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ABSTRACT
Clone detection finds application in many software engineer-
ing activities such as comprehension and refactoring. How-
ever, the confounding configuration choice problem poses
a widely-acknowledged threat to the validity of previous
empirical analyses. We introduce desktop and parallelised
cloud-deployed versions of a search based solution that finds
suitable configurations for empirical studies. We evaluate our
approach on 6 widely used clone detection tools applied to
the Bellon suite of 8 subject systems. Our evaluation reports
the results of 9.3 million total executions of a clone tool; the
largest study yet reported. Our approach finds significantly
better configurations (p < 0.05) than those currently used,
providing evidence that our approach can ameliorate the
confounding configuration choice problem.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Algorithms, Experimentation, Measurement

Keywords
Clone Detection, Genetic Algorithm, SBSE

1. INTRODUCTION
Software contains clones. Several studies [18, 32, 22] have

provided evidence for widespread presence of clones and
there has been much interest and previous work on software
engineering applications and implications such as software
evolution [21, 36, 7, 3, 29], refactoring [4], and bug detection
[24, 31, 23]. Many tools and techniques for detecting clones
have been studied [34]. They use a variety of approaches,
based on raw text, lexical tokens, syntax trees, metrics, or
graph-based structures – sometimes combined [8]. The wide
variety of approaches has led to many comparative studies
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of detection techniques [2, 34, 29]. It was widely believed
that cloned code is a code smell and many empirical studies
of clone properties [20, 21, 26, 36, 15] have investigated
differences between cloned and non-cloned code.

Unfortunately, all these previous studies suffer from an ef-
fect we term the ‘confounding configuration choice problem’.
That is, the validity of results on the properties of clones
are threatened by the confounding effect of the configuration
choice: How do we know that differences observed are re-
lated to the properties of clones, rather than the properties
of configuration choices? Similarly, differences observed in
comparative studies may merely be a manifestation of the
configuration choice adopted in the study, for example, by
using different configurations for the minimal clone size.

We studied the confounding configuration choice problem
by surveying the clone detection literature and report the
results in this paper as a motivation for our work. Our sur-
vey revealed that, of 274 software clone papers (from the
clone literature repository [35]), 185 include an empirical
experiment, of which 113 (61%) explicitly comment on prob-
lems arising from the effects of the confounding configuration
choice problem. We suspect that others may be affected but
have not commented explicitly on it in their work.

In order to ameliorate the confounding configuration choice
problem we introduce a search based approach to find the
configurations for clone detection techniques that yield max-
imal agreement. This is the first time that Search Based
Software Engineering (SBSE) has been used as a way to
augment the robustness of an empirical study of software en-
gineering. Recent work on SBSE has considered other forms
of parameter tuning for data mining [30] and traceability
[25]. Whereas these two recent contributions seek to help
the tools’ end users, we seek to aid empirical software engi-
neering researchers’ evaluation of the approaches the tools
implement. Our goal is to provide an additional approach
to experimental rigour. We believe that this “search for suit-
able parameter configurations” will find other applications
in empirical software engineering.

We implemented our approach as a desktop application
EvaClone. We also implemented a cloud-based parallelised
version called CloudEvaClone. We used CloudEvaClone to
conduct the large-scale empirical study needed to evaluate
our approach; the largest hitherto reported in the literature.

The paper makes the following four primary contributions:
Justification and Motivation: A detailed review of the
literature that exposes the concern repeatedly expressed by
previous experimenters regarding the threats arising from
the confounding configuration choice problem.
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EvaClone and CloudEvaClone: Desktop and cloud-based
implementations of our search based solution to the confound-
ing configuration choice problem on which we report and
which we make available to the research community.
Empirical Evaluation: An empirical study, the results of
which show that (1) Default configurations perform poorly
as a choice of configuration for clone experiments. (2) Our
approach produces significantly better configurations, thereby
reducing the confounding configuration choice problem.
Optimised Configurations: The configurations found in
the empirical evaluation can be used for future agreement-
based clone evaluations without running EvaClone.
Actionable Findings: Failure to consider confounding con-
figurations compromises the scientific findings of empirical
studies of clone detection. Future studies of clones can use
(Cloud)EvaClone to find appropriate configurations.

The rest of the paper is organised as follows: Section 2
presents a focussed review of empirical clone studies, demon-
strating the importance of the confounding configuration
problem and the need to cater for confounding effects in
clone tool ‘agreement studies’. Section 3 introduces the Eva-
Clone tool and its cloud-virtualised sister CloudEvaClone.
Section 4 describes the experimental methodology we adopt
for our empirical study of CloudEvaClone applied to the
clone detection agreement problem. Section 5 presents and
discusses the empirical study and Section 6 concludes.

2. BACKGROUND AND MOTIVATION
The motivation for our work is that there is a problem

at the very heart of the way in which clone evaluation has
taken place in the literature; the configurations adopted are
often arbitrary or unspecified, yet configuration choices have
a significant impact on the behaviour of the tools compared.
The scientific justification for our claim rests on two kinds of
evidence: a detailed review of the literature and the presenta-
tion of empirical evidence that configuration choices can lead
to significantly different results. In this section we summarise
the results of the literature review. The remainder of the
paper is concerned with the evidence that the configurations
have a significant impact on behaviour and the introduction
of our approach to overcome the difficulties that this imposes
on any attempt at rigorous empirical evaluation.

We reviewed the 274 papers on clone analysis, management,
and detection, available at the time of writing in the widely-
used clone literature repository [35]. Among these 274 papers,
we found that 89 papers have no empirical study of clone
detection behaviour, so our analysis focused on the remaining
185 papers, all of which include an empirical study concerning
at least one code clone detection tool. Among these 185
papers, 113 (61%) report that the experimenters are aware
that tool configuration (parameter selection and threshold
settings) may have affected the results reported in the paper.
In particular, among the 57 papers that contain a specific
section discussing ‘threats to validity’, 75% of these (43
papers) consider this a problem that needs to be taken into
account. This provides evidence that the research community
recognises the problem that we address in this paper.

