary search algorithms
should have proved so popular. Is there a particular techni-
cal reason for this prevalence?

It is true that these algorithms are widely applicable
because they can cater to single and multiple objectives,

37OCTOBER 2011

they can incorporate human fitness evaluation, and they
can be easily parallelized. These important technical
considerations provide compelling motivations for the
consideration of evolutionary computation as a natural
technique for optimizing software engineering. However,
evolutionary algorithms also offer many interesting varia-
tions and numerous parameters to be tuned and explored.
These can prove to be as enticing to researchers as they
are frustrating to practitioners.

We must be wary of the unquestioning adoption of
evolutionary algorithms merely because they are popu-
lar and widely applicable or because, historically, other
researchers have adopted them for SBSE problems; none
of these are scientific motivations for adoption. Part of the
importance of the second phase of research activity con-
centrating on characterization and algorithmic complexity
analysis lies in the way in which it can help determine the
best algorithm for a particular software engineering prob-
lem. This will not always be an evolutionary algorithm.
For example, there is evidence to suggest that, for branch-
adequate test data generation, local search algorithms may
be better suited to fast and effective coverage.37

PREVIOUS RESEARCH
Since the term SBSE was coined in 2001, there has been

an explosion of interest and activity in this area, creating
a considerable body of literature.

Surveys covering requirements,3 predictive modeling,4
design,5 and testing6-9 provide an excellent analysis of the
application of SBSE to these topic-specific areas. Other
surveys of specific software testing topics include sec-
tions devoted to search-based techniques, such as recent
reports covering mutation testing64 and regression test
optimization.65

Some reports focus on specific aspects of SBSE, for ex-
ample, the use of metrics as fitness functions,66 structured
reviews of the empirical evidence concerning test data
generation,7 nonfunctional testing,6 and predictive model-
ing.4 Other reports identify open problems and future SBSE
research agendas for program comprehension,67 predictive
modeling,68 and testability transformation.69

The systematic reviews provide a convenient summary
of the current empirical evidence base for SBSE, while
the agenda-defining papers may provide potential topics
and ideas for future research projects and PhD theses.
Students interested in finding a more introductory tuto-
rial might consider a forthcoming summary that provides
a self-contained introduction to SBSE and offers practi-
cal guidance and advice.70 Finally, some surveys seek to
cover the entire area of SBSE. A 2003 survey that covered
project planning, design, maintenance, and testing,27 and
the overview and introductory paper from ICSE 2007,71 are
both widely cited sources of general information about
SBSE. A comprehensive 2009 survey mapped the entire

field, providing the first data on emerging SBSE trends,12
and a 2011 retrospective provides a bibliometric analysis
of the SBSE literature.35

R esearchers can use evolutionary computation algo-
rithms to optimize any artifact of design for which
a suitable fitness function can be defined. Software

engineering provides a rich and varied source of such
artifacts together with metrics that can be readily adapted
to their new role as fitness functions. This has led to 10
years of rapid developments in search-based software
engineering. Evolutionary computation for software engi-
neering forms a substantial part of this overall growth in
SBSE research and practice. There are also many exciting
emerging developments in evolutionary computation for
software engineering for which we can expect a great deal
of future work.

Acknowledgments
As of July 2011, SBSE research had rapidly grown to include
publications by more than 800 authors from 270 institutions
in more than 40 countries. Although I cannot acknowledge
each person here by name, I am grateful to this community for
the many stimulating conversations about SBSE over the past
10 years. In particular, I thank Bill Langdon, Richard Torkar,
Wes Weimer, and Xin Yao for their comments on an earlier
draft of this article. I also thank Yuanyuan Zhang for many
discussions on SBSE and her assistance in the production of
Figures 1 and 3 as well as her tireless work on the SBSE re-
pository, which provides an excellent resource for this rapidly
growing community.

References
 1. M.M. Lehman, “On Understanding Laws, Evolution and

Conservation in the Large Program Life Cycle,” J. Systems
and Software, vol. 1, no. 3, 1980, pp. 213-221.

 2. A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley, “The
Next Release Problem,” Information and Software Technol-
ogy, Dec. 2001, pp. 883-890.

