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Abstract—Software Engineering and development is well-
known to suffer from unplanned overtime, which causes stress
and illness in engineers and can lead to poor quality software
with higher defects. In this paper, we introduce a multi-objective
decision support approach to help balance project risks and
duration against overtime, so that software engineers can better
plan overtime. We evaluate our approach on 6 real world software
projects, drawn from 3 organisations using 3 standard evaluation
measures and 3 different approaches to risk assessment. Our
results show that our approach was significantly better (p < 0.05)
than standard multi-objective search in 76% of experiments (with
high Cohen effect size in 85% of these) and was significantly
better than currently used overtime planning strategies in 100%
of experiments (with high effect size in all). We also show how our
approach provides actionable overtime planning results and inves-
tigate the impact of the three different forms of risk assessment.

I. INTRODUCTION

Poor overtime planning is particularly pernicious in the
software industry. Facing a combination of estimate inaccuracy
and time-to-market pressure, software engineers are often
coerced into high levels of unplanned overtime, leading to
dissatisfaction, depression, and defects. Inability to plan and
budget for overtime leads to hastily arranged, unplanned overtime
and the familiar spectre of the ‘death march project’ [1].

This has a detrimental effect on the quality of the lives of the
software engineers unfortunate enough to be involved and also
of the quality of the software that they produce. As might be
expected, the problems of unplanned overtime have been widely
reported upon in the occupational health literature, which contains
many systematic studies of its unfortunate side effects on profes-
sionals and the products and services they provide [2], [3], [4].

There is also evidence for the harmful effects of unplanned
overtime specifically on software engineering professionals
and the software they produce, though it is perhaps surprising
how little this phenomenon has been systematically studied,
given the widespread belief that it is so prevalent [1], [5].
A controlled study of 377 software engineers found positive
correlations (p < 0.05) between unplanned overtime and several
widely-used stress and depression indicators [6]. There is also
evidence that the deployment of overtime can lead to increased
software defect counts [7].

Fortunately, there is also case study evidence that proper
planning leads, not only to greater software engineer job
satisfaction, but also to improved customer satisfaction in
the resulting software products [8]. Looking to the wider
(non-software-engineering specific) literature, we can also find
evidence that planned overtime has few, if any, of the harmful
side-effects that so-often accompany unplanned overtime [9].
This evidence all points to the need for research into decision
support for software engineers to help them better plan for
overtime, balancing the need for overtime against project
overrun risks and budgetary constraints.

The software engineering literature contains many excellent
examples of research on software engineering support techniques
for a wide range of engineering tasks such as testing, design and
maintenance. This work has contributed to the software-enabled
development environments that many software engineers now
take for granted [10]. However, sadly, there has been no
research aimed at providing support to software engineers in
their attempts to plan for overtime.

This paper addresses this problem. We introduce an approach
to support software engineers in better planning for overtime,
while managing risk. The problem is to find the right balance
between the conflicting objectives of reducing project duration,
overtime, and risk.

Complex multi-objective decision problems with competing
and conflicting constraints such as this are well suited to Search
Based Software Engineering (SBSE) [11], which has proved able
to provide decision support for other early-stage development
activities, notably requirements engineering [12], [13], [14].
We believe that this is the first time that an approach has been
introduced to provide decision support for software engineers
attempting to reconcile these complex and difficult problems.

More specifically, the primary contributions of the paper are
as follows:

1) We introduce a multi-objective search based formulation
of the project overtime planning problem. Our approach
is able to balance trade offs between project duration,
overrun risk, and overtime resources for three different
risk assessment models. It is applicable to standard
software project plans, such as those constructed using
the Critical Path Method, widely adopted by software
engineers and implemented in many tools.

2) We present an empirical study on 6 real world software
projects, ranging in size from a few person weeks to
roughly four person years. This leads to 54 different
experiments, comparing our proposed algorithm (with
domain specific crossover operator) to the standard multi-
objective algorithm and random search. The results reveal
that our approach was significantly better than standard
multi-objective search in 76% of experiments and was
significantly better than random search in 100% experi-
ments. The standard multi-objective approach significantly
outperforms our approach in none of the experiments. We
repeated the experiments to compare our approach with
standard overtime planning strategies reported in the liter-
ature. This revealed that our approach always significantly
outperforms these standard strategies with high effect size.

3) We present case studies using Pareto fronts obtained
by our approach to illustrate how they yield actionable
insights into project planning tradeoffs. We also use
our approach to investigate the different risk assessment
models that might be adopted.



The rest of the paper is organised as follows: In Section II
the overtime planning problem is defined. Section III introduces
our search based approach to solving this problem using a
multi-objective Pareto optimal approach. Section IV describes
the method used in our empirical studies, the results of which
are presented in Section V. Section VI analyses the limitations
of the present study, while Section VII describes the context of
related work in which the current paper is located. Section VIII
concludes and presents directions for future work.

II. PROBLEM FORMULATION

Our formulation of the problem starts from the Work
Breakdown Schedule (WBS) produced by the software engineer,
which we formalise here for clarity. Such a WBS can be
produced by many project planning tools, such as Microsoft
project (the tool used by all the organisations that provided the
real world schedules used to evaluate our approach in this paper).