It is widely believed that the results of any clone exper-
iment will not only depend on the choice of tools, studied
systems, or analysed language, but will also depend on the
configuration of the tools used [27, 28], leading many authors
to attempt to cater for variations and reporting results for
multiple clone detection tools.

Table 1: Categories of Multiple Clone Tool Studies

Category Cases Papers Total
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Figure 1: Number of Tools Used in Previous Work

As can be seen from the analysis of the literature in Fig-
ure 1, after 2003, more and more papers have paid attention
to multiple clone detection tools. In total, 53 papers have
used multiple tools, while a further 24 papers used a single
tool but reported that the authors planned to use multiple
tools in their future work to improve result validity.

Summary details concerning the 53 papers that used multi-
ple clone tools in their experiments are presented in Table 1.
As the table reveals, 81% of these papers (43 papers in to-
tal) are concerned with the analysis of the agreement (or
disagreement) among the results produced by the different
clone detection tools studied. For all of the 43 papers, the
configuration of the tools will be of paramount importance.

Table 2 shows the choices of approach to configuration
adopted by each of the 43 papers. There are two cases: either
the paper compares the authors’ own tool against other tools
or the paper is an empirical study using a set of other tools
(with no ‘own’ tool).

Our survey revealed six distinct styles of approach to han-
dle the confounding configuration choice problem in these
43 studies. Table 2 lists these six approaches in increas-
ing order of rigorousness, according to the degree to which
the confounding effect is accounted for in the experiments.
Therefore, those entries to the bottom right of Table 2 can
be regarded as the ‘most rigorous’.



Table 2: Approaches to the Confounding Configura-
tion Choice Problem in 43 Clone Comparison Papers

Other Tools
Total

Und Arb Def Jus Var
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ls

N/A 2 0 4 3 1 10

Und 2 0 0 0 0 2

Arb 2 0 0 0 0 2

Def 0 0 1 0 0 1

Jus 1 0 5 8 1 15

Var 2 0 5 4 2 13

Total 9 0 15 15 4 43

The entries in Table 2 have the following meanings:
1. N/A: no own tool is used.

2. Undefined: configurations are not reported.

3. Arbitrary: configurations are reported but with neither
justification nor explanation.

4. Def ault: the tools’ default configurations are used.

5. Justified: configurations are reported, together with
some explanation as to why they have been selected.

6. Var ied: several different configurations are used to
attempt to cater for confounding configuration effects.

As Table 2 reveals, many authors simply use defaults, while
very few attempt to experimentally cater for the potential
confounding effects of parameter choice. The clone detection
community does recognise this issue. Indeed, it is frequently
commented upon in the literature. For example Nguyen et
al. [29], who evaluated the performance of their tool JSync,
comparing it to Deckard [16] and CCFinder [18] warn “Even
though we ran JSync with different thresholds in comparing,
we used the default running parameters for CCFinder and
Deckard, thus, their results might not be as good as those with
tuning for each system” [29]. Kim et al. [19] also compared
their tool, MeCC, to Deckard, CCFinder, as well as the PDG-
based detector [9] adding the caveat “We use their default
options. However, careful option tuning may allow these tools
to detect more Type-3 or Type-4 clones” [19].

Not all papers are concerned with the introduction of a
new clone detection tool. Several empirically evaluate the
effects that clones have on software engineering activities.
However, all such empirical studies are affected in precisely
the same way as the tool evaluation studies. For example,
Hotta et al. [15] investigated the effects of clones on software
evolution, but were compelled to include a similar warning
about the confounding effects of configuration choices on
their findings, warning the reader that “In this empirical
study, we used default settings for all the detection tools. If
we change the settings, different results will be shown” [15].

The clone research community is not complacent about
the confounding configuration choice problem, it is merely
that no approach has been found to ameliorate its effects and
thereby to provide a more rigorous approach to empirical
clone studies. This is the problem addressed by this paper.

Ideally, any clone-related study would compare against
a gold standard, i.e. an oracle that knows whether code is
cloned. However, such an oracle is not available. There have
been attempts to create benchmarks, but even the large-
scale Bellon study [2] has only created a small sample of
confirmed clones. Moreover, even experts can often not agree
on whether something is a clone. As a result, authors of em-
pirical studies of cloned code use clone detectors themselves

as oracles and accept their inaccuracy. Using multiple clone
detectors in such studies improves on this: It is very likely
that something is actually cloned if all used tools agree that
it is a clone and it is very likely that something is actually
not cloned if all tools agree that it is not cloned.

We introduce a search based approach to determine the
configurations (from the space of all configuration choices)
that maximises tool agreement for a set of tools on a set
of systems. Such an ‘agreement optimised’ configuration
avoids the problem that different tools might disagree about
whether or not a line of code is cloned, simply because of
the configuration parameter choices. Where tools disagree
on the agreement optimised configuration, the experimenter
can have a stronger confidence that this is due to the effect
studied and not some coincidence of the parameter settings.
We believe that this work will put clone evaluation on a more
rigorous and firm footing.

3. THE EVACLONE SOLUTION
In this section we introduce EvaClone, our approach to

addressing the confounding configuration choice problem
and its implementation. We then briefly describe the sister
version which is parallelised for cloud deployment.

