
Dependence Anti Patterns

David Binkley†1 Nicolas Gold† Mark Harman†

Zheng Li† Kiarash Mahdavi† Joachim Wegener‡
†CREST, King’s College London ‡Daimler AG
Department of Computer Science Alt-Moabit 96a

Strand, London WC2R 2LS, United Kingdom D-10559 Berlin

Abstract

A Dependence Anti Pattern is a dependence structure
that may indicate potential problems for on–going software
maintenance and evolution. Dependence anti patterns are
not structures that must always be avoided. Rather, they
denote warnings that should be investigated. This paper
defines a set of dependence anti patterns and presents a se-
ries of case studies that show how these patterns can be
identified using techniques for dependence analysis and vi-
sualization. The paper reports the results of this analysis
on six real world programs, two of which are open source
and four of which are part of production code in use with
Daimler.

1 Introduction
The dependence structure of a program or system can be

used to reveal structural properties that may have important
implications for software maintenance and evolution. Be-
cause the analysis concerns the semantic properties of the
system, the semantic information obtained by dependence
analysis can be deep and may yield insight into potential
problems for on–going evolution.

This paper introduces the concept of a ‘Dependence Anti
Pattern.’ A dependence anti pattern is a dependence struc-
ture that may cause potential problems. Typically these
problems will take the form of difficulties in comprehen-
sion, testing, reverse engineering, re-use, and maintenance.
It is not the purpose of the paper to explore the impact of
the presence of dependence anti patterns on these activities.
Rather, the paper takes as a starting point, the belief that
dependence structure has some bearing on all these activi-
ties and sets out to define several forms of dependence anti
pattern and introduce techniques for locating them.

The paper takes as case study material two open source
programs and four production programs all of which are in
use at Daimler AG Berlin. Like many organizations, Daim-
ler is increasingly outsourcing the development of software

1On sabbatical leave from Loyola College in Maryland.

systems for their products. This raises the issue of quality
assurance for the code that emerges from the third parties
with which Daimler works and upon which the organisation
relies.

Daimler’s business position is that of an organisation
considering taking on the considerable burden of manag-
ing the evolution of these third party programs. Therefore,
Daimler seeks techniques for identifying possible problems
that could be statically discovered at the code level, inde-
pendent of domain knowledge, thereby posing an interest-
ing research challenge. While there are many techniques
for software quality measurement based on process, such
as the quality maturity model of the SEI [15], there is little
agreement on what constitutes a good indicator of software
product quality.

Many metrics for software measurement have been pro-
posed, but these are controversial when applied to assess-
ment of software quality [7, 18, 19]. Often, these code-
based metrics embody a purely syntactic assessment of soft-
ware systems such as counts of syntactic features: lines of
code, number of branches, depth of inheritance, number of
children [5, 11, 14]. Many originally proposed syntactic
metrics have been heavily criticized for, inter alia, being
overly simplistic, lacking in semantic depth and, above all,
failing to capture properties which have any correlation to
software quality [6, 8, 17].

The experience of Daimler, when applying count–based
code–level metrics such as these was that they failed to
help differentiate poor quality from good quality third party
code; thus, they could not be used to indicate future pitfalls
and problems. One issue raised, which is the motivation for
this work, is the lack of semantic information in the met-
rics. These metrics also bring the problem of determining a
‘bounding value’ or ‘threshold’ beyond which concern for
future evolution costs was appropriate.

Following the Evol’2008 conference theme of bridg-
ing boundaries between academia and industry, theory and
practice, and intangible and tangible, this paper seeks to
combine these three strands. The paper reports the results
of a research project commissioned by Daimler Berlin from
the CREST centre at King’s College London Department

1

of Computer Science. The project aims to apply theoreti-
cal techniques for dependence analysis, in order to identify
potential practical problems with software in use at Daim-
ler. The approach uses visualization to make tangible, the
intangible dependence structure of the third party programs
that Daimler is considering adopting. These techniques also
seek to avoid the problems of the arbitrary selection of a
‘metric threshold’.

The paper identifies a set of signatures in the depen-
dence structure that can be considered potentially problem-
atic and thus worthy of further investigation. The hope is
that the semantic nature of the dependence analysis will al-
low the identification of deeper semantic properties than can
be achieved using metrics defined purely on syntactic con-
structions.