Let a project schedule be represented as an
acyclic directed graph consisting of a node set
WP = {wp1, wp2, ..., wpn} of work packages and an
edge set DEP = {(wpi, wpj) : i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}
of dependencies between elements of WP, where wpj can start
only when wpi has completed. WP and DEPS form a graph,
the set of paths, Π, of which, denote the dependence-respecting
orderings of work packages to be undertaken to complete the
project. Associated with each work package, wpi, is the estimated
effort, ei, required to complete wpi and also its estimated
duration Duration(wpi). Based on this, the duration of each
path p ∈ Π through the project dependence graph is given by

Durationp =
∑
∀wp∈p

Duration(wp) (1)

and the total estimated shortest possible duration of the project is
given by any maximal length (or ‘critical’) path in Π. This is a for-
malisation of the well-known ‘Critical Path Method’ [15], which
has been widely used in project planning for several decades.
Though there may be several equal length critical paths (for which
no other path is longer) it is traditional to select one and to refer
to it as the critical path, CP , a convention we adopt hereinafter.

Our problem is to analyse the effects of choices of overtime
assignments, each of which seeks to minimize project duration,
risk of overrun and the amount of overtime deployed. This
can be formulated as a three objective decision problem in
which the three objectives of duration, risk and overtime are
conflicting minimisation objectives.

We represent a candidate solution to our problem as an
assignment of overtime to work packages. A feasible solution is
an assignment of a certain number of extra hours to each work
package, denoted by Overtime(wpi) subject to the following
constraint: 0 ≤ Overtime(wpi) ≤ MaxOvertime(wpi),
where MaxOvertime(wpi) is the maximum assignable
overtime to the ith work package and depends on the effort
ei and the maximum overtime assignable per day1.

We shall use computational search to seek an allocation
of overtime for all work packages that minimises each of the
three objectives of Overtime (O), Project Duration (D) and
Risk of Overrun (R). We therefore measure fitness as a triple
〈O,D,R〉, whose components are defined as follows:

1The length of a working day and maximum allowed overtime are country
specific parameters to our approach, determined by legal and governance
procedures in place. In this paper we set these to 8 hours for a working day
and 3 hours per day maximum overtime.

Overtime(O) is the amount of time worked on each work
package beyond the individual time limit per day summed over
all work packages. More formally:

O =

n∑
i=0

Overtime(wpi) (2)

Project Duration(D) is the estimated duration (i.e., the length
of the critical path). More formally:

D =
∑

wp∈CP

Duration(wp) (3)

We define the risk of overrun in terms of the risk of overrun
associated to each path, p, in the project schedule:

riskp =
Durationp
DurationCP

(4)

The closer riskp is to 1.0, the greater the chance that an
overrun on a work package along path p will cause p to supersede
the current critical path as the determinant of project duration
(p thus becoming the new critical path due to the overrun).

We use three different approaches to the measurement of
Risk of Overrun (R), each of which combines the path risk
riskp, above into an overall project risk, R, as follows:

R = RAvgRisk =

∑
p∈Π riskp

| Π |
(5)

R = RMaxRisk = maxp∈Π−CP riskp (6)

R = RTrsRisk(L) =
| {p · p ∈ Π ∧ riskp > L} |

| Π |
· 100 (7)

These are, respectively, average, maximal, and threshold level
risks. Average risk is suited to the engineer who is ‘risk
averse’; it assumes that any overrun on any path could be a
problem. This is ‘risk averse’ in the sense that it reflects a
pessimistic belief that ‘anything that can go wrong will go
wrong’. Maximum risk is better suited to the engineer who
is more concerned that the critical path is not disrupted, but
who is relaxed about overruns in non-critical paths that do
not threaten to supersede the critical path, as these could be
absorbed into the project schedule. Threshold risk allow the
engineer to choose a risk level, making risk level a parameter
to the overall approach (which we set to 0.75 in this paper).

Of course, overtime allocation is a disruptive process; it
can change the critical path. This is one of the motivations for
decision support: engineers cannot be expected to understand
the impact of proposed overtime allocations on the critical path,
while simultaneously balancing budgets, durations, and estimates
of overruns. These are precisely those problems for which we
need the kind of automated analysis we introduce in this paper.

III. THE SOLUTION APPROACH

Our solution uses Search Based Software Engineering (SBSE)
[16], [11], for which it is established best practice to define a rep-
resentation, fitness function and computational search algorithm
[17]. Since our formulation is a triple objective formulation we
also need to decide how to handle multiple objectives.
Handling Multiple Objectives: In our case, the three
objectives are measured on orthogonal scales so we use Pareto
optimality, which states: “A solution x1 is said to dominate
another solution x2, if x1 is no worse than x2 in all objectives
and x1 is strictly better than x2 in at least one objective.”



Pareto optimality means that we do not suggest to the
engineer a single proposed solution. That would not be realistic.
No engineer would trust an automated tool to provide a single
overtime allocation. Rather, we seek to provide a decision
support tool, by showing the solutions in a space of trade offs
between the three objectives, allowing the engineer to see the
trade offs between them.

Using Pareto optimality we can plot the set of solutions found
to be non-dominating (and therefore equally viable). In the case
where there are three objectives, such as ours, this leads to a
three dimensional Pareto surface, though we can also project this
surface onto a two dimensional Pareto front to focus any two
objectives of interest. The shapes of such surfaces and fronts
can yield actionable insights. For example, where there is a
knee point (a dramatic switch in the material values of trade off
between objectives), this guides decision making (See Section V).
Representation: Feasible solutions to the problem defined in
Section II are assignments of a certain number of overtime hours
to each work package. We encoded them as chromosomes of
length n, where each gene represents the number of extra hours
assigned to each work package. The initial population, composed
by n chromosomes, was randomly obtained by assigning to
each wpi an overtime ranging from 0 to MaxOvertime(wpi).
Fitness: To evaluate the fitness of each chromosome we
employed a multi-objective function to simultaneously minimise
the objectives described in Section II, namely Project Duration,
Overtime, and Risk of Overrun. We report results for each overrun
risk assessment measure (AvgRisk, MaxRisk, and TrsRisk) sepa-
rately to explore the effects of each approach to risk assessment.
Computational Search: As a ranking method, we employed a
widely used Multi-Objective Evolutionary Algorithm (MOEA),
namely NSGAII [18]. However, it is insufficient merely to apply a
generic algorithm like NSGAII ‘out of the box’; we need to define
problem-specific genetic operators to ensure best performance.
In the case of genetic algorithms such as NSGAII the crossover
operator plays a pivotal role [19], [20], [21] and thus forms a
natural focus for such problem-specific algorithm design.