3.1 EvaClone
Given a clone detection tool set TS = {T1, . . . , Tn}, a set

of subject systems SS = {S1, . . . , Sm}, the clone detection
tool configuration problem is to automatically search for
configuration settings, X, for TS in the configuration search
space Ω, subject to:

maximise f(TS(X), SS)
X ∈ Ω

}
The fitness function f can be defined according to the specific
clone analysis task. In this paper we report on the application
of EvaClone using fitness functions that seek to maximise tool
agreement, since this is important for many of the empirical
studies in the literature, as revealed by the review in Section 2.
However, the choice of fitness function is a parameter to
our approach and so EvaClone provides a framework for
optimising configurations of clone detection tools.

Our tool uses a Genetic Algorithm (GA) to search the
configuration space, guided by the chosen fitness function.
Figure 2 depicts the EvaClone architecture. Phase 1 (Initial-
isation) generates a randomised initial population of configu-
rations. This population is seeded with defaults to give the
existing default a fair chance of selection.

The computational expense of the approach resides in
Phase 2 (Fitness Evaluation), since this requires that each
tool is executed with each configuration from the population
on each subject system. The fitness function gives a value
to each configuration by evaluating the level of agreement
among the tools for that specific configuration. This phase
includes the conversion of the clone detector output into a
General Common Format (GCF); any output in a proposed
standard format (RCF) [11] can be converted to GCF.

The genetic operations used in Phase 3 are described in
Section 4.2. The termination condition is satisfied when no
fitness improvement occurs for thirty generations or when
the maximum allowed budget (100 generations in our study)
is exhausted. The final recommended configuration is the
one found with the highest fitness over all generations.
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Figure 2: EvaClone Architecture

3.2 A Parallelised Cloud-Deployed EvaClone
EvaClone needs to run multiple clone experiments on mul-

tiple tools over multiple subject systems to find suitable
configurations. Depending on the subject systems’ size and
the performance of the clone detection tools, it can take from
30 seconds to 4 minutes to evaluate one individual in one
experiment. Each experiment uses a population size of 100
and runs up to 100 generations.

Furthermore, in order to evaluate our approach, we need
to perform inferential statistical testing on the results re-
quired for evaluation of EvaClone configurations [1, 13]. This
statistical testing requires multiple experimental trials for
each experiment. In this paper we used 20 such repeated
trials for each experiment on which we report. On a conven-
tional desktop machine, this would have taken a total time
of approximately 15 years, which is clearly infeasible.

In order to cope with the computational time required,
we developed a parallel version of EvaClone which can be
deployed in the cloud, thereby allowing flexible control of
computational time. Our approach also allows the EvaClone
user to trade computational cost for execution time. We
call this parallel virtualised version ‘CloudEvaClone’. Using
CloudEvaClone’s parallel computation, spread over many
virtualised machine instances, we were able to reduce compu-
tation time for all experiments reported on in this paper from
a minimum possible time of 15 years (on a single desktop)
to 2 weeks (in the cloud).

The virtualisation required to implement CloudEvaClone
also facilitates perfect facsimile replication of our results.
That is, we are able to make available the entire virtualised
execution image for our experiments to other researchers.
Our image can be re-deployed and re-executed by others,
thereby avoiding the confounding effects (due to different
machines, operating systems and platforms) that bedevil em-
pirical replication attempts for software tool studies. Using
our approach, authors of future studies can thus have greater
confidence that they are comparing ‘like with like’.

CloudEvaClone consists of two tiers, a server tier and
a client tier, the architecture of which is depicted in Fig-
ure 3. The server tier maintains a database and a task
list. The database stores the previous evaluated fitness val-
ues, thereby memoising previous results to avoid the cost
of re-computation. The task list maintains a list of current
evaluation tasks, which is used to distribute the evaluation
cost in parallel. The client tier runs two kinds of instances:
master instances and slave instances. Each master instance
runs one experiment with a parallel GA algorithm.

Server

Client 
(Cloud)

Database
(fitness)
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Slaves
Slaves

Slaves
Slaves

Slaves
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Figure 3: CloudEvaClone Architecture

For each generation, the algorithm first searches the data-
base for the fitness of the current individual. If no record is
found, the algorithm creates an evaluation task and sends
it to the task list. Slave instances repeatedly poll the task
list for unassigned tasks. If a slave finds tasks in the list, the
first task is popped from the list and the slave will evaluate
the task and send the fitness value back to the database in
the server tier.

Since we are searching the space of all possible configura-
tions of each tool, we are also, implicitly, testing the clone
detection tools (very thoroughly in fact). As a result of this
rigorous testing, it can happen that CloudEvaClone finds con-
figurations for which a tool either crashes or non-terminates
(these tools are research prototypes and not robust industrial
strength tools after all). To avoid non-termination of a clone
detection tool resulting in overall non-termination of the
whole approach, both EvaClone and CloudEvaClone allow
the user to set a conservative threshold execution time after
which execution is automatically aborted. We performed an
initial sensitisation study which suggested that when a tool
runs for more than 10 minutes on a clone detection instance,
it tends to run for at least several further hours without
result, so we set our cut-off threshold at 10 minutes.

CloudEvaClone is designed to be flexible; the master and
slaves do not interact with each other directly. This de-
sign means that, subject to the trade off between the user’s
time and budget, master and slave instances can be added
and/or removed from a CloudEvaClone execution at any
time without the need to restart the experiment.

For the empirical study reported in this paper, we deployed
CloudEvaClone on Amazon’s Elastic Compute Cloud (EC2).
Three master instances were used, running three experiments
at a time and two hundred slave instances were used to
perform fitness evaluations. All instances were run on Ubuntu
12.04 LTS systems. The specifications of each instance are:
4 EC2 Compute Units with 7.5 GB memory and 850 GB
instance storage.