Two dependence analyses are used: analysis of depen-
dence clusters and analysis of predicate dependence. De-
pendence clusters contain sets of mutually inter-dependent
statements. Where a program contains a large dependence
cluster, software modification may cause significant ripple
effects and, as a result, problems for maintainers. The size
of a dependence cluster can be thus tied to the maintainabil-
ity of a program at a coarse level of granularity. By contrast,
predicate dependence is chosen to provide a complementary
analysis. It considers a detailed and fine level of granular-
ity. The study of dependence clusters concerns dependence
of all statements upon each other, while for predicate depen-
dence, the results obtained refer to a semantically important
aspect of the computation — the decision logic and conse-
quent control flow of the program.

The primary contributions of the paper are as follows:

1. The paper introduces the concept of dependence anti
pattern.

2. The paper shows how dependence analysis and visuali-
sation can be used to identify dependence anti patterns.

3. The paper illustrates the the approach for six real world
programs used by Daimler, showing how anti patterns
help to identify possible problems for on–going evolu-
tion.

The remainder of this paper is organised as follows Sec-
tion 2 presents background material on the dependence
analysis and visualisation techniques used to make the pa-
per self–contained. Section 3 introduces the concept of de-
pendence anti pattern and gives several examples of depen-
dence anti patterns. Section 4 briefly describes the programs
studied. Sections 5 and 6 present the results of dependence
analysis using dependence cluster visualisation and predi-
cate dependence analysis. Section 7 presents related work,
while Section 8 concludes.

2 Analysis Techniques Used
The dependence analysis an visualization techniques

used in this paper are taken from previous work on pred-
icate dependence [3] and dependence cluster analysis [2].
This section briefly reviews these techniques to make the
paper self–contained. Both techniques are built on program
slicing. A program slice extracts a semantically meaning-
ful portion of a program, based upon a user–selected slicing
criterion [23, 4].

2.1 Dependence Cluster Analysis
A dependence cluster is a set of program points (here

taken to mean nodes of the Control Flow Graph (CFG))
that mutually depend upon one another. Any change to the
computation represented at one point in a dependence clus-
ter potentially affects the computations represented by all
other points in the cluster.

It is possible to identify dependence clusters using slic-
ing: those nodes having the same slice form a dependence
cluster. However, an approximation is used for ‘same slice’
which is, not only more efficient to compute, but also leads
to a useful visualisations for identifying clusters: the Mono-
tone Slice-size Graph (MSG)[2]. Rather than testing if two
SDG vertices have identical slices, the approach simply
compares the slice size for the two vertices.

Monotone Slice-Size Graphs (MSG) have been devel-
oped to aid in the visual identification of dependence clus-
ters [2]. Dependence clusters can be detected by seeking
parts of the MSG where a large number of slices have the
same size. This manifests itself as a ‘plateau’ in the graph
as shown in Figure 1.

Figure 1. An Example MSG

2.2 Predicate Dependence Visualisation
Predicate dependence expresses the extent to which a

particular predicate depends on variables in its scope. In or-
der to visualize predicate dependence, three variables must
be depicted:

1. Predicate Count: The number of predicates sum-
marised by a data point.

2

2. Max-Parameters: The maximum number of parame-
ters in scope (visible) at a predicate.

3. Parameters-Used: The number of parameters that
affect a predicate according to the dependence anal-
ysis.

In these definitions “parameters” refers to formals and
globals taken together. When only formals are being
considered the terms Max-Parameters and Parameters-
Used become Max-Formals and Formals-Used. Similar
specialisation is applied when only globals are considered.

In a dependence bubble chart the horizontal axis de-
notes Max-Parameters, while the vertical axis denotes
Parameters-Used. Thus, the line y = x represents the
worst case (a predicate can reference no more than the vis-
ible parameters). For reference, this line is drawn as the
solid line in all dependence bubble charts. Also drawn is
a dashed line that represents the linear trend (computed us-
ing a linear least squares fit). Finally, bubble size represents
predicate-count.

Figure 2. Dependence Bubble Chart Example.

For example, consider 1-dctkw10’s dependence bubble
chart1 for formal parameters shown on Figure 2. The largest
two bubbles summarize predicates in procedures with 2 and
3 formals respectively. The average number of formals used
by all predicates from 1-dctkw10 with 2 formals in scope
is around 1.5 (visually, these can be seen to depend upon
an average of approximately 1.5 of the 2 available formal
parameters).