We therefore introduce a variant of NSGAII (which we
call NSGAIIv) specifically for the overtime planning problem.
NSGAIIv exhibits the same selection and crowding distance char-
acteristics as the standard NSGAII but exploits a new crossover
operator. Our crossover operator aims to preserve genes shared by
the fittest overtime assignments, thereby avoiding the well-known
disruptive effects of crossover [19]. It is defined as follows:

Let P1 and P2 be parent chromosomes, C the point of cut ran-
domly selected in the parents, and O1 and O2 the new offspring.
For the genes placed before C , O1 and O2 inherit the genes of
P1 and P2, respectively. While for each gene gi placed after C ,

O1(gi) =
{
max(P1(gi),P2(gi)),p=0.5
min(P1(gi),P2(gi)),p=0.5

}
O2(gi) = (P1(gi) + P2(gi))/2

Note that when the parent genes hold the same characteristic
(i.e., same quantity of overtime) they are retained in both
offspring, otherwise we generate two different genes for the
offspring: one that inherits the gene from mother or father with
equal probability and one that inherits both parent characteristics
in terms of overtime average.

IV. THE DESIGN OF THE EMPIRICAL STUDY

This section explains the design of our empirical study; the
research questions we set out to answer and the methods and
statistical tests we used to answer these questions.

A. Research Questions
We seek to answer five research questions, each of which

builds on its predecessor to develop the evidence for the validity,
performance, usefulness, and insights gained from our approach
to overtime planning.
RQ1 (SBSE Validation): How do NSGAII and NSGAIIv
perform compared to random search? In any attempt at an
SBSE formulation of a problem this is a standard ‘baseline’
question asked. If a proposed formulation does not allow an
intelligent computational search technique to outperform random
search convincingly, then there is clearly something wrong with
the formulation. This question is thus adopted in SBSE research
as a preliminary ‘sanity check’ [22].
RQ2.1 (Comparison to State of the Art Search): How does
NSGAIIv perform compared to NSGAII? Outperforming random
search is necessary, but not sufficient. In order for a proposed
approach to be adopted it must also outperform the state of the
art for the problem in hand. In this case, there is no prior work
on the problem of planning overtime on software projects. We
therefore compare our approach, NSGAIIv , to the standard
version of the algorithm (NSGAII), applied to our formulation.
RQ2.2 (Usefulness): How does NSGAIIv perform compared
to currently used overtime planning approaches? While
outperforming a standard multi-objective search may be a
valuable technical result, in order to be useful to software
engineers, our approach must also outperform existing overtime
management strategies used by practicing software engineers.
We therefore repeat the experiments in RQ2.1, but for RQ2.2
we compare our approach with three currently used strategies.
RQ3 (Insight): Can our approach yield useful insights into the
trade offs between objectives for real world software projects?
To provide decision support it is insufficient to demonstrate
that our approach outperforms engineers’ current practices. We
must also provide evidence that our approach yields insights
into the nature of the overtime planning problem. In order to do
this, we need to give examples of actionable insights obtainable
from the application of our approach to the real world software
projects of the empirical study.
RQ4 (Impact of Risk Assessment Models): What is the
difference between the three approaches to risk measurement?
If our approach is demonstrated to outperform state of the art
and current practice and it also provides useful insights, then
we can use it to explore the three different risk assessment
models we implemented (average, maximal, and threshold risk
assessment). Since these different assessments of risk reflect
different priorities in software engineers’ management of risk,
the findings shed light on the impact of different approaches
to risk management in overtime planning.

B. Software Projects Used in the Empirical Study
Table I summarises the key information concerning the 6

projects used in the empirical study. The projects came from
three different organisations, involved different kinds of software
engineering development and had different sizes, ranging from
60 to 245 work packages and from a few person weeks to
several person years in duration.
DB2 concerned the next release of a large data-intensive,

multi-platform software system, written in several languages
including DB II, SQL, and .NET. Web delivered a web-based
IT sales system across North America. The project included the
development and testing of website, search engine and order
management and tracking.



TABLE I
SOFTWARE PROJECTS USED IN THE EMPIRICAL STUDY. EFFORT IS MEASURED IN NORMALISED PERSON HOURS.

Project #WPs #Dependencies Effort Brief Description.
DB2 120 102 594 A multi-platform database upgrade involving several languages such as DB2, SQL and .NET
Web 245 247 6,664 A web-based purchase order system development
Quote 60 64 547 An enhancement of an existing system to include on-demand conversion of quotes to orders
Oracle 106 105 5,390 A large-scale Oracle database migration with tight data security constraints
Price 72 71 1,570 A client-side sales system upgrade to offer additional features to users
CutOver 95 68 2,356 Details cannot be revealed because of a Non Disclosure Agreement with the project data provider

Quote was a system developed for a large Canadian sales
company to provide on-demand conversion of quotes to orders.
Oracle was large scale database upgrade, migrating an old,
yet mission-critical, Oracle system. The information that was
migrated had an estimated value to the organisation of several
million dollars and formed the cornerstone of the organisation’s
operations. Price was an enhancement to the client side of
a sales system to provide improved pricing and features for
discounts, vouchers, and price conversions. The details of project
CutOver are the subject of a Non-Disclosure agreement and
so cannot be published.