In total one or other clone detector was executed a total
of 9.3 million times. Memoisation was deployed in 13% of
cases, thereby saving this proportion of the execution time.
Since the clone configuration search space is approximately
1017 we cannot expect higher figures for memoisation, but
the saving it represents is valuable, since it directly corre-
sponds to reductions in cloud computation costs. Though
it is executed in the cloud, CloudEvaClone is merely a par-
allelisation of EvaClone; it produces the same results and
has the same functional properties (including memoisation).
CloudEvaClone’s master/slave parallelisation simply allows
the non-functional properties of cost and execution time to
be traded off against one another in a fully flexible manner.



Table 3: The Bellon Suite of Eight Benchmark Subjects for Clone Detection Research Used in this Paper
Subjects Sets Subjects Full Name Files LOC SLOC Description

C Set

weltab weltab 65 11,700 10,038 election tabulation system
cook cook 590 80,408 50,621 file construction tool
snns snns 625 120,764 86,539 simulator for neural networks
psql postgresql 612 234,971 156,312 Database management system

Java Set

javadoc netbeans-javadoc 101 14,360 9,579 Javadoc package in the NetBean IDE
ant eclipse-ant 178 34,744 16,106 Ant package for the Eclipse IDE
jdtcore eclipse-jdtcore 741 147,634 98,169 JDT core package for the Eclipse IDE
swing j2sdk1.4.0-javax-swing 538 204,037 102,836 Java 2 SDK 1.4.0 Swing components

Table 4: The Clone Detection Tools Used

Tool Approach Support Language Type

PMD’s CPD 5.0 [6] Token C, C++, C#, Java 1,2

IClones 0.1 [10] Token Java, C, C++, ADA 1,2,3

CCFinder 10.2.7.4 [18] Token C, C++, Java, COBOL 1,2,3

ConQAT 2011.9 [17] Token independent 1,2

Simian 1.5.0.13 [14] Text independent 1,2

NiCAD 3.2 [33] Parser C, C#, Java, Python 1,2,3

4. EMPIRICAL EVALUATION
The choice of fitness function, clone tools to be configured,

and subject systems to which these tools will be applied
are all parameters to our approach. However, we wish to
provide a concrete evaluation. Therefore, we chose a fitness
function, detection tool set and subject system set to address
the problems of rigorous empirical evaluation of clones in
experiments for which clone detection agreement matters.
As shown in Section 2, such configurations have proved to be
pivotal in removing the confounding configuration problem
for at least 43 previous empirical studies. Therefore, such
‘maximally agreeing’ configurations are also likely to remain
important in future empirical clone evaluation work.

4.1 Clone Detectors and Subject Systems Used
For our evaluation we used six clone detectors, all of which

are commonly used in clone analysis work. Table 4 presents
summary information about each of these tools. For the
systems on which to apply the tools, we adopted the widely-
used Bellon benchmark [2]. These choices were made to
maximise the chances that the specific configuration results
reported in this paper will be a useful contribution to the
community in future work on clone evaluation.

Summary information about the subject systems used is
presented in Table 3, with data about the systems’ sizes (in
lines of code, physical source lines, and number of files). The
subject systems are divided into two sets: a set of subject
systems written in C and a set of systems written in Java.

4.2 Configuration of the Genetic Algorithm
Clone detection researchers have a consensus that clone

fragments containing fewer than 6 lines are meaningless [2].
Search based tools (such as EvaClone and CloudEvaClone)
are well-known to exploit search spaces to find solutions that
maximise fitness irrespective of such domain-specific con-
cerns, unless they are factored into the search problem [12].
Therefore, we constrained the search to a range of minimum
lines (MinLine) of a clone fragment from 5 to 7. For Con-
QAT, Simian, and NiCAD, the minimum length of clones
is measured in lines, so clones no smaller than MinLine
are output by these tools. However, for PMD, IClones and
CCFinder, the minimum length is measured in tokens. There
is no simple correspondence between tokens and lines: A line

may contain few or many tokens. To solve this compatibility
problem between tools, we set the range of minimum tokens
(MinToken) to 10–300. The lower bound of MinToken is
sufficiently small that it ensures that clones smaller than
MinLine are possible. Should any clone reported by any
tool contain fewer than MinLine lines, we remove it using a
post-processing filter applied to all tools. Thus, the MinLine
setting is enforced over all tools.

Each configuration setting is coded as an integer in the
range specified in Table 5 (which also shows the final con-
figurations reported by CloudEvaClone, which are discussed
in Section 5). For example, the chromosome for the de-
fault configuration is represented as the vector of values
〈50,6,0,0,20,12,0,0,1,0,1,0,0,1,0,0,1,0,0,0,1000,3,0,0〉, though
this is merely one element of the configuration search space
Ω. We wrote a decoding driver script for each clone detection
tool. The driver converts the vector of values produced by
EvaClone and CloudEvaClone to the required format used
by each of the clone detection tools. Our genetic algorithm
uses the tournament selection method to create mating pools.
A single point crossover operator and a single point mutation
operator is used to reproduce offsprings. The crossover rate
is 0.8 and the mutation rate is 0.1.

4.3 Fitness Functions
The fitness function is another parameter to our approach

and must be carefully chosen. For the empirical evaluation
we focus on the agreement of clone detectors. As discussed,
the more the clone detectors agree, the more trustable are
their results. Thus, the goal is to find configurations that
lead to maximal agreement of clone detectors.