3 Dependence Anti Patterns
A Dependence Anti Pattern is a dependence structure

that can potentially cause problems. A Dependence Anti
Pattern is defined by the name of the anti pattern, together
with tell-tale dependence structure signs that signify the
presence of the pattern (the signature of the anti pattern)

1dctkw10 is the name given to this program by Daimler.

and the reason why it may be problematic. This section
lists 7 Dependence Anti Patterns. The list is by no means
exhaustive and it is likely that other authors may be able to
define other potential Dependence Anti Patterns. However,
it is hoped that the list introduced here is sufficiently broad
to give a flavour for the possibilities and to facilitate a set of
realistic case studies in the following section.

Large Dependence Cluster (LDC)
Signature

A dependence cluster is a set of nodes all of
which dependence upon one another [2]. All
programs will contain some dependence clus-
ters. Small clusters are not a problem. What
constitutes ‘large’ will depend on the applica-
tion.

Problems
The meaning of each node is dependent on the
meaning of all, potentially increasing effort to
comprehension and testing and making separa-
tion of concerns difficult.

Separable Formal Parameter (SFP)
Signature

A large number of formal parameters in a func-
tion, in which each predicate depends on few of
these.

Problems
This is often an indicator of low cohesion. Es-
pecially when different (small) sets of formals
are used with different functions.

Intense Formal Parameter (IFP)
Signature

A large number of formal parameters in a func-
tion, in which each predicate depends on many
of these.

Problems
Given the limited human short=term memory,
predicates that depend on more that a handful
of formals have a negative impact on compre-
hension. This pattern also increases the com-
plexity of testing (both by hand and using auto-
mated test-case generators).

3

Globals as Formal Surrogates (GFS)
Signature

Absence of formal parameter dependence com-
bined with the presence of global variable de-
pendence.

Problems
This pattern is often associated with poor func-
tion decomposition where is is difficult to iden-
tify the information flow in and out of func-
tions where all function share common pools
of globals.

Absent Predicate Dependence (APD)
Signature

A predicate with neither formal parameter nor
global variable dependence.

Problems
Predicates that depend only on constants come
in two forms. The first are non-problems.
These occur in cases such as “for each letter
in the alphabet” where the number of iterations
is a known ‘universal’ constant. The second
form occurs when one of more variables that
should have been present in the predicate were
forgotten. Perhaps left over from changes made
in support of debugging or testing (e.g., test
stubs), such omissions can cause incorrect exe-
cution.

Separable Global Dependence (SGD)
Signature

A function with a large number of globals tran-
sitively defined or used, but containing some
predicates that depend on relatively few.

Problems
Like SFP, given the limited human short-term
memory, predicates that depend on more that
a handful of globals have a negative impact
on comprehension. Globals are less of a a
problem, in terms of memory, because they
are more likely to be tied to concepts stored
in long-term memory. However the non-local
nature of assignment to globals, make details
understanding of predicates including a large
number of globals a greater challenge. As with
SFP, this pattern also increases the complexity
of testing (both by hand and using automated
test-case generators).

Intense Global Dependence (IGD)
Signature

A predicate with a relatively high dependence
on global variables, compared to other predi-
cates.

Problems
The comprehendability of such predicates is
a challenge. Furthermore, depending on the
condition, finding test data that exercises both
branches can be difficult.

4 Analysis Subjects
The techniques described in the previous section were

applied to the six programs supplied by Daimler for the pur-
poses of this project. As shown in Table 1, the programs
ranged from 3,298 to 9,165 lines as counted by the unix
utility wc. In terms of actual non-comment non-blank lines
of code the size ranged from 1,961 to 5,605 lines as seen in
the columns headed ‘SLOC’ (source lines of code).

Two of the six programs (numbers 1 and 2) were ob-
fuscated to protect against disclosure of the source code.
However, the obfuscation is dependence–neutral and so the
results presented are not affected by this obfuscation. Its
only impact on the examples presented is the replacement
of meaningful identifier names. Two of the programs were
not obfuscated though they do come from Daimler develop-
ment (these are program numbers 3 and 5). The remaining
two programs (numbered 4 and 6) are open source program
used by Daimler, which do not form a part of their produc-
tion code portfolio.

5 Dependence Cluster Analysis
Figure 3 shows the MSGs of six programs studied. These

programs all show plateaus in their MSGs although those
in 3-netflow and 5-apkw2 are not as severe as the others.
These plateaus provide the evidence that the programs con-
tain dependence clusters.

Table 2 shows some general information regarding the
dependence clusters of the six programs. This information
includes the number of functions in each program, the num-
ber of functions in the largest dependence cluster, and the
size of the largest dependence cluster, as the ratio of the
number of program points in the cluster to the number of
program points in entire program. Based on the 10% value
as a threshold for a dependence cluster to be considered to
be large [2], all programs except program 3-netflow contain
at least one large dependence cluster.

