

CLONING IN MAX/MSP PATCHES

Nicolas Gold, Jens Krinke, Mark Harman David Binkley
Department of Computer Science

University College London
Computer Science Department
Loyola University in Maryland

ABSTRACT

Max/MSP is widely used for developing applications in
music and art yet less attention has been given to
supporting developers working in this language than for
more traditional languages such as Java. Technologies
such as code-completion, reuse support, and refactoring
may be helpful but are largely unexplored. Such
methods rely on detecting similarities between language
elements. This paper presents a method for detecting
similarities between Max/MSP patches (and sub-
patches) based on clone detection techniques. The
method has been implemented and a proof-of-concept
evaluation has been undertaken by applying it to the set
of Max tutorial patches supplied with Max/MSP 5. The
results show that significant cloning takes place both
within and outwith an individual patch and that, as clone
constraints are relaxed, the number of clone pairs
increases.

1. INTRODUCTION

Support for Max/MSP programming (outside of the
environment itself) is limited in comparison to other
more traditional programming languages. There are
opportunities for content-based patch-library
management and browsing to support developers when
building their own patches, and code completion (or
suggestion) of commonly-used sub-patches. In order to
achieve these, a method for detecting similarity among
patches is required.

Since Max/MSP patches are, in effect, source code,
techniques that work well in identifying similarities in
traditional general purpose programming languages may
have much to offer in addressing this problem. One such
technique is clone detection [1,9]. Clone detection is
used to locate and identify sections of program source
code that are duplicates (or near-duplicates) of each
other (a clone-pair). Clones typically arise from the
common cut-and-paste activities of software engineers
when developing and maintaining systems [9]. A variety
of successful automated clone-detection techniques and
tools have been developed for text-based programming
languages (see Roy et al. [9] for a recent survey). Non-
textual dataflow-oriented programming languages have
received less attention, with the work of Deißenböck et
al. [3] and Pham et al. [8] on clone detection in Simulink
[6] models being the notable exceptions. These
techniques do not apply directly to Max/MSP patches
because spatial position has no semantic meaning in
Simulink whereas in Max/MSP, the order in which

messages are sent is determined by the relative spatial
positions of objects in a patch. Information about layout
(rightly dismissed as irrelevant by Deißenböck et al. [3])
is thus important and must be considered by a clone
detection method. Max/MSP is not unique in relying on
layout attributes to convey semantics (other examples
include ProGraph, see the work of Karam et al. [5]).

This paper presents a method for automatic clone
detection on Max/MSP patches that accounts for the
layout semantics. A proof-of-concept implementation is
used to evaluate the approach on the patches supplied as
part of the Max tutorials.

2. CLONE DETECTION

Code reuse through copy-and-paste is a common
software development activity [9]. Clone detection
methods need to be able to find code fragments that are
similar without knowing in advance which fragments
might be repeated [9]. In order to undertake this task, it
is important to establish what is meant by similarity; in
other words, if two fragments are said to be clones, what
does this mean? A classification of textual clone types
has emerged [1,9] but this does not apply directly to
languages such as Max/MSP since it refers to elements
of textual languages such as types. More recently, Gold
et al. defined a classification scheme for graphical
languages such as Simulink and Max/MSP [4].
Adapting the existing textual-language definition, they
define a dataflow-language clone as “two (sub)graphs
that are similar with respect to some defined similarity
measure.”[4]. This definition is similar to that of Pham
et al. [8] and Deißenböck et al. [3] who define clones
more formally for their specific contexts. Gold et al. [4]
go on to define four types of clones:

• DF0: Exactly-copied code fragments.

• DF1: Exactly-copied code fragments except for non
semantics-affecting variations in layout and varia-
tions in comments.

• DF2: Exactly-copied code fragments except for non
semantics-affecting variations in layout, variations
in comments, and changes to literal values.

• DF3: Code fragments with modifications allowing
additions, deletions, changes to connections, and
free movement of objects.

For personal use only – please see ICMC 2011 Proceedings for published version.

Note that ‘exactly-copied’ does not actually require the
clones to be created by a copy operation, it is only
necessary that the clone can be created by a copy
operation (and subsequent modifications). It should also
be noted that type DF3 is sufficiently broad as to allow
any fragment to be a clone of any other (this is also a
problem in the textual classification). Consequently,
this paper considers only types DF0 to DF2. Following
the Simulink-oriented methods [3,8], clones must be
disjoint (sub)graphs (clones of textual-language
programs are often allowed to overlap).

3. ALGORITHM FOR MAX/MSP CLONE
DETECTION

This section outlines the algorithm for Max/MSP clone
detection. A Max/MSP patch consists of boxes,
representing messages and the operations that generate,
use and modify them, and lines, that represent the flow
of data between boxes. Lines are attached to ports on
the boxes.