Given a configuration, the fitness function returns a value
indicating the degree of agreement of the clone tools on the
subject systems for the given configuration. We distinguish
between two use-cases for the fitness function, depending
upon whether it is applied to a set of systems (seeking agree-
ment on all of them with a general fitness) or a single subject
system (with an individual fitness), in which case the clone
tools should agree only on that specific system of interest:
Individual Task: Given a set of subject systems SS =
{S1, . . . , Sm}, for a system Sk ∈ SS, search for a better
configuration X for tool set TS containing n tools to get the
maximum agreement of clone detection results on Sk. The
individual fitness function for the Individual Task is:

fI(TS(X), Sk) =

∑n
i=1(i×AgreedLOC[i])

n×
∑n

i=1 AgreedLOC[i]
(1)

General Task: Given a set of systems SS = {S1, . . . , Sm},
automatically search a better configuration X for tool set
TS to get the maximum agreement of clone detection results
on all the subjects in SS. The general fitness function for
the General Task is based on Equation 1 and defined as:



Table 5: Best General and Individual Configurations Found by CloudEvaClone for the Clone Detection Tools

Tools Parameter Name Range
Configuration Settings

Default General Individual (Specific to Each Bellon Suite)

C
Set

Java
Set

wel
tab

cook snns psql java
doc

ant jdt
core

swing

Tools Minimum Clone Size Settings (Applicable to Several Tools)

PMD, IClones,
CCFinder

MinToken 10-300 50 14 26 30 10 13 13 31 29 29 26

ConQAT, Simian,
NiCAD

MinLine 5-7 6 5 5 6 5 5 5 5 5 6 5

Tool Technique-Specific Configuration Settings

PMD
PMDIgnoreLiterals 0,1 0 0 1 0 1 1 0 1 1 1 1

PMDIgnoreIdentifiers 0,1 0 0 1 1 1 0 0 1 1 1 1

IClones MinBlock 0-300 20 8 6 0 6 9 7 4 3 5 6

CCFinder TKS 1-300 12 10 7 4 8 8 9 1 4 1 3

Simian

ignoreCurlyBraces 0,1 0 0 1 0 1 1 1 0 1 1 0

ignoreIdentifiers 0,1 0 0 1 0 0 0 0 1 1 1 1

ignoreIdentifierCase 0,1 0 1 1 0 1 0 0 0 1 1 0

ignoreStrings 0,1 0 1 1 1 1 1 1 1 1 1 1

ignoreStringCase 0,1 1 1 0 0 1 1 1 1 0 0 0

ignoreNumbers 0,1 0 1 0 1 1 0 1 1 1 0 1

ignoreCharacters 0,1 0 1 1 1 1 1 1 1 0 1 0

ignoreCharacterCase 0,1 1 1 0 1 1 1 1 0 0 1 0

ignoreLiterals 0,1 0 0 0 0 0 1 0 0 0 0 0

ignoreSubtypeNames 0,1 0 1 1 0 1 1 1 0 1 1 1

ignoreModifiers 0,1 1 1 0 0 1 0 0 1 1 0 0

ignoreVariableNames 0,1 0 1 0 1 1 1 1 0 0 1 1

balanceParentheses 0,1 0 0 0 0 0 0 0 0 0 0 0

balanceSquareBrackets 0,1 0 1 1 0 1 1 0 0 0 0 0

NiCAD

MaxLine 100-1000 1000 549 604 550 295 556 283 794 329 776 171

UPI 0.0-0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.2 0.2

Blind 0,1 0 1 1 1 1 1 1 1 1 1 1

Abstract 0-6 0 6 6 0 1 6 1 6 0 6 6

fG(TS(X), SS) =
1

m

∑
Sk∈SS

fI(TS(X), Sk) (2)

In these fitness equations AgreedLOC[i] represents the num-
ber of lines reported as cloned by exactly i tools.

For example, AgreedLOC[6] is the number of lines reported
as cloned by 6 tools, AgreedLOC[1] represents the number
of lines reported as cloned by only a single tool. Higher
weight is given to those AgreedLOC[i] values with larger i,
by multiplying AgreedLOC[i] by i. This ensures that the
larger agreement on the clone detection results among the
tools, the higher the fitness.

The individual fitness function is based on the following
observation: We focus only on lines that are reported by at
least one tool as cloned. If we draw a histogram that shows
for each such line how many tools report this line as cloned,
we want to maximise the area covered by the histogram. The
sum of all AgreedLOC[i] is the number of lines reported as
cloned by at least one tool. Thus, the denominator is the
maximal achievable area. The numerator is the actual area
covered. The general fitness function is computed from the
individual fitness for each system; it is simply the average of
the individual fitness functions.

4.4 Research Questions
We use a large-scale empirical study of CloudEvaClone to

address the following research questions:
RQ1 (Default Agreement Baseline): How much agree-

ment can be obtained using the default configuration of clone
detection tools? We ask this question to establish the validity
of our approach: If it turns out that the default configura-
tions produce good agreement, then our approach would not

be needed. We also need this result to provide a baseline
against which to compare the results from our approach:
How much better are they than the default configurations
that would otherwise be used, were there no alternative.

RQ2 (Optimised General Agreement): How much
agreement can our approach find among all tools using the
general fitness function, which seeks to find agreement on all
subject systems? This question establishes how useful our
approach is at finding new default configurations for sets of
tools and subject systems.

Of course, should it turn out that CloudEvaClone does,
indeed, produce significantly better configurations than the
currently used defaults, then, as a byproduct we shall also
have a new default configuration for these tools.

RQ3 (Optimised Individual Agreement): How much
agreement can our approach find among all tools using the
individual fitness function, which seeks to find agreement on
each individual subject system in isolation? If we can find
even better configurations for individual systems, then this
will be useful for researchers who wish to study the proper-
ties of clones arising from the systems studied themselves,
rather than the detection techniques. By choosing a different
configuration for each system, a researcher can reduce the
confounding effect that a single configuration may have on
different detection characteristics for different systems.