Program 3-netflow has a cluster that contains only
8% over the program. Program 5-apkw2 contains a de-
pendence cluster cluster accounting for 13% of the program.
Although the latter is slightly over the 10% level, these de-
pendence clusters are considered to be relatively small com-
pared to the others and were not studied further here in. This

4

Number Subjects Size(LOC) SLOC Description
1 1-dctkw10 9,165 7,537 obfuscated
2 2-srtrev1 5,087 4,046 obfuscated
3 3-netflow 4,391 2,672 Dynamic Data Functions
4 4-i2makw 6,899 5,605 Non Daimler code - Control Bank program
5 5-apkw2 3,298 1,961 Daimler ITT Experiments
6 6-ctbot 8,173 3,138 Non Daimler code - Robot simulator

Table 1. Experiment subjects.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

1-dctkw10-msg-backward

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

2-srtrev1-msg-backward

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

3-netflow-msg-backward

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

4-i2makw-msg-backward

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

5-apkw2-msg-backward

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

6-ctbot-msg-backward

Figure 3. MSG-Backward

Numbers of Numbers of DC
Subjects Functions Functions in DC size

1-dctkw10 77 35 29%
2-srtrev1 66 27 32%
3-netflow 191 1 8%
4-i2makw 125 49 33%
5-apkw2 21 4 13%
6-ctbot 104 35 39%

Table 2. Dependence Clusters

leaves four programs with very large dependence clusters.
The remainder of this subsection considers the dependence
clusters for each of these four programs in more detail.

The MSG of 1-dctkw10 in Figure 3 and data in Table
2 indicate that the program 1-dctkw10 contains a large
cluster, which is 29% of the whole program. There are to-
tal 77 user defined functions in 1-dctkw10, of which 35
are involved in the large clusters. The largest cluster in the
program 1-dctkw10 includes several sub-clusters. Once
function (i d1533) transitively calls many other functions.
Inspection of this function’s code reveals that its entire body
is a for loop that calls the other functions. This causes much
of each called functions to be part of the cluster.

The second program, 2-srtrev, contains a large clus-

ter, which is about 32% over the program. The program
contains a function (i d106) that transitively calls all other
functions. Inspection of the function’s code reveals that it
contains four large for loops which capture all its called
functions. In 15 of the functions (10 of which occur in the
largest cluster), there is a prominent global variable that ap-
pears to be repeatedly defined and used. It might be sup-
posed that this variable, being a prominent global variable,
might play a large role in binding together dependence,
thereby forming the large cluster.

In an attempt to verify this conjecture, certain global
variables were replaced, with constants (when appearing as
an r-value) and commented out (when appearing as an l-
value), and then the MSG was recomputed. However, this
somewhat aggressive replacement made no noticable dif-
ference to the MSG. We concluded that perhaps this is an
example of a highly robust dependence cluster, suggesting
that it occurs for deep seated and robust structural reasons.

The program 4-i2makw contains a large cluster which
contains 33% of the program. Most functions in this pro-
gram are defined as void functionname(void), i.e.
most functions have no parameters and do not return a
value, so the external effects of these functions are all com-
municated through global variables. Inspection of the code
reveals that a total of 180 global variables are defined and

5

used in most of the functions at control-points or in expres-
sions. Source inspection finds that the program contains a
switch statement the cases of which call the functions that
participate in the dependence cluster.

Finally, the program 6-ctbot contains a large clus-
ter, which is about 39% over the whole program. Further
investigation reveals that the function bot behave has a
pointer variable accessed by all 17 of the functions that call
it and that these calls all use the pointer to update the value
of a single global variable.

6 Predicate Dependence Analysis
Predicates are an important part of program functionality

as they capture the logical flow of control of the program.
For this reason, predicate dependence is worthy of special
study in its own right. If a predicate depends on few formal
parameters and few global variables, then it is likely to be
easier to understand the role of the predicate in isolation. It
is also easier to generate test data to cover the branches of
the predicate, because there will be a smaller search space
in which to locate suitable test data. Furthermore, changes
to such a ‘low dependence predicate’ will have fewer po-
tential influences, suggesting that such changes will be eas-
ier to perform. These three observations tend to suggest
that high levels of predicate dependence are to be depre-
cated and motivates the study of predicate dependence for
the suite programs under consideration in this study.