C. Multi-Objective Evaluation Measurements Used
Assessing the performance of a computational search algorithm

for a single objective optimisation problem typically requires
observations about the best solution found. This approach is not
applicable for multi-objective optimisation problems because
there are a set of candidate solutions, each of which is said to
be ‘non-dominating’. That is, each is incomparable to the others
because no other solution has better values for all objectives.

Analysis of graphical plots of the solutions can provide
some indications of performance, but it provides a qualitative
evaluation and cannot provide a quantitative assessment of
the quality of solutions from one approach relative to another.
A robust evaluation requires that qualitative evaluations be
augmented by a more quantitive evaluation.

To provide this quantitative assessment we employ three
solution set quality indicators, namely Contributions (IC),
Hypervolume (IHV ), and Generational Distance (IGD). To
compute these we normalise fitness values to avoid unwanted
scaling effects [23] and compute a reference front of solutions,
RS, which is the set of non-dominated solutions found by the
union of all approaches compared [24].

The IC quality indicator is the simplest measure. It measures
the proportion of solutions given by an algorithm, A, that lie
on the reference front RS [25]. The higher this proportion, the
more A contributes to the best solutions found by the approaches
compared, and so the better is the quality of its solutions. IC is
a simple and intuitive measure, but it is affected by the number
of solutions produced, unfavourably penalising algorithms that
might produce ‘few but excellent’ solutions. This is why we also
consider two other measures of solution quality, IHV and IGD.

The IHV quality indicator [26] calculates the volume (in the
objective space) covered by members of a non-dominated set of
solutions from an algorithm of interest. The larger this volume,
the better the algorithm, because the more it captures of the
non-dominated solution space. Zitzler demonstrates [27] that
this hypervolume measure is also strictly ‘Pareto compliant’.
That is, the hypervolume of A is higher than B if the Pareto
set of A dominates that of B. By using a volume rather than
a count, this measure is also less susceptible to bias when the
numbers of points on the two compared fronts are very different.

The IGD quality indicator [28] computes the average distance
between the set of solutions, S, from the algorithm measured
and the reference set RS. The distance between S and RS in
an n objective space is computed as the average n-dimensional
Euclidean distance between each point in S and its nearest
neighbouring point in RS. We can think of IGD as the
distance between the front S and the reference front RS in
the n-dimensional objective space of the problem.

D. Inferential Statistical Test Methods Used

Due to the stochastic nature of evolutionary algorithms, best
practice requires the use of careful deployment of inferential
statistical testing to assess the differences in the performance
of the algorithms used [17], [29]. We therefore performed 30
independent runs per algorithm, per risk assessment measure,
per project to allow for such statistical testing.

To analyse the normality of distributions we employed
the Shapiro test [30]. As we expected, many of our samples
showed no evidence that they come from normally distributed
populations, making the t-test unsuitable. We therefore used the
Wilcoxon test [31] to check for statistical significance. Using
the Wilcoxon test is a safe test to apply (even for normally
distributed data), since it raises the bar for significance, by
making no assumptions about underlying data distributions. We
set the confidence limit, α, at 0.05 and applied the standard
Bonferroni correction (α/K, where K is the number of
hypothesis) in cases where multiple hypotheses were tested.

As has been previously noted in advice on statistical testing
of algorithms such as these [29], it is inadequate to merely show
statistical significance alone; we also need to know whether
the effect size is worthy of interest. Therefore, in order to
additionally assess the effect size, we used Cohen’s d, the
results of which are usually considered small for 0.2 ≤ d < 0.5,
medium for 0.5 ≤ d < 0.8, and large for d ≥ 0.8 [31].

To answer RQ1 we implemented a random search to be
compared with NSGAII and NSGAIIv . The random search
assigns randomly to each work package of the project, an
overtime varying from 0 to the maximum overtime assignable.
The resulting Pareto fronts were compared for statistically
significant differences with those produced by NSGAII and
NSGAIIv , using the quality indicators explained in Section IV-C.
In this sanity check we used the Wilcoxon test and for
significance also performed a Cohen effect size test in all results.

We do not wish to devote too much space to RQ1, since it
is only a ‘sanity check’, preferring to devote more space to the
answers to RQs 2–4, which concern more scientifically important
evidence for the performance and usefulness of our approach. To
answer RQ2.1 we compared NSGAII and NSGAIIv in terms of
the quality indicators for statistical significance and effect size,
as for RQ1, but additionally presenting the results using boxplots
to give a pictorial account of the distributions of results obtained.



TABLE II
CONFIGURATIONS EXPLORED TO TUNE THE TWO ALGORITHMS
Configuration Pop. Size Generations Fitness Evals
Very Small (VS) 50 5,000 250,000
Small (S) 100 2,500 250,000
Medium (M) 200 1,250 250,000
Large (L) 500 500 250,000
Very Large (VL) 1,000 250 250,000

TABLE III
BEST OBTAINED CONFIGURATIONS FOR NSGAII AND NSGAIIv

Project MaxRisk AvgRisk TrsRisk
NSGAII NSGAIIv NSGAII NSGAIIv NSGAII NSGAIIv

DB2 M VL VL VL L VL
Web S S VL VL M M
Quote VL VL VL VL VL VL
Oracle VL VL VL VL S S
Price L VL VL VL M M
CutOver S VS VS VL VL S

To answer RQ2.2 we compared NSGAIIv to standard overtime
management strategies. That is, we implemented three strategies
currently used, and compared the results to our NSGAIIv
approach using the same tests as we performed to answer RQ2.1.