RQ4 (Accuracy): How much will recall and precision
change when the optimised configurations are used? Clearly,
a change in a tool’s configuration will impact its recall and
precision and usually there is a tradeoff between them. Con-
figuration choices are intended to allow the user to prefer
recall over precision and vice versa. It is thus important
to know if the optimisation for agreement prefers recall or
precision.
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Figure 4: Default Configurations Achieve Poor Agreement on Clones

5. RESULTS AND DISCUSSION
While RQ1 can be answered by simply running the fitness

evaluation component of EvaClone on a desktop, the experi-
ments for RQ2 and RQ3 required 132,467 CPU hours. This
would have taken approximately 15 years of continual execu-
tion on a conventional desktop machine. Therefore, we used
CloudEvaClone to parallelise the computation and thereby
render the execution time manageable. The significant com-
putational effort involved is due to the need to evaluate
our approach thoroughly. A future user of (Cloud)EvaClone
would require only a tiny fraction of this computational effort
to find suitable configurations.

5.1 RQ1: Default Agreement Baseline
To establish how much agreement can be obtained with

the default configurations as our baseline, we compute the
agreement and fitness values for the individual subject sys-
tems as shown in the table on the left-hand side of Figure 4.
For each of the eight systems, the table shows the number of
lines for which exactly i tools agree that the line is cloned. In
addition, it shows the number of lines that at least one tool
reports as cloned (

∑
AgreedLOC[i]) and the fitness value f .

For example, weltab has 6,941 out of 9,987 lines where all
six tools agree that the line is cloned and 937 lines where
only a single tool detects the line as cloned. Most of the time,
all six tools agree for the weltab system and so, consequently,
the fitness value f is high (0.84) for weltab. However, weltab
is unusual; all other systems have much lower agreement
(and fitness values between 0.31 and 0.51). In particular the
number of lines where only one of the tools detected the line
as cloned is very large for the other systems.

The histogram on the right of Figure 4 shows the agree-
ment values from the table on the left as percentages of
all lines reported as cloned. The figure confirms weltab as
outlier and in most cases only one or two tools agree that
a line is cloned. Thus, the answer to RQ1 is: In their
default configurations, clone detection tools have a
low agreement on which lines are cloned.

However, it could be the case that the configurations ac-
tually have a low impact on the results: perhaps the low
agreement observed is due to the fundamentally different
clone detection techniques the tools implement. To estimate
the impact that the configurations actually have on the agree-
ment, we compare randomly generated configurations with
the default configuration.

For both sets of C and Java systems, 100 random (but
valid) configurations are generated as a sample of the space
of all valid configurations. Each generated configuration is
applied to the six detection tools which are run on each of
the eight subject systems.
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Figure 5: Default Configurations Perform Poorly

The fitness values of the generated configurations X are
then compared with those of the default configuration Xd by
computing their difference as a fitness improvement ratio of
X to Xd:

fir(X) =
f(TS(X), S)− f(TS(Xd), S)

f(TS(Xd), S)
(3)

In Equation 3, S is a set of subject systems (which could be
a singleton set, in which case it applies to a single system).
The equation can be used to asses fitness improvement ratios
for both the general and the individual fitness functions.

Figure 5 shows the boxplots for the computed fitness im-
provement ratios. The two general sets (C and Java) are
to the left of the figure, while the individual systems are to
the right. As we can see from the figure, random configura-
tions almost always cause a lower agreement than the default
configuration, ranging up to almost 45% lower fitness values
(snns). This shows that the agreement between clone detec-
tion tools is highly sensitive to their configurations. However,
a small number of random configurations can actually im-
prove the fitness (and thus increase the agreement), as can
be seen for cook and the set of Java systems.

Therefore we conclude that, though default configurations
favour agreement overall (compared to purely random con-
figurations), there do, nevertheless, exist configurations that
cause greater agreement between the results of clone detec-
tion tools than with the default configuration.

5.2 RQ2: Optimised General Agreement
Given that the default configurations cause low agreement

and that randomly generated configurations can increase
agreement, we use CloudEvaClone to search for configura-
tions that maximise agreement. This experiment uses the
general fitness function defined in Equation 2 to seek a con-
figuration for the C and Java set that maximise agreement.
In order to support inferential statistical testing, CloudE-
vaClone is executed 20 times. The fitness values for the
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Figure 6: Agreement Improvement (over Defaults) for General and Individual Configurations

configuration generated by each run and each subject sys-
tem are compared with those from the default configuration.
The comparison is done based on the fitness improvement
ratio (Equation 3) as was used to provide an answer to RQ1.
Figure 6 shows the boxplots for the achieved improvements.
The improvements of the general fitness for RQ2 are marked
with a ‘G’, while the individual ones are marked with an ‘I’
(discussed with RQ3). The figure shows improvements for
the Java (up to 21.9%) and C set (up to 10.6%) as well as
for the individual systems. It is interesting to note that the
improvements for the Java systems are larger than for the C
systems. Moreover, weltab proves to be an outlier again.

To further confirm that the optimised configurations tend
to have higher fitness values than default configurations,
Wilcoxon signed rank tests were performed. For each system,
20 fitness value pairs are compared. Each pair consists of
one fitness value for the general configuration from each GA
run and the value for the default configuration. The null
hypothesis is that the fitness values for the configurations we
find are not significantly different from that of the default
configuration. For all 8 systems the z-score was -3.92 and the
p-value was 0.000 (three decimal places) conforming the ob-
servation from the box plots that our approach significantly
outperforms the default configurations. In fact every one
of the 20 executions of CloudEvaClone produces a better
configuration. We also computed the effect size, r, in the
standard way. That is, for a sample size N , the value of r is
computed from the z-score: r = abs( z√

N
). For all 8 systems,

the effect size reported by this test is ‘large’ according to
Cohen’s effect size criteria [5] (which suggest 0.2 to 0.3 is
a small effect, around 0.5 is a medium, while values above
0.8 denote large). Therefore, we answer RQ2 as follows:
CloudEvaClone finds configurations that are signifi-
cantly better than the current default configurations
and with a large effect size.