It must be stressed that the analysis shows what a pred-
icate really depends upon in terms of the two influencing
sources of dependence — formal parameters and global
variables. However, in order for a programmer, maintainer,
or tester to avail themselves of this information, it would
be necessary for such a person to have access to the result
of the dependence analysis. Such information can be pro-
duced by a tool for variable dependence analysis such as
Vada [12].

In order to facilitate comparison between programs and
between forms of predicate dependence analysis, the results
are grouped together and presented in tabulated figures. The
results presented in these figures can be compared to the re-
sults obtained from the suite of open source programs orig-
inally studies by Binkley and Harman [3].

6.1 Formal Parameter Dependence
The dependence bubble charts for formal parameter de-

pendence of the six programs are depicted in Figure 4. A
wide angle between the trend line (shown dotted in the fig-
ures) and the 45o line (shown solid in the figures) indicates
the potential for search space reduction for test data genera-
tion. It can be argued [3] that a large angle is a sign that the
functions containing these predicates are less than fully co-
hesive. That is, such a wide angle means that a function has
many predicates that fail to depend upon a large proportion

of the formal parameters available to them. Such a function
could be re-factored into smaller functions with fewer for-
mal parameters and a greater degree of dependence within
their logical structure. Such a re-factoring would have the
goal of increasing the cohesion of the function so-created.
It is also an indication of a lack of cohesion in the code prior
to re-factoring.

It is immediately obvious that there are no programs in
the Daimler set that exhibit such a large angle between for-
mals used and formals available as those found in the first
row of programs from the prior study (e.g., that of copia
and compress). This could be a sign that the functions
from the Daimler suite are more cohesive. However, it of-
fers less scope for reducing the number of formals that will
need to be considered in order to generate test data from
formal parameter values.

It is also striking that all of the programs in the Daimler
suite have predicates that depend upon no formal parame-
ters at all because they have none available to them. This
is indicated by bubbles the centre of which lies on the ori-
gin. Such formal-free predicates are far less common and
less pronounced in the prior study [3]. The phenomenon is
particularly striking in the program 5-apkw2, where almost
all predicates in the program depend on no parameters (and
have none available).

This indicates that global variables are used to convey in-
formation to predicates in place of formal parameters. This
has a saving on efficiency, but it may make the programs
harder to understand and test. Understanding is impaired
because the potential scope of a global is so much wider
than that of a formal. The ability to generate test data is
impaired because setting up values for globals is less conve-
nient than simply calling a method or function with a chosen
set of parameter values as an ‘input vector’.

6.1.1 Observations and Insights gained

Average
Predicate Max Parameters

Bubbles Count Parameters Used
A 6 7 1.83
B 110 7 5.61
C 279 0 0.00
D 136 0 0.00
E 4 5 1.00
F 207 1 0.09

Table 3. The parameters for Bubble A-F

Six bubbles are worthy of closer attention. These
are marked as dark grey (rather than light grey) bub-
bles and labeled by the letter A-F in Figure 4. Table 3
shows Predicate Count, Max-Parameters and Average-
Parameters-Used for these six bubbles. The rest of this

6

Figure 4. Formal Parameter Dependence bubble charts

subsection considers these six bubbles in more detail exam-
ining the properties of the code to which they correspond
and the evidence they provide with regard to testing, com-
prehension and maintenance.

First, consider Bubble A from 1-dctkw10’s dependence
bubble chart for formal parameters shown on Figure 4. This
bubble summarizes six predicates, all of which are located
in procedures with 7 formals. These predicates are those
that, for this program, have the the largest number of for-
mals available to them. These six predicates all occur in
a single function: function i 369. The maximum number
of formals actually depended upon is 3, the minimum is
1, with an average of 1.83. This indicates that this func-
tion may contain logic that can be separated into different
sub-functions, an example of Separable Formal Parameters
(SFP).

Next, consider Bubble B from 3-netflow’s dependence
bubble chart for formal parameters shown on Figure 4. This
bubble summarizes 110 predicates in procedures with 7 for-
mals. Like the previous example, this is the largest number
of formal parameters available to any predicate in the pro-
gram. The average number of formals used by all predicates
from 3-netflow with 7 formals in scope is 5.61. The 110
predicates occurred in 3 functions: 71 predicates in func-
tion NetFlow in NetFlow.c, 9 predicates in EvalSwitch in
ProtocolFunctions.c and 30 predicates in function Read-
TreeStructure in DynamicDataFunctions.c respectively.