To answer RQ3 we analysed the Pareto fronts produced by our
approach in order to identify useful trade offs among different
goals and to discover knee points by means of graphical plots.

We answer RQ4 by exploring the differences between the
three risk assessment approaches studied in the paper (in terms
of the Pareto surfaces that capture the solution space for each
form of assessment).

E. Parameter Tuning and Setting
An often overlooked aspect of research on computational

search algorithms lies in the selection and tuning of the
algorithmic parameters, which is necessary in order to ensure
fair comparison, but which often goes unreported and, thereby,
hinders any potential replication. In order to facilitate replication
of our findings, we report the method adopted for algorithmic
parameter tuning and selection in this section.

We evaluated, for each algorithm, five different configurations
characterised by very small, small, medium, large, and very large
values for population as detailed in Table II. All configurations
were allowed an identical budget of fitness evaluations (250,000),
thereby ensuring that all require the same computational effort,
though they may differ in parameter settings. We executed NS-
GAII (NSGAIIv) with each configuration 30 times and collected
the corresponding IC , IHV , and IGD values, testing for signifi-
cant differences using the Wilcoxon Test. Table III reports the best
configurations we selected for each algorithm and risk measure.

The rest of our parameter settings for both algorithms were
typical standard settings. We report them here for completeness
and replicability. For population size n, at each generation, n/2
applications of the single point crossover operator are used to
construct offspring. The crossover operator performs crossover
with a probability 0.5. The same number of mutations were
performed, where the value of each gene is modified with a
probability of 0.3. The mutation operator randomly assigns a
new value between 0 and MaxOvertime(wp). We employed
binary tournament selection based on dominance and crowding
distance, and in tied tournaments one of the two competitor
parents is chosen at random (with equal probability for both).

V. ANALYSIS OF RESULTS

This section presents the results obtained from our experiments
for RQs 1–4 set out in Section IV-A.

TABLE IV
THE SIGNIFICANTLY BETTER ALGORITHM (EFFECT SIZE IN PARENTHESES)

Project Risk Measure IC IHV IGD
DB2 AvgRisk No sign. diff. (small) NSGAIIv (small) NSGAIIv (small)

MaxRisk NSGAIIv (high) NSGAIIv (high) No sign. diff. (small)
TrsRisk NSGAIIv (high) NSGAIIv (small) No sign. diff. (small)

Web AvgRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
MaxRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
TrsRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)

Quote AvgRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
MaxRisk No sign. diff. (small) NSGAIIv (small) No sign. diff. (small)
TrsRisk = = =

Oracle AvgRisk No sign. diff. (small) NSGAIIv (small) No sign. diff. (small)
MaxRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
TrsRisk = = =

Price AvgRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
MaxRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
TrsRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)

CutOver AvgRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
MaxRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)
TrsRisk NSGAIIv (high) NSGAIIv (high) NSGAIIv (high)

Results for RQ1 (SBSE Validation): We observed that both
NSGAII and NSGAIIv achieved superior values compared to
random search for all three quality indicators (i.e., IC , IHV ,
IGD) and on all six projects. The Wilcoxon test results showed
that for all 54 experiments (3 indicators, 3 risk assessment
approaches, and 6 projects) the quality indicators achieved
by NSGAII and NSGAIIv were significantly better than those
of random search with a Cohen effect size ‘high’. Thus, we
conclude that there is strong empirical evidence that our
formulation passes the sanity check denoted by RQ1.

Results for RQ2.1 (Comparison to State of the Art
Search): Table IV presents the results of the significance tests
and effect size test. We observe that our algorithm, NSGAIIv ,
outperforms the standard NSGAII in 41 out of 54 (76%)
experiments and in 35 of these 41 (85%) it does so with a
Cohen effect size ‘high’, whilst the standard approach does not
outperform our approach in any of the experiments.

In more detail, we observe that NSGAIIv achieved significantly
superior IC values with respect to NSGAII in 13 out 18 cases
with a high effect size. Only in two cases (i.e., projects Quote
and Oracle with TrsRisk) the two distributions were identical,
while in three cases (i.e., projects DB2, Quote, and Oracle
with AvgRisk, MaxRisk, and AvgRisk, respectively) no signifi-
cant differences were found. For IHV , we observe that NSGAIIv
significantly outperformed NSGAII in 16 out of 18 cases with
a high and small effect size (12 and 4 respectively), while in
the remaining two cases (i.e., projects Quote and Price with
TrsRisk) the two distributions were identical. For the third quality
evaluation measurement, IGD, NSGAIIv achieved significantly
better values than NSGAII in 11 out of 18 cases with a high effect
size and in one further case there was a significant difference (but
small effect size). In 4 cases there were no significant differences
between the two approaches and, again, on projects Quote and
Oracle with TrsRisk the two distributions were identical.

We can also get a more qualitative sense of the distributions
of results for the two approaches from the box plots shown in
Figures 1, 2 and 3. From these box plots we can see that the vari-
ance in the results from both algorithms is lower for the threshold
risk assessment measure than the other two. Subsequent results
for RQ3 and 4 (see below) suggest that this is because there are
simply fewer solutions available when threshold risk is used, due
to the constraints the threshold imposes. For the other two risk
assessment measures, variance is project specific, but low in all
cases irrespective of the project concerned: standard deviation
values ranged between 0.01 to 0.06 overall projects except DB2
and Quote (for which it was always lower than 0.01).