 3. Y. Zhang, A. Finkelstein, and M. Harman, “Search-Based
Requirements Optimisation: Existing Work and Chal-
lenges,” Proc. Int’l Working Conf. Requirements Eng.:
Foundation for Software Quality (REFSQ 08), LNCS 5025,
Springer, 2008, pp. 88-94.

 4. W. Afzal and R. Torkar, “On the Application of Genetic Pro-
gramming for Software Engineering Predictive Modeling:
A Systematic Review,” Expert Systems Applications, vol.
38, no. 9, 2011, pp. 11984-11997.

 5. O. Räihä, “A Survey on Search-Based Software Design,”
Computer Science Rev., vol. 4, no. 4, 2010, pp. 203-249.

 6. W. Afzal, R. Torkar, and R. Feldt, “A Systematic Review of
Search-Based Testing for Non-Functional System Proper-
ties,” Information and Software Technology, vol. 51, no. 6,
2009, pp. 957-976.

 7. S. Ali et al., “A Systematic Review of the Application and
Empirical Investigation of Search-Based Test-Case Genera-
tion,” IEEE Trans. Software Eng., vol. 36, no. 6, 2010, pp.
742-762.

COVER FE ATURE

COMPUTER 38

 8. M. Harman, “Automated Test Data Generation Using
Search-Based Software Engineering,” Proc. 2nd Int’l Work-
shop Automation of Software Test (AST 07), IEEE CS Press,
2007, p. 2.

 9. P. McMinn, “Search-Based Software Test Data Generation:
A Survey,” Software Testing, Verification and Reliability, vol.
14, no. 2, 2004, pp. 105-156.

 10. M. O’Keeffe and M. Ó Cinnéide, “Search-Based Software
Maintenance,” Proc. Conf. Software Maintenance and Re-
engineering (CSMR 06), IEEE CS Press, 2006, pp. 249-260.

 11. M. Harman and L. Tratt, “Pareto Optimal Search-Based
Refactoring at the Design Level,” Proc. 9th Ann. Conf. Ge-
netic and Evolutionary Computation (GECCO 07), ACM
Press, 2007, pp. 1106-1113.

 12. M. Harman, A. Mansouri, and Y. Zhang, Search-Based Soft-
ware Engineering: A Comprehensive Analysis and Review
of Trends, Techniques, and Applications, tech. report TR-
09-03, Dept. of Computer Science, King’s College London,
2009.

 13. J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary Test
Environment for Automatic Structural Testing,” Informa-
tion and Software Technology, vol. 43, no. 14, 2001, pp.
841-854.

 14. J. Wegener and O. Bühler, “Evaluation of Different Fitness
Functions for the Evolutionary Testing of an Autonomous
Parking System,” Proc. Genetic and Evolutionary Computa-
tion Conf. (GECCO 2004), LNCS 3103, Springer, 2004, pp.
1400-1412.

 15. J. Wegener and F. Mueller, “A Comparison of Static Analysis
and Evolutionary Testing for the Verification of Timing
Constraints,” Real-Time Systems, vol. 21, no. 3, 2001, pp.
241-268.

 16. C. Cadar et al., “Symbolic Execution for Software Testing
in Practice: Preliminary Assessment,” Proc. 33rd Int’l Conf.
Software Eng. (ICSE11), ACM Press, 2011, pp. 1066-1071.

 17. K. Lakhotia et al., “FloPSy—Search-Based Floating Point
Constraint Solving for Symbolic Execution,” Proc. 22nd
IFIP Int’l Conf. Testing Software and Systems (ICTSS 10),
LNCS 6435, Springer, 2010, pp. 142-157.

 18. S. Yoo, R. Nilsson, and M. Harman, “Faster Fault Finding
at Google Using Multiobjective Regression Test Optimsa-
tion,” Proc. 8th European Software Eng. Conf. and ACM
SIGSOFT Symp. Foundations of Software Eng. (ESEC/
FSE 11), ACM Press, Sept. 2011; http://2011.esec-fse.org/
industrial-track.

 19. S.L. Cornford et al., “Optimizing Spacecraft Design—
Optimization Engine Development: Progress and Plans,”
Proc. IEEE Aerospace Conf. (AeroConf 03), IEEE Press, 2003,
pp. 3681-3690.