Comparing the Bubble A in 1-dctkw10 and the Bub-
ble B in 3-netflow, both have the same Max-parameters.
However the Bubble B depends upon more parameters than
Bubble A. This shows that analysis of dependence will be

beneficial in reducing testing effort for the function i 369
in 1-dctkw10 but less so for NetFlow, EvalSwitch and
ReadTreeStructure in 3-netflow, despite the fact that all
four functions have the same number of formals available to
them. Furthermore, despite the observation that NetFlow is
likely to be the easiest program to understand and maintain,
within it, the functions that are likely to be hardest to under-
stand are NetFlow, EvalSwitch and ReadTreeStructure.
This is an example of Intense Formal parameters (IFP).

Both the Bubble C in 4-i2makw and the Bubble D in
5-apkw2 include a large number predicates (279 and 136
respectively). These predicates do not depend upon any for-
mal parameters. A further analysis of global variable depen-
dence for these predicates reveals that there are global vari-
ables available to all these predicates, with most depending
on some of these global variables: Of the 279 predicates
summarised by Bubble C, only 19 depend upon no global
variables (as well as depending upon no formal parameters).
This suggests possible instances of the Globals as Formal
Surrogates (GFD) anti pattern. Of these 19, 16 predicates
are for loop conditions, the other 3 predicates are if condi-
tions.

The source code for one (typical) for loop is

for(LoopCounter = 0;
LoopCounter < I2MA CYL ARRAY SIZE;
LoopCounter++).

Here, I2MA CYL ARRAY SIZE is a constant of 5.
The condition neither depends upon formal parameters nor
global variables. However, this is typical for a for loop;

7

semantically, it has lower and upper bounds that are deter-
mined by compile-time constants. As such, it is unlikely
for a for loop to depend upon anything. Indeed, where a for
loop does depend upon either formals or globals, it is ex-
tremely likely that such a loop is really a while loop, mas-
querading as a for loop.

The other 3 predicates of the 19 that have no dependence
are if conditions. This is an instance of the Absent Predi-
cate Dependence (APD) anti pattern. However, upon fur-
ther inspection, it becomes clear that these predicates de-
pend upon the return value of the function LimpinIsSetFor.
The only statement in the function LimpinIsSetFor is “re-
turn 0”. Further inspection uncovered the comment:

“This is a stub function - in the original system this is
a signal to a parallel subsystem”

In this way the anomalous predicate dependence for
these three predicates has shown up the presence of un-
instantiated stubs in the code.

The Bubble F in 6-ctbot provides another example of
a set of predicates that have little dependence on formals.
However, in this case, there are very few (1) formals for
these predicates to depend upon. In total, there are 207
predicates and these 207 only depend upon an average of
0.09 of the single formal parameter available. In fact, a
closer analysis reveals that only 19 of 207 predicates depend
upon 1 formal parameter, while the others depend upon
none. A similar global variable dependence analysis indi-
cates that all predicates except 2 depend on global parame-
ters. This provides evidence for both the Absent Predicate
Dependence (APD) and the Globals and Formal Surrogates
(GFS) anti patterns.

The Bubble E in 6-ctbot is another example with large
Max-parameters but a few used. This bubble includes
4 predicates in procedures that depend upon only 1 of 5
formal parameters. All 4 predicates occur in two func-
tions with 5 formal parameters, command write and com-
mand write data.

6.2 Global Variable Dependence
The dependence bubble charts for global dependence of

the six programs are depicted in Figure 5. Eight bubbles
are worthy of closer inspection. These are marked as black
bubbles (rather than light grey) and labeled by 1-8 in Figure
5. Table 4 shows Predicate Count, Max-Parameters and
Average-Parameters-Used for the these eight bubbles.

First, consider Bubble 1 from 1-dctkw10 dependence
bubble chart for global variables. This bubble summarizes 9
predicates in procedures with 157 globals available to them.
The number of globals used for each of these predicates
from 1-dctkw10 are 1, 1, 98, 98, 98, 1, 1, 81, 0 respectively,
and the average number of globals used by all predicates is
42.11.

Average
Predicate Max Parameters

Bubbles Count Parameters Used
1 9 157 42.1
2 5 224 4.0
3 5 191 6.0
4 30 25 12.5
5 7 187 2.0
6 1 82 0.0
7 7 91 76.0
8 8 139 2.0

Table 4. The parameters for Bubbles 1-8

Clearly, it can be seen that four predicates depend upon
a large number of global variables. Inspection of the code
reveals that all nine predicates occur in function i 1732,
which has no formal parameters. Clearly in this function,
globals are being used to communicate values to and from
the function, an example of the Separable Global Depen-
dence (SGD) pattern. Those predicates that depend upon
only one such global would be better written as calls to sim-
ple functions that return the value true/false and take the
single global as a parameter (perhaps modifying it if neces-
sary). This would make these predicates far easier to under-
stand, since they would clearly depend upon a single value
rather than 157!