The configurations found by the best of the 20 CloudE-
vaClone runs are reported in Table 5 (columns 5 and 6). It
is interesting to observe the differences in configurations for
the C and Java system sets which reflects the differences in
coding styles and their impact on clone detection.

5.3 RQ3: Optimised Individual Agreement
By answering RQ2, new general configurations for C and

Java systems have been established. As we have seen, there
is a difference between C and Java systems—maybe there
are even larger differences when CloudEvaClone searches for
optimised configurations for the individual systems. RQ3
addresses this question using CloudEvaClone with the indi-

Table 6: Individual Configurations Significantly Out-
perform the General Configurations (α = 0.05)
Subjects z-score p-value Significant? r Effect Size

weltab -3.92 0.000 yes 0.88 large
cook -3.92 0.000 yes 0.88 large
snns -3.81 0.000 yes 0.85 large
psql -3.70 0.000 yes 0.83 large

javadoc -3.92 0.000 yes 0.88 large
ant -2.80 0.005 yes 0.63 medium
jdtcore -3.92 0.000 yes 0.88 large
swing -2.65 0.008 yes 0.59 medium

vidual fitness function defined in Equation 1 and executing
CloudEvaClone on each system in isolation to find optimised
individual configurations.

Figure 6 shows the fitness improvements for the individ-
ual systems (I) side-by-side to the improvements previously
achieved by the general configuration (G). The boxplots
show that the individual optimisations not only lead to even
greater agreement, but also that the range of improvements
is smaller than for the general optimisation. Again, weltab
is found to be an outlier.

To confirm that individual optimisations tend to gener-
ate higher fitness values than the general configurations,
Wilcoxon signed rank tests are performed again. The null
hypothesis is that fitness values of the general configurations
are not significantly different from the ones for individual
configurations. Table 6 shows the results are statistically
significant in all cases, and with high effect sizes in all cases
except ant and swing. Therefore, we answer RQ3 as follows:
CloudEvaClone can find even greater agreement us-
ing the individual fitness function applied to each
subject system in isolation.

To illustrate the improvements CloudEvaClone can pro-
vide, Figure 7 compares the fitness values and cumulative
AgreedLOCs for the current default and CloudEvaClone-
reported general and individual configurations for the largest
two systems, psql and swing. In this figure, the columns
located above the horizontal axis legend ‘≥ 5’ denote the
lines of code reported as cloned by at least 5 tools (i.e.,
AgreedLOC[5] + AgreedLOC[6]), while the columns above
the legend ‘potential cloned lines’ denote the number of
lines detected as cloned by at least one detection tool (i.e.∑6

i=1 AgreedLOC[i]). As can be seen, the individual fitness
gives the highest degree of agreement, while the currently
used defaults offer the worst agreement, regardless of the
number of tools from which we seek agreement.
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Figure 7: Agreement Levels for the Two Largest Systems psql and swing

5.4 RQ4: Accuracy
Whenever a new tool is introduced, the authors under-

standably want to investigate the performance of the new
tool, hoping that it will outperform some competitor or state-
of-the-art alternative tool or technique. In the literature [2,
34, 29], this is typically achieved using a ‘gold standard’ of
human-assessed clones. The standard set that has emerged
as a benchmark in many studies is the Bellon benchmark
[2]. Using this benchmark, authors measure and compare
the precision and recall of detection tools. As the tool’s
configurations allow them to favour recall over precision and
vice versa, any comparison is only valid for one specific con-
figuration. The optimisation for agreement has used the
configuration space and it is important to know how this
impacts precision and recall of the individual tools.

There are three accuracy criteria with which the impact
of the optimised configurations can be studied:

1. The number of clone candidates: Higher agreement can
be achieved by increasing the number of tools agreeing
that a line is cloned or by increasing the number of
tools agreeing that a line is not cloned. For the former
one can expect more clone candidates and for the later
one can expect fewer clone candidates.

2. Recall: If higher agreement is due to a larger number of
clone candidates, then a higher recall can be expected.

3. Precision: If higher agreement is caused by fewer clone
candidates, then a higher precision can be expected.

The first criteria can still be studied without a benchmark,
but the other two criteria will use Bellon’s benchmark which
estimates precision and recall by comparing reported candi-
dates against a (small number of) manually confirmed clone
pairs. Bellon used two possible matchings of clone pairs to
each other: ‘Good’ and ‘OK’ (see [2] for an explanation); we
will only use the ‘OK’ matching.

Figure 8 shows the three criteria for the two largest sys-
tems psql and swing. Due to space restrictions, we only show
results for two systems, but we will discuss the results for all
systems. The first observation we can make is that the opti-
mised configurations cause more candidates to be reported:
For all eight systems and all five clone detectors, neither the
individual nor the general optimised configurations have ever
lead to a lower number of candidate pairs. In 46 out of 80
cases, the number of reported candidates more than doubled.
Sometimes the number of reported candidate pairs exploded,
as can be seen in Figure 8 for CCFinder and NiCAD on

psql and for PMD on swing. The explosion is an artefact of
the Bellon framework: If a tool reports a large clone class
(i.e. a clone with many instances), then every pair of clones
in that class will be reported as a candidate pair, leading to a
quadratic explosion. The explosion is the reason why Simian
has not been included in the final evaluation as the number
of generated candidate pairs was too large to process.