 20. P. Baker et al., “Search-Based Approaches to Component
Selection and Prioritization for the Next Release Problem,”
Proc. 22nd Int’l Conf. Software Maintenance (ICSM 06), IEEE
Press, 2006, pp. 176-185.

 21. Y. Zhang et al., “Today/Future Importance Analysis,” Proc.
ACM Genetic and Evolutionary Computation Conf. (GECCO
10), ACM Press, 2010, pp. 1357-1364.

 22. W. Afzal et al., “Search-Based Prediction of Fault-Slip-
Through in Large Software Projects,” Proc. 2nd Int’l Symp.
Search-Based Software Eng. (SSBSE 10), IEEE CS Press, 2010,
pp. 79-88.

 23. A.M. Turing, “Computing Machinery and Intelligence,”
Mind, Jan. 1950, pp. 433-460.

 24. J.H. Holland, Adaption in Natural and Artificial Systems,
MIT Press, 1975.

 25. D.E. Goldberg, Genetic Algorithms in Search, Optimization
& Machine Learning, Addison-Wesley, 1989.

 26. M. Harman, “Why the Virtual Nature of Software Makes It
Ideal for Search-Based Optimization,” Proc. 13th Int’l Conf.
Fundamental Approaches to Software Eng. (FASE 10), IEEE
CS Press, 2010, pp. 1-12.

 27. J. Clark et al., “Reformulating Software Engineering as a
Search Problem,” IEE Proceedings—Software, vol. 150, no.
3, 2003, pp. 161-175.

 28. H.-P. Schwefel and T. Bäck, “Artificial Evolution: How and
Why?” Genetic Algorithms and Evolution Strategy in Engi-
neering and Computer Science, D. Quagliarella et al., eds.,
John Wiley & Sons, 1998, pp. 1-19.

 29. E. Alba and F. Chicano, “Observations in Using Parallel
and Sequential Evolutionary Algorithms for Automatic
Software Testing,” Computers & Operations Research, Oct.
2008, pp. 3161-3183.

 30. J.R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection, MIT Press,
1992.

 31. S. Xanthakis et al., “Application of Genetic Algorithms to
Software Testing,” Proc. 5th Int’l Conf Software Eng. (ICSE
92), IEEE CS Press, 1992, pp. 625-636.

 32. C.K. Chang et al., “SPMNet: A Formal Methodology for
Software Management,” Proc. 18th Ann. Int’l Computer
Software and Applications Conf. (COMPSAC 94), IEEE CS
Press, 1994, p. 57.

 33. C.K. Chang, “Changing Face of Software Engineering,”
IEEE Software, vol. 11, no. 1, 1994, pp. 4-5.

 34. M. Harman and B.F. Jones, “Search-Based Software Engi-
neering,” Information and Software Technology, Dec. 2001,
pp. 833-839.

 35. F.G. Freitas and J.T. Souza, “Ten Years of Search-Based
Software Engineering: A Bibliometric Analysis,” Proc. 3rd
Int’l Symp. Search-Based Software Eng. (SSBSE 11), Sept.
2011; www.springerlink.com/content/q2tr783534pj4444.

 36. A. Arcuri, “It Does Matter How You Normalise the Branch
Distance in Search-Based Software Testing,” Proc. Int’l
Conf. Software Testing (ICST 10), IEEE CS Press, 2010, pp.
205-214.

 37. M. Harman and P. McMinn, “A Theoretical and Empirical
Study of Search-Based Testing: Local, Global and Hybrid
Search,” IEEE Trans. Software Eng., vol. 36, no. 2, 2010, pp.
226-247.

 38. A. Baresel, H. Sthamer, and J. Wegener, “Applying Evolu-
tionary Testing to Search for Critical Defects,” Proc. Conf.
Genetic and Evolutionary Computation (GECCO 04), LNCS
3103, Springer, 2004, pp. 1427-1428.

 39. C. Del Grosso et al., “Improving Network Applications Se-
curity: A New Heuristic to Generate Stress Testing Data,”
Proc. Conf. Genetic and Evolutionary Computation (GECCO
05), ACM Press, 2005, pp. 1037-1043.