3.1. Preprocessing

The first stage involves preprocessing the collection of
patches to be analysed. The (JSON-format) source file
for each patch is parsed and each box given a unique
identifier. The following information is retained:, Max
id, object class, patching rectangle text, number of
inlets, number of outlets, and the patching rectangle
position and size. Nested patches are not parsed
recursively but simply stored as a top-level “p” object
with the above information. Patch-lines are then parsed
and recorded using the unique identifiers assigned to
their boxes. This preprocessing approach is similar to
that used by Deißenböck et al. [3] and Pham et al. [8]
except that positional information about the patching
rectangles is also retained.

3.2. Clone Candidate Generation

For each patch-line extracted from the patch, the patch-
line itself, and all possible paths reachable from it are
stored as candidate clone fragments. If a cycle is found
(i.e. following the sequence of boxes and lines leads
back to the starting box), the candidate fragment is
generated only as far as the start of the second cycle.
Thus all edges in the patch are considered but only once
in any one path. This set of candidates is subsequently
used as a pool against which to compare the candidates.
Port numbering of line connections is preserved.

3.3. Clone Detection

Each member, m, of the candidate path pool is
compared to every same-sized member of the pool
(excluding m and any path that overlaps m). Clone
validity is assessed using the following criteria:

§ DF2: the pair is a DF2 clone if the types of the
objects contained with the candidate path match
those in the pool path, the line being considered
connects to the same port number on those objects,
and the relative position of the boxes at each end of
a candidate patch-line on the path is the same as that
of the corresponding boxes in the pool (e.g., both
source boxes may be above and to the left of their
destination boxes).

§ DF1: the pair is a DF1 clone if it is a DF2 clone and
the literal values contained within the corresponding
patching rectangles are the same.

§ DF0: the pair is a DF0 clone if it is a DF1 clone and
the absolute positional difference of the source and
destination boxes of each pair in the candidate path
matches that of the pool path being considered.

The algorithm may therefore find that a clone pair can
be classified as one, two, or all three types.

4. EVALUATION

4.1. Implementation

The algorithm described in section 3 has been
implemented. As it stands the implementation
constrains the depth of path that can be generated as
described in section 3.2 to avoid running out of
memory. In addition, the current implementation only
finds clones occurring on paths that descend linearly
from their root box. For example, if box A connects to
B, C and D on ports 0, 1 and 2 respectively, and box E
connects similarly to F on port 0 and G on port 2, a
clone relationship would be observed as both
(A→B,E→F) and as (A→D,E→G). A post processing
step that unifies such cases into A→B,D and E→F,G is
presently unimplemented. The current implementation
will therefore find all cloned linear paths (unifying
linear paths would be likely to find fewer larger clones).

4.2. Experimental Configuration

The implementation was used to evaluate the algorithm
when applied to the set of Max patches supplied as part
of the Max/MSP distribution [2]. The corpus of patches
was first pre-processed to extract all sub-patches into
separate files (thus treating each as an independent
conceptual entity). In total, this forms a corpus of 68
patches of varying complexity and purpose comprising
2155 boxes and 2102 single lines. The levels of cloning
detected are discussed in the next section. The
implementation was executed using a maximum clone
size of 10 boxes (thus 9 edges).

5. RESULTS

5.1. Clone Pairs Found

The number of clone pairs found is shown in Table 1.

Clone Type Pairs Found in
6615 Total

Paths
DF0 559 (9%)
DF1 1501 (23%)
DF2 5696 (86%)

Table 1. Clone pairs found and proportions by type

As may be expected, more relaxed clone criteria produce
greater numbers of clones.

5.2. Body of Code Involved in Clone Relationships

In addition to the overall number of clones, it is
interesting to consider the volume of code that is
participating in cloning relationships. Figure 1 shows
the proportion of code elements that are found in clone
relationships. Each code element (a line or a box) is
counted only once, regardless of the number of clone
pairs it participates in.

It is interesting to note that more than two-thirds of
the code elements in the patch set are found in some
cloning relationship under the most relaxed criteria
(DF2). This indicates the presence of many common
structures in the patches being analysed. A surprisingly
large number of code elements are involved under the
DF1 criteria also (over one-third).

5.3. Clone-Pair Size

The distribution of clone pair sizes is shown in Table 2.
As may be expected most clones are found at size two
(copies of single boxes are not considered to be clones;
thus the smallest possible size is two).

Furthermore, as the clone size increases, the number of
clone pairs found decreases. Similarly, as the criteria
become more restrictive, the number of clone pairs
found decreases.

5.4. Clone Distribution

In addition to the overall summary of cloning presented
above, it is useful to consider the distribution of clones
across the files. Figure 2 shows this data, indicating, for
example that 42 patches have no DF0 clones found
within them but 35 have DF0 clones found in other files.
It is interesting to note that as the clone criteria become
more relaxed, in general, the proportion of fragments
cloned outside of their originating file increases. Not
surprisingly, the overall number of clones also increases.