Recall that in Section 2.1, the dependence cluster analy-
sis indicated that the program 1-dctkw10 contains a large
cluster; one which consumed 29.10% of the whole program.
A further inspection of the source of this large dependence
cluster reveals that the four predicates that depend on a large
number of globals are all in the large cluster, while the other
five predicates with few globals depended are not. This pro-
vides strong evidence that the use of large number of global
variables in source could result in a large cluster. It also sug-
gests that the four predicates that depend on large numbers
of globals should be factored out and carefully considered in
order to determine why they have such a high dependence.

Bubble 4 in 3-netflow’s dependence bubble chart for
global variables is shown on Figure 5. This bubble shows
30 predicates in 3-netflow depending upon an average of
12.47 of the 25 global variables. Inspection of the code
reveals that all 30 predicates occurred in function Read-
TreeStructure. This is an example of the Intense Global
Dependence (IGD) pattern. The high level of global de-
pendence and the name of the function suggest that the tree
structure in question may be a global data structure. If it is
possible to decompose this function, then it will be easier to
test (if the function is decomposed into smaller functions,
each of which only touches those parts of the global struc-
ture that are needed).

Bubble 7 summarizes seven predicates in 6-ctbot with
91 global variables available. Each predicate in this bubble

8

Figure 5. Global Variable Dependence bubble charts

depends upon 76 of 91 global variables. These seven predi-
cates all occur in function bot behave. The fact that these
predicates depend (really depend that is, not merely appear
to depend) on such a large number of global variables indi-
cates that this function’s logical structure will be very hard
to understand and test. This provides another example of
Intense Global Dependence (IGD).

The reader may wonder about bubbles 2, 3, 5, 6 and 8.
These are examples of predicates that only depend upon a
few global variables, but which have large number of glob-
als available to them. The predicates in these five bubbles
all occur in function main. This function typically pulls
together the strands of the program, so it will have a large
number of globals available to it. It would not be abnormal
for main to contain predicates that depend on very few of
the total globals, which explains most of these bubbles.

However, all such bubbles cannot be completely dis-
missed. Bubble 6 includes one predicate that depends upon
no globals and no formals; an example of Absent Predi-
cate Dependence (APD). The corresponding source code is
“while(1)”; a never ending loop. Similarly, one of pred-
icates in the Bubble 8 is the same, except that the corre-
sponding source is “for(; ;)”.

7 Related Work
Harman and Binkley introduced the idea of dependence

clusters, showing that they occur in real world programs,
though they did not explicitly identify them as Dependence
Anti Patterns [2]. This paper provides further evidence that
dependence clusters are highly prevalent in real production
code. The six Dependence Anti Patterns considered in the

present paper and the concept of Dependence Anti Patterns
have not been previously considered.

However, work on the general concept of patterns is very
well known from the work of the gang of four [10] and
has previously been suggested as a technique for enhanc-
ing software evolution [1]. Our work differs, because it is
based on dependence structure patterns, rather than design
patterns, but our approach is inspired by previous work on
design patterns.

Design patterns capture the templates of design ideas
that have been considered to work well in certain engi-
neering scenarios by a large body of experienced engineers.
This seminal work on design patterns led to the consider-
ation of anti patterns; templates of design structures that
are believe not to work well and which should be avoided.
However, the present paper is the first to consider depen-
dence structures as potential patterns. While it is hard to
define what a ‘good’ dependence structure should look like,
it is comparatively easy to identify dependence structures
that denote potential problems; these are the dependence
anti patterns considered in the present paper.

In software evolution, the idea of templates of design and
patterns that can be identified, isolated, and studied has re-
ceived a lot of attention. Often the artifacts studied go under
different names such as work on identification of program
plans [20, 25, 21] and program clichés [22, 9]. However
this previous work in identification of programming style
templates such as plans and clichés has not considered de-
pendence structures of the form considered in the present
paper.

Perhaps the closest work to that presented here consid-

9

ers work on identification if induction variables [24], and
automated parallelization [13, 16], since these are a kind of
program construction that is identified, in part, by a depen-
dence signature. However, induction variables are individ-
ual variables with the goal of informing loop analysis, while
work on automated parallelization is concerned with teasing
apart dependence structures to facilitate increase opportuni-
ties for parallelism. By contrast, the dependence structures
considered in the present paper are larger–grained, poten-
tially involving many variables and program points and their
interactions, while the goal is to identify potential problem-
atic dependence structures.