(a)

(b)
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Fig. 1. Boxplots for the average risk assessment approach (AvgRisk), evaluated
using the quality measures IC (a), IHV (b), and IGD(c) applied to NSGAII
(Algorithm A) and NSGAIIv (Algorithm B)

Results for RQ2.2 (Usefulness): In order to answer RQ2.2,
we need to define ‘current overtime planning practice’. There is
evidence that current overtime practice employs what we term
‘margarine management’; spreading the overtime thinly and
evenly over all work packages [32]. We can therefore compare
our approach to this documented Overtime Management Strategy
(OMS). There are two other natural strategies (often referred to
anecdotally in the literature): loading overtime onto the critical
path to reduce completion time and loading it onto the later
half of the project to compensate for earlier delays.

Table V reports the mean values of each of the three quality
assessment indicators obtained for 30 runs of all projects
using NSGAIIv and the three OMS practices defined above.
The Wilcoxon Test confirmed that all the indicators obtained
employing NSGAIIv were significantly better than those
obtained with each and all of the OMS practices and with a
high Cohen effect size in every case.

As an example, Figure 4 shows the reference fronts obtained
by NSGAIIv and the three OMS practices for the largest project
Web. In this and all subsequent figures, overtime is measured
in total overtime hours committed to the project, while project
duration is measured as the length of the critical path (in days).

While Table V gives the precise technical answer to RQ2.2,
Figure 4 provides a more qualitative assessment of the meaning
of this technical finding. As can be seen, the Pareto surface
produced by NSGAIIv offers many more points (sometimes
revealing quite clearly the shape of the solution space).

By contrast, the currently used approaches appear to merely

(a)

(b)

(c)

Fig. 2. Boxplots for the maximal risk assessment approach (MaxRisk),
evaluated using the quality measures IC (a), IHV (b), and IGD(c) applied to
NSGAII (Algorithm A) and NSGAIIv (Algorithm B)

TABLE V
MEAN VALUES OF THE QUALITY INDICATORS FOR NSGAIIv AND THE THREE

CURRENT OVERTIME MANAGEMENT STRATEGIES (OMS).
Project Risk Measure IC IHV IGD

NSGAIIv OMS NSGAIIv OMS NSGAIIv OMS
DB2 AvgRisk 0.998 0.002 0.614 0.259 0.001 0.070

MaxRisk 0.998 0.002 0.440 0.116 0.000 0.237
TrsRisk 0.999 0.001 0.461 0.000 0.000 0.456

Web AvgRisk 0.993 0.007 0.544 0.226 0.000 0.016
MaxRisk 0.962 0.038 0.559 0.257 0.008 0.195
TrsRisk 0.961 0.039 0.551 0.203 0.001 0.060

Quote AvgRisk 0.997 0.003 0.475 0.269 0.000 0.013
MaxRisk 0.997 0.003 0.376 0.148 0.000 0.128
TrsRisk 0.998 0.002 0.424 0.116 0.000 0.161

Oracle AvgRisk 0.994 0.006 0.611 0.329 0.000 0.013
MaxRisk 0.994 0.006 0.630 0.256 0.000 0.033
TrsRisk 0.916 0.084 0.645 0.371 0.007 0.038

Price AvgRisk 0.994 0.006 0.583 0.247 0.000 0.024
MaxRisk 0.992 0.008 0.696 0.428 0.000 0.032
TrsRisk 0.987 0.013 0.346 0.004 0.001 0.116

CutOver AvgRisk 0.996 0.004 0.609 0.305 0.000 0.028
MaxRisk 0.910 0.090 0.544 0.260 0.015 1.285
TrsRisk 0.970 0.030 0.700 0.277 0.002 0.235

pick relatively arbitrary solutions, which are sub-optimal (far
away from the frontier) and which thus denote little more than
rather inaccurate guesses.
Results for RQ3 (Insight): To answer RQ3 we present
examples of the Pareto fronts obtained using NSGAIIv ,
illustrating how they reveal insights into the trade off between
risk, duration, and overtime. Software engineers can exploit
this information when making decisions about software
project overtime planning. For example, Figure 5 reports the
two-dimensional projections of the Pareto front obtained by
executing NSGAIIv on the Price project, projecting the
result onto the two objectives of overtime and risk. Such a 2D
projection depicts the tradeoff between the spend on the overtime



(a) (b) (c)

Fig. 4. Pareto surfaces for NSGAIIv (depicted by the circles) and for all of the three Overtime Management Strategies (depicted by the triangles) obtained
using each of the three risk assessment approaches: AvgRisk(a), MaxRisk(b), and TrsRisk(c) for the project Web.

(a)

(b)

(c)

Fig. 3. Boxplots for the threshold risk assessment approach (TrsRisk), evaluated
using the quality measures IC (a), IHV (b), and IGD(c) applied to NSGAII
(Algorithm A) and NSGAIIv (Algorithm B)

budget and the impact this has on reducing risk according to the
three risk assessment measures. Several insights are immediately
obvious from these three plots. We can see that using a threshold
risk level reduces the scope for choice in selection of an
overtime budget (fewer points on the Pareto front in Figure 5(c)).
Such a threshold should thus only be considered by an engineer
who is certain they have selected an appropriate risk level.

By contrast, the risk averse engineer who seeks to reduce
average risk overall, is presented with a relatively smooth
trade off between the cost of overtime and the risk reduction
it affords (Figure 5(a)).

For the engineer who seeks to reduce only the maximal risk

there is clear guidance from the shape of the Pareto front for
Figure 5(b): A knee point in the front occurs at a budget of around
25 hours overtime. Up to this knee point along the horizontal axis,
modest increases in overtime spend will yield sharp correspond-
ing reductions in maximal risk. However, increasing overtime
spend above this knee point of 25 hours, the engineer has to
commit significantly more overtime spend to further reduce risk.