In the context of a potential application in supporting
composers using Max/MSP, this would suggest that DF2
(the most relaxed criteria) clones might be the most
helpful kind to present since other types of the cloned
instances of a patch currently under development would
likely be visible to the composer anyway as they would
be in the same file.

Figure 1. The proportion of unique code elements participating
in cloning relationships.

Size\Clone Type DF0 DF1 DF2
2 298 964 4468
3 146 335 871
4 83 133 245
5 18 43 67
6 9 15 28
7 4 10 10
8 1 1 7

Table 2. Distribution of clone pair sizes.

6. RELATED WORK

Most previous work on clone detection has applied to
textual programming languages. This is surveyed by
Bellon et al. [1] and Cordy et al. [9]. Clone detection
methods for visual dataflow languages have thus far
addressed only Simulink models. The approach of
Deißenböck et al. [3] is based on graph theory. Simulink
models are converted to directed multigraphs and clones
are found when two isomorphic (with respect to the node
labels) subgraphs are identified. They adopt a heuristic
approach to minimize the computational cost. Pham et
al. [8] improved on this approach, defining two
algorithms for clone identification. The first, eScan,
matches clones exactly using canonical labeling of the
graph to efficiently compare clone candidates. The
second, aScan, uses a vector representation of the graph
and computes an edit-distance similarity measure to find
approximate clones.

Both methods differ from that presented here. Neither
accounts for the layout of the graphical elements and its
associated semantics. This limits their applicability to
Max/MSP since isomorphism is not sufficient to capture
all semantic information available in a patch. Both
methods are more efficient than the relatively naïve
algorithm presented here but the principles of their
approaches could be adopted by future work. In
particular, the candidate lists used here are not dissimilar
to the clone lattice adopted by Pham et al.

7. CONCLUSIONS AND FUTURE WORK

This paper has presented an approach for finding clones
in Max/MSP patches. Although the maintenance of
Max/MSP patches is a less significant problem than for
traditional software systems, the levels of cloning are
somewhat surprising. There are many applications of
Max/MSP clone information. It could be used to
facilitate content-based browsing of large patch
collections based on the occurrence of particular
elements. For example, a part-patch query might be
issued that expresses something of interest to the user
and in return, various patches containing clones of that
part-query could be displayed. Clone information might
also be used to support composition. For example, a tool
could be created that displays other patches sharing
similar structures to the one being created.

Future work will include the development of tools
that highlight sharing within and between patches, and
that can offer “code completion” suggestions based on
the content of other patches. In addition, the algorithm
could be made more efficient, and the remaining
unimplemented step included, to provide clone-pair
merging for building the largest possible clone
fragments from the linear clone pairs generated by the
current method. Initial consideration of this idea
indicates that merging fragments may actually be as
complex as clone detection itself but this will require
further analysis. Finally, it would be valuable to
evaluate a broader range of patches.

8. REFERENCES

[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E.
Merlo: “Comparison and evaluation of clone
detection tools,” IEEE Transactions on Software
Engineering, Vol. 33, No. 9, pp. 577–591, Sept.
2007.

[2] Cycling74, Max/MSP, http://www.cycling74.com

[3] F. Deißenböck, B. Hummel, E. Jürgens, B. Schätz,
S. Wagner, J.-F. Girard, S. Teuchert: “Clone
detection in automotive model-based development,”
Proceedings of the 30th International Conference
on Software Engineering, pp. 603–612, 2008.

[4] N.E. Gold, J. Krinke, M. Harman, D. Binkley:
“Issues in Clone Classification for Dataflow
Languages,” Proceedings of the 4th International
Workshop on Software Clones (IWSC ’10). ACM,
New York, pp. 83-84, 2010.

[5] M. R. Karam, T. J. Smedley, S. M. Dascalu: “Unit-
level test adequacy criteria for visual dataflow
languages and a testing methodology,” ACM
Transactions on Software Engineering and
Methodology, Vol. 18, No. 1, pp. 1–40, 2008.

[6] Mathworks, Simulink http:
//www.mathworks.co.uk/products/simulink/.

[7] Pd, http://puredata.info

[8] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-
Kofahi, T. N. Nguyen: “Complete and accurate
clone detection in graph-based models,”
Proceedings of the 31st International Conference on
Software Engineering, pp. 276–286, 2009.

[9] C. K. Roy, J. R. Cordy, and R. Koschke,
“Comparison and evaluation of code clone
detection techniques and tools: A qualitative
approach,” Science of Computer Programming,
Vol. 74, No. 7, pp. 470–495, 2009.

Figure 2: Distribution of clone types/locations, and number of clones by number of patches containing them.

N
u
m
b
e
r

o
f

C
l
o
n
e
s

F
o
u
n
d