 40. A.C. Schultz, J.J. Grefenstette, and K.A. De Jong, “Test and
Evaluation by Genetic Algorithms,” IEEE Expert (also IEEE
Intelligent Systems and Their Applications), vol. 8, no. 5,
1993, pp. 9-14.

 41. L.C. Briand, Y. Labiche, and M. Shousha, “Stress Testing
Real-Time Systems with Genetic Algorithms,” Proc. Conf.
Genetic and Evolutionary Computation (GECCO 05), ACM
Press, 2005, pp. 1021-1028.

39OCTOBER 2011

 42. L.C. Briand, J. Feng, and Y. Labiche, “Using Genetic Al-
gorithms and Coupling Measures to Devise Optimal
Integration Test Orders,” Proc. 14th Int’l Conf. Software
Eng. and Knowledge Eng. (SEKE 02), ACM Press, 2002, pp.
43-50.

 43. N. Alshahwan and M. Harman, “Automated Web Applica-
tion Testing Using Search-Based Software Engineering,”
Proc. IEEE/ACM Int’l Conf. Automated Software Eng. (ASE
11), Nov. 2011, to appear.

 44. M. Di Penta et al., “Search-Based Testing of Service Level
Agreements,” Proc. 9th Ann. Conf. Genetic and Evolutionary
Computation (GECCO 07), ACM Press, 2007, pp. 1090-1097.

 45. J.J. Dolado and L. Fernandez, “Genetic Programming,
Neural Networks and Linear Regression in Software
Project Estimation,” Proc. Int’l Conf. Software Process Im-
provement, Research, Education and Training (INSPIRE III),
British Computer Soc., 1998, pp. 157-171.

 46. W.B. Langdon, M. Harman, and Y. Jia, “Efficient Multi-
objective Higher Order Mutation Testing with Genetic
Programming,” J. Systems and Software, vol. 83, no. 12,
2011, pp. 2416-2430.

 47. A. Arcuri and X. Yao, “A Novel Co-evolutionary Approach
to Automatic Software Bug Fixing,” Proc. IEEE Congress on
Evolutionary Computation (CEC 08), IEEE CS Press, 2008,
pp. 162-168.

 48. W. Weimer et al., “Automatically Finding Patches Using
Genetic Programming,” Proc. Int’l Conf. Software Eng. (ICSE
09), IEEE CS Press, 2009, pp. 364-374.

 49. K. Adamopoulos, M. Harman, and R.M. Hierons, “How to
Overcome the Equivalent Mutant Problem and Achieve
Tailored Selective Mutation Using Co-Evolution,” Proc.
Conf. Genetic and Evolutionary Computation (GECCO 04),
LNCS 3103, Springer, 2004, pp. 1338-1349.

 50. J. Ren, M. Harman, and M. Di Penta, “Cooperative Co-
evolutionary Optimization on Software Project Staff
Assignments and Job Scheduling,” Proc. 3rd Int’l Symp.
Search-Based Software Eng. (SSBSE 11), Sept. 2011; www.
springerlink.com/content/a611526179255p80.

 51. F. Asadi, G. Antoniol, and Y.-G. Guéhéneuc, “Concept Lo-
cation with Genetic Algorithms: A Comparison of Four
Distributed Architectures,” Proc. 2nd Int’l Symp. Search-
Based Software Eng. (SSBSE 10), IEEE CS Press, 2010, pp.
153-162.

 52. K. Mahdavi, M. Harman, and R.M. Hierons, “A Multiple Hill
Climbing Approach to Software Module Clustering,” Proc.
IEEE Int’l Conf. Software Maintenance (ICSM 03), IEEE CS
Press, 2003, pp. 315-324.

 53. B.S. Mitchell, M. Traverso, and S. Mancoridis, “An Ar-
chitecture for Distributing the Computation of Software
Clustering Algorithms,” Proc. Working Conf. Software Ar-
chitecture (WICSA 01), IEEE CS Press, 2001, pp. 181-190.

 54. S. Yoo, M. Harman, and S. Ur, “Highly Scalable Multi-Objec-
tive Test Suite Minimisation Using Graphics Cards,” Proc.
3rd Int’l Symp Search-Based Software Eng. (SSBSE 11), Sept.
2011; www.springerlink.com/content/5381g43g1pp41811.