This finding has actionable conclusions for the software
engineer planning overtime on this project. Without the benefit of
the insights provided by our overtime planning analysis, it would
naturally be tempting to seek the maximum overtime budget
allowable (202 hours) to ensure that there is the largest resource
available to deal with problems. However, this inherently
conservative approach will likely lead to stress, illness and defects
as widely reported in the literature [1], [2], [3], [4], [6], [7], [8].

Fortunately, with the benefit of our overtime planning analysis,
it is revealed that there is a much more compelling alternative.
With a budget of only 25 hours overtime (only about 12% of
the maximum allowable) it is possible to achieve more than 50%
of the risk reduction achievable by the conservative approach
which maximises overtime to minimise overrun risk. Of course,
it will be for the software engineer to make the final decision
concerning overtime planning. However, using our analysis,
he or she can clearly see that a budget of around 12% of the
maximum overtime allowable would be ideal in principle and
this is an important input to the final decision, bearing in mind
the well-known problems associated with overuse of overtime.

Using these Pareto fronts the software engineer can thus obtain
answers to questions like ‘how much spend on overtime is cost
effective for my project plan?’ and ‘what must I spend to reduce
average risk by x%?’. Such answers provide decision support to
the engineer faced with the task of negotiating an overtime budget
with their manager. They may also support decisions about how
to most effectively deploy a budget to reduce risk. Space does
not permit us to show results for all 6 projects. However, similar
examples of interesting insights were observed for other projects.
Results for RQ4 (Impact of Risk Assessment Models): To
answer RQ4 we use the 3D visualisations of the Pareto surface,
thereby showing the trade offs between all three objectives
of overtime, duration, and risk. This allows us to compare the
influence of the three different risk assessment measurements.
Once again, space does not allow us to present all 18 plots, so
we present (in Figure 6) the results from one project (Price)
that is typical of the overall trends we observed in all projects.

The most immediately obvious effect is the number of
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Fig. 5. 2D Pareto surface projections for each of the three risk assessment approaches: AvgRisk(a), MaxRisk(b) and TrsRisk(c) for the project Price.

solutions offered by each approach to risk assessment. This
can be clearly observed from the density of the Pareto surfaces
shown in Figure 6 and it reveals an inherent property of these
three risk assessment methods: the AvgRisk surface has 2,452
solutions, while MaxRisk has 1,228 and TrsRisk has only 182.
Over all six projects the median number of solutions found
was 2,535 for AvgRisk, 1,473 for MaxRisk and 190 for TsrRisk
indicating that Figure 6 is not atypical.

The risk averse planner seeks to reduce average risk over
all project paths and so this leads to many different trade offs
and the largest number of potential solutions. The software
engineer who has confidence in the applicability of the Critical
Path Method (and thus seeks to reduce risks along this path)
has fewer solutions available. However, this ‘CPM-confident’
engineer still has many solutions from which to choose and,
more importantly, a continuous set of increasing degrees
of trade off along each of the three dimensions of choice.
By contrast, the engineer who is so confident in their risk
assessment that they set a threshold risk level will have few
solutions from which to choose; the threshold choice constrains
the solutions. In particular, it reduces the number of projected
project durations from which the engineer can choose.

The Pareto surfaces in Figure 6 also reveal an effect we
found in four of the projects (Web, Oracle, Price and
CutOver): the risk averse (AvgRisk) form of assessment leads
to less pronounced changes in the dynamics of the trade off
compared to the other two approaches. This can clearly be
seen from the shape of Figure 6(a) compared (for example) to
Figure 6(b); the former depicts a more gentle gradient through
any arbitrary projection of the surface compared to the latter.

This finding reflects the fact that the risk averse engineer
seeks to minimise all risks, thereby reducing difference between
choices, whereas the engineer who focuses effort on the critical
path has a more pronounced impact of the choices they make
on the solutions offered. Of course, there is no ‘free lunch’:
we can also see that the risk averse engineer typically has to
commit greater resources to satisfy their strategy than the others
(solutions appear further to the right, denoting high overtime
costs, in Figure 6(a) compared to the other two). Therefore,
we can see that risk aversion comes at an increased cost.
A Note on Project-Specific Effects: While examining the
results to answer RQs2-4 we noted the effects due to the
characteristics of the projects. In particular the results for DB2
and Quote appeared to differ from those of the other four.
These two projects are much smaller than the others (594 person
hours for DB2 and 547 for Quote compared to an average of
3,995 person hours for the other four projects). Their small size is
reflected in the comparatively low variance of results for NSGAII

and NSGA2v reported in answer to RQ2.1 (Figures 1, 2 and 3).
We also observed fewer differences in the three risk assess-

ments reported in RQ4 and were able to find fewer examples of
knee points and other insights obtainable for DB2 and Quote
when answering RQ3. We therefore find that, unsurprisingly,
smaller projects may not offer the software engineer as rich a set
of overtime planning choices as large and more complex projects.

VI. THREATS TO VALIDITY

It is widely recognised that several factors can bias the
validity of empirical studies. In this section we discuss the
validity of our study based on three types of threats, namely
construct, internal, and external validity. Construct validity
concerns the methodology employed to construct the experiment.
Internal validity concerns possible bias in the way in which
the results were obtained, while external validity concerns the
possible bias of choice of experimental subjects.

In our study, construct validity threats may arise from the as-
sumptions we make about the current state of the art and practice.
Since we are the first to address this problem, there simply is no
currently established state of the art in terms of computational
search. We therefore compared our results for technical quality
against a standard multi-objective approach, implemented and ap-
plied to the same subject set with the same settings. We also found
comparatively little literature to guide us on what we should con-
sider to be the ‘standard practice’ adopted by engineers. We fol-
lowed the literature for one of these choices (‘margarine manage-
ment’), but there is only anecdotal evidence in the literature for
the other two practices. By comparing our overtime planning ap-
proach to all three choices of OMS practice, we seek to compare
with a set of alternative current practices for which there is some
degree of support in the literature. Another threat to construct
validity can arise from the fact that we did not take into account
resource allocation and skills in the formulation of the problem.