8 Conclusion and Future Work
This paper has introduced the concept of dependence

anti patterns, showing how these anti patterns can be de-
fined and located using dependence analysis and visualiza-
tion. The paper argues that the study of dependence anti pat-
terns will provide useful insights into possible problems and
issues for on–going maintenance. Evidence for this claim
was provides by the presentation of six case studies, which
show the presence of these anti patterns in real production
code.

References

[1] F. Arcelli and L. Cristina. Enhancing software evolution
through design pattern detection. In Software Evolvability
(Evol ’07), pages 7–14, Paris, 2007. IEEE Computer Soci-
ety Press.

[2] D. Binkley and M. Harman. Locating dependence clus-
ters and dependence pollution. In 21st IEEE International
Conference on Software Maintenance, pages 177–186, Los
Alamitos, California, USA, 2005. IEEE Computer Society
Press.

[3] D. W. Binkley and M. Harman. Analysis and visualization
of predicate dependence on formal parameters and global
variables. IEEE Transactions on Software Engineering,
30(11):715–735, 2004.

[4] D. W. Binkley and M. Harman. A survey of empirical results
on program slicing. Advances in Computers, 62:105–178,
2004.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software En-
gineering, 20(6):476–493, June 1994.

[6] N. I. Churcher and M. J. Shepperd. Comments on ‘A met-
rics suite for object oriented design’. IEEE Transactions on
Software Engineering, 21(3):263–265, Mar. 1995.

[7] N. E. Fenton. Software Metrics: A Rigorous Approach.
Chapman and Hall, 1990.

[8] N. E. Fenton. Software measurement: A necessary scien-
tific basis. IEEE Transactions on Software Engineering,
20(3):199–206, 1994.

[9] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A cliche-
based environment to support architectural reverse engineer-
ing. In International Conference on Software Maintenance
(ICSM’96). IEEE Computer Society Press, 1996.

[10] Gamma, Helm, Johnson, and Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Addison-
Wesley, Massachusetts, 2000.

[11] M. H. Halstead. Elements of Software Science. Elsevier,
1977.

[12] M. Harman, C. Fox, R. M. Hierons, L. Hu, S. Danicic, and
J. Wegener. Vada: A transformation-based system for vari-
able dependence analysis. In IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM 2002),
pages 55–64, Los Alamitos, California, USA, Oct. 2002.
IEEE Computer Society Press.

[13] Y. Lee and B. G. Ryder. Effectively exploiting parallelism
in data flow analysis. The Journal of Supercomputing,
8(3):233–262, Nov. 1994.

[14] T. J. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2:308–320, 1976.

[15] M. C. Paulk, B. Curtis, E. Averill, J. Bamberger, T. Kasse,
M. Konrad, J. Perdue, C. Weber, and J. Withey. Ca-
pability maturity model for software. Technical Report
CMU/SEI-91-TR-24 ADA240603, Software Engineering
Institute (Carnegie Mellon University), 1991.

[16] C. Ryan. Automatic re-engineering of software using genetic
programming. Kluwer Academic Publishers, 2000.

[17] M. J. Shepperd. A critique of cyclomatic complexity as a
software metric. Software Engineering Journal, 3(2):177–
188, 1988.

[18] M. J. Shepperd. Foundations of software measurement.
Prentice Hall, 1995.

[19] M. J. Shepperd and D. C. Ince. A critique of three metrics.
Journal of Systems and Software, 26:197–210, 1994.

[20] E.-S. Tan and H. G. Dietz. Abstracting plan-like program in-
formation: A demonstration. In Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM 1994),
pages 262–271. IEEE Computer Society Press, Sept. 1994.

[21] A. van Deursen, A. Quilici, and S. Woods. Program plan
recognition for year 2000 tools. Science of Computer Pro-
gramming, 36(2-3):303–324, 2000.

[22] R. C. Waters. Cliche-based program editors. ACM Transac-
tions on Programming Languages and Systems, 16(1):102–
150, Jan. 1994.

[23] M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

[24] M. Wolfe. Beyond induction variables. ACM SIGPLAN No-
tices, 27(7):162–174, July 1992.

[25] S. Woods and A. Quilici. Some experiments toward under-
standing how program plan recognition algorithms scale. In
IEEE International Working Conference on Reverse Engi-
neering (WCRE’96), pages 21–30. IEEE Computer Society
Press, 1996.

10