 55. P. Funes et al., “Interactive Multiparticipant Task Alloca-
tion,” Proc. IEEE Congress on Evolutionary Computation
(CEC 04), IEEE Press, 2004, pp. 1699-1705.

 56. C.L. Simons, I.C. Parmee, and R. Gwynllyw, “Interactive,
Evolutionary Search in Upstream Object-Oriented Class
Design,” IEEE Trans. Software Eng., vol. 36, no. 6, 2010, pp.
798-816.

 57. P.K. Lehre and X. Yao, “Runtime Analysis of Search
Heuristics on Software Engineering Problems,” Fron-
tiers of Computer Science in China, vol. 3, no. 1, 2009,
pp. 64-72.

 58. E.K. Burke et al., “A Graph-Based Hyper-Heuristic for Edu-
cational Timetabling Problems,” European J. Operational
Research, vol. 176, no. 1, 2007, pp.177-192.

 59. M. Harman et al., “Optimizing for the Number of Tests
Generated in Search-Based Test Data Generation with an
Application to the Oracle Cost Problem,” Proc. 3rd Int’l
Workshop Search-Based Software Testing (SBST 10), IEEE
CS Press, 2010, pp. 182-191.

 60. G. Fraser and A. Zeller, “Mutation-Driven Generation of Unit
Tests and Oracles,” Proc. 19th Int’l Symp. Software Testing
and Analysis (ISSTA 10), ACM Press, 2010, pp. 147-158.

 61. H. Wada et al., “Evolutionary Deployment Optimization for
Service-Oriented Clouds,” Software Practice and Experi-
ence, vol. 41, no. 5, 2011, pp. 469-493.

 62. P. Massey, J.A. Clark, and S. Stepney, “Human-Competitive
Evolution of Quantum Computing Artefacts by Genetic
Programming,” Evolutionary Computation, vol. 14, no. 1,
2006, pp. 21-40.

 63. R.J. Hall, “A Quantum Algorithm for Software Engineering
Search,” Proc. Automated Software Eng. (ASE 2009), IEEE
CS Press, 2009, pp. 40-51.

 64. Y. Jia and M. Harman, “An Analysis and Survey of the De-
velopment of Mutation Testing,” IEEE Trans. Software Eng.,
2011, doi:10.1109/TSE.2010.62.

 65. S. Yoo and M. Harman, “Regression Testing Minimisation,
Selection and Prioritisation: A Survey,” J. Software Testing,
Verification and Reliability, 2011, doi:10.1002/stvr.430.

 66. M. Harman and J. Clark, “Metrics Are Fitness Functions
Too,” Proc. 10th Int’l Software Metrics Symp. (Metrics 04),
IEEE CS Press, 2004, pp. 58-69.

 67. M. Harman, “Search-Based Software Engineering for
Program Comprehension,” Proc. 15th Int’l Conf. Program
Comprehension (ICPC 07), IEEE CS Press, 2007, pp. 3-13.

 68. M. Harman, “The Relationship Between Search-Based
Software Engineering and Predictive Modeling,” Proc. 6th
Int’l Conf. Predictive Models in Software Eng. (PROMISE 10),
2010; www.cs.ucl.ac.uk/staff/mharman/promise-keynote.
pdf.

 69. M. Harman, “Open Problems in Testability Transfor-
mation,” keynote, Proc. 1st Int’l Workshop Search-Based
Testing (SBT 08), 2008; http://ieeeexplore.ieee.org/xpls/
abs_all.jsp?arnumber=4567008.

 70. M. Harman et al., “Search-Based Software Engineering:
Techniques, Taxonomy, Tutorial,” Empirical Software En-
gineering and Verification: LASER 2009-2010, B. Meyer and
M. Nordio, eds., Springer, 2012.

 71. M. Harman, “The Current State and Future of Search-
Based Software Engineering,” Proc. Future of Software
Eng. (FOSE 07), IEEE CS Press, 2007, pp. 342-357.

Mark Harman leads the Software Systems Engineering
Group and is director of the Centre for Research on Evolu-
tion Search and Testing in the Department of Computer
Science at University College London. His research focuses
on source code analysis and testing, and he was instru-
mental in founding the field of search-based software
engineering. Contact him at mark.harman@ucl.ac.uk.