With such an increase of candidate pairs, one expects an
increase in recall and a drop in precision. This can generally
be observed in the reported precision and recall as computed
by the Bellon framework. There is one situation with a
drop in recall: The Bellon framework reports a lower recall
for IClones applied to weltab with the individual optimised
configuration. The situation is different for precision and
there are a few cases where the precision is increased: The
individual optimised configuration causes a higher reported
precision for PMD on cook and psql, for CCFinder on snns,
and for NiCAD on javadoc and swing. The general optimised
configuration causes a higher reported precision in the same
cases except for PMD on cook. This can also be seen in
Figure 8 for PMD on psql and for NiCAD on swing. Because
the optimised configurations increase precision and recall at
the same time, it may be the case that the optimisation
found better configurations for PMD, CCFinder, and
NiCAD. However, this may be purely coincidental due to the
limitations of the Bellon benchmark.

Overall, one can answer RQ4 with If CloudEvaClone
is used to maximise agreement between clone detec-
tors, recall will be favoured over precision and more
candidates will be reported. However, there may be
situations where a higher precision is preferable over re-
call. In such situations one can simply choose a different
fitness function as the fitness function is a parameter to
(Cloud)EvaClone.

5.5 Actionable results from this work
We have seen that many empirical studies compare clone

tools and techniques (Section 2). However, there remain
important scientific concerns, expressed repeatedly in the
literature, that current practices are potentially flawed due
to the confounding configuration choice problem.

We have seen that default settings, widely used in pre-
vious empirical studies, offer a poor solution to the prob-
lem (RQ1) and that EvaClone can produce significantly
better configuration choices. The primary actionable finding
from this research is that future studies of clones can use
(Cloud)EvaClone to find appropriate configurations for their
studies.
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Figure 8: Results from applying Bellon’s framework on psql and swing

EvaClone and CloudEvaClone, their source code, and all
of the data used and reported in this paper can be found
at the papers’ companion website1. We will also release
CloudEvaClone including our experimental environment as
an Amazon Machine Image (AMI), which can be used to
create a virtual machine within the Amazon Elastic Compute
Cloud (EC2) thereby facilitating replication. Authors can
also use EvaClone with a different fitness function to tune
configuration choices for other problems (not simply those
involving clone tool agreement as reported upon here).

5.6 Limitations and Threats to Validity
The subject systems used in this paper are all open source

and not necessarily representative of all software systems.
However, they do constitute a widely-used ‘benchmark’ set,
so the results reported here have actionable consequences for
the clone detection community.

The clone detection tools also cannot be regarded as repre-
sentative of all clone detection tools: Though we show that
our approach performs significantly better than the currently
used default settings for these techniques, we cannot neces-
sarily predict its effect on other techniques. However, we
have used techniques that represent several different widely-
used approaches to clone detection (including text-, token-
and tree-based approaches). We therefore have some cause
for confidence that CloudEvaClone may continue to prove
useful for future, as yet unimplemented, tools and techniques.
Note that the results are impacted by the approaches, e.g.,
including a PDG-based approach will change the outcome.
Moreover, our fitness function favours recall over precision
and is focussed on agreement – there may be situations where
disagreement is more interesting.

1
http://www.cs.ucl.ac.uk/staff/Y.Jia/projects/eva_clone/

Our approach to handling internal and construct validity
is standard best practice for these forms of experiments [1,
13]: We have reported results for repeated runs, using non-
parametric statistical testing for significance and have also
reported results for the effect size. We set the alpha level
(chance of a Type I error) at 0.05, which is widely regarded
as a standard choice. We used a sample size of 20, which
is guaranteed to be sufficient to avoid Type II errors in all
experiments since all the Wilcoxon tests reported p < 0.05.

The results reported in RQ4 for recall and precision cannot
be generalised due to the constraints of the Bellon framework.
It would require an expert validating the candidates reported
by each tool on each system for all three configurations
(default, individual, general). With 3.4 million candidate
pairs, even checking 1% of them is beyond being feasible.

6. CONCLUSION
We have introduced an approach to finding configurations

for clone detection techniques that can be used to place
empirical studies of clone detection on a more rigorous and
firm footing. Our approach ameliorates the effects of the
confounding configuration choice problem in clone studies.
We demonstrated that this problem is an important one,
widely recognised in the clone detection literature and for
which there was, hitherto, no satisfactory solution.

We evaluated our approach with a large-scale empirical
study, which revealed that it can find significantly better
configurations than the defaults, and with a high effect size.
We demonstrated that the current research practice of using
defaults settings in empirical studies has to be changed. Our
approach can be used to tune settings in clone detection
experiments for specific subject systems.



7. REFERENCES
[1] A. Arcuri and L. Briand. A practical guide for using

statistical tests to assess randomized algorithms in
software engineering. In Intl. Conf. on Software
Engineering, 2011.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone detection
tools. IEEE Trans. Softw. Eng., 33(9), 2007.

[3] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams,
Y. Zou, and A. E. Hassan. An empirical study on
inconsistent changes to code clones at the release level.
Sci. Comput. Program., 77(6), 2012.

[4] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwe. On the use of clone detection for identifying
crosscutting concern code. IEEE Trans. Softw. Eng.,
31(10), 2005.

[5] J. Cohen. Statistical Power Analysis for the Behavioral
Sciences (second ed.). Lawrence Erlbaum Associates,
New Jersey, 1988.

[6] PMD’s Copy/Paste Detector (CPD) 5.0, July 14 2012.

[7] E. Duala-Ekoko and M. Robillard. Clone region descrip-
tors: Representing and tracking duplication in source
code. ACM Trans. Softw. Eng. Methodol., 20(1), 2010.

[8] M. Funaro, D. Braga, A. Campi, and C. Ghezzi. A
hybrid approach (syntactic and textual) to clone
detection. In Intl. Workshop on Software Clones, 2010.

[9] M. Gabel, L. Jiang, and Z. Su. Scalable detection of
semantic clones. In Intl. Conf. on Software Engineering,
2008.

[10] N. Göde and R. Koschke. Incremental clone detection.
In European Conf. Software Maintenance and
Reengineering, 2009.
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