We catered for internal threats to validity in the standard man-
ner for randomised algorithms [29], [17], using non-parametric
statistical testing over 30 repeated runs of the algorithms.

Our approach to external threats is also relatively standard
for the empirical software engineering literature. That is, while
we were able to obtain a set of subjects that had a degree of
diversity in scope, application and project team, we cannot
claim that our results generalise beyond these subjects studied.

VII. RELATED WORK

For a long time, software engineers have used the Critical Path
Method as the principle means of bringing some rudimentary
analysis to bear on the problem of project planning [15]. Many
software engineers use this approach to plan their projects.
However, there have been attempts to replace the human project
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Fig. 6. Pareto surfaces for the project Price obtained using each of the three risk assessment approaches: AvgRisk(a), MaxRisk(b) and TrsRisk(c)

planner with a more automated planner, based on scheduling
and resource optimisation techniques.

The first such attempt to apply optimisation to software
project planning was the work of Chang et al. [33], who
introduced the Software Project Management Net (SPMNet)
approach for project scheduling and resource allocation and
evaluated it on simulated project data. Subsequent research
also formulated the problem of constructing an initial project
plan as a Search Based Software Engineering (SBSE) problem,
using scheduling and simulation [34], [35]. Though most
approaches have focused on minimising project duration as
the sole optimisation objective, there has also been work on
constructing suitable teams of engineers [36], [37], [38].

Previous work has used a variety of SBSE techniques
such as Genetic Algorithms [34], Simulated Annealing [36],
Co-evolution [39] and Scatter Search [40] as well as hybrids,
for example, combining SBSE with constraint satisfaction [41].

Though most of the previous work has been single objective,
there has been previous work on multi-objective formulations
[36], [42], [43]. However, unlike the present paper, none of this
previous work has considered overtime, and all previous work
starts with the assumption that it is the role of the optimisation
tool (not the software engineer) to provide the initial project plan.

We believe that the assumption that any automated tool
should have the role of producing the initial project plan, may
not always be realistic. Our experience with practitioners is that
they would prefer to trust in their own judgement for the initial
project plan. This is because the allocation of staff to teams
and teams to work packages involves all sorts of human and
domain specific judgements for which an automated approach
is ill-equipped and a human may be far more suitable.

By contrast, our approach to the overtime planning problem
has a fundamentally different starting point and usage scenario
in mind: We do not seek to replace the software engineer, nor to
second guess their decisions. Rather, we seek to provide decision
support in analysing the effects and trade offs in overtime plan-
ning. Few software engineers set out with the intention of coerc-
ing their team into unplanned overtime, but many well-intentioned
and professional software engineers end up doing just that [1], [6].
We seek to provide decision support so that this can be properly
planned and better informed by multi-objective risk analysis.

Other authors have considered overtime planning issues in
software projects, though none has offered an approach to plan
overtime, balancing overtime deployment against project risks.
For example, Jia and Fan [44] analysed the use of System
Dynamics Modeling [45], reporting results on a simulation
carried out on a real software project (called ISAM3.1 at Alcatel

Shanghai Bell). They report on the harmful effects of excessive
overtime (above set limits).

Lipke [46] presents a brief report of an effort to control the
use of reserve budget in a software project for the defence
industry. There are many authors who opine overtime’s severe
negative impacts on staff and their projects (e.g., [2], [3], [4])
but none offers a technique for automated decision support to
help the engineer better plan the deployment of overtime.

We believe that ours is the first approach to address this
issue, analysing overtime planning and its relationship to project
duration and overrun risk. Furthermore, unlike previous work,
because our approach starts with the software engineer’s original
project plan (rather than attempting to construct it), it requires
no simulation, thereby removing this source of potential error
and the assumptions that go with it.

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced a search based approach to overtime
planning on software engineering projects and evaluated it on 6
real world software engineering projects. Our approach performs
significantly better (with high effect size) than currently
used software engineering practice in terms of three standard
measures of result quality. It also performs better than a standard
multi-objective optimisation applied to the same problem for
76% of experiments (and never performs significantly worse).

We provide qualitative evidence that the approach can
provide actionable insights to the software engineer, backing
up this quantitative evidence that it is effective and useful. We
also used our approach to explore the differences between
risk assessment strategies revealing, inter alia, the increased
costs that accrue from risk aversion and the paucity of choice
available to managers who have precise risk thresholds in mind.

We believe that this paper lays a firm foundation for future
development of semi-automated decision support for software
engineers faced with the challenges of planning overtime on com-
plex and demanding projects. However, there remains much to
be done to realise the practical benefits that this approach offers.

In future work we plan to deploy a version of the tooling
reported upon in this paper as a freely available, open source
plug-in component to popular project planning tools, such as
Microsoft project. This will allow more extensive evaluation
of the interface between the technical aspects of the work
reported in this paper and other related socio-technical issues for
implementation and exploitation, such as user interface, HCI, and
decision support. Moreover, this will allow us also to get feedback
from practioners on the usefulness of the insights provided by
our approach and the considered overrun risk strategies. We also



plan to collect more data to analyze how well the model performs
by applying it on actual projects and comparing the outcomes
with projects that use the traditional rule-of-thumb strategies.
Finally, it would be interesting to extend the problem formulation
considering other aspects, such as resource allocation and skills.
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