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Summary
EPIC will automatically construct Evolutionary Program Improvement Collaborators (called Epi-

Collaborators) that suggest code changes that improve software according to multiple functional and
non-functional objectives. The Epi-Collaborator suggestions will include transplantation of code from
a donor system to a host, grafting of entirely new features ‘grown’ (evolved) by the Epi-Collaborator,
and identification and optimisation of tuneable ‘deep’ parameters (that were previously unexposed and
therefore unexploited).

A key feature of the EPIC approach is that all of these suggestions will be underpinned by automatically-
constructed quantitative evidence that justifies, explains and documents improvements. EPIC aims to
introduce a new way of developing software, as a collaboration between human and machine, exploiting
the complementary strengths of each; the human has domain and contextual insights, while the machine
has the ability to intelligently search large search spaces. The EPIC approach directly tackles the emer-
gent challenges of multiplicity: optimising for multiple competing and conflicting objectives and platforms
with multiple software versions.
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Part B1a: Extended Synopsis of the Scientific Proposal
The Multiplicity Problem: Software Engineers increasingly find themselves balancing competing and con-
flicting operational objectives such as speed, size, response time, bandwidth, and energy consumption. It
is far from obvious how to balance these objectives, while maintaining functional correctness, especially
given the need to support a multiplicity of platforms, environments and requirement sets. This is the
‘multiplicity problem’ [28]. We cannot tackle multiplicity using current human-intensive software devel-
opment techniques, which are becoming expensive and are ultimately unscalable; a significant leap in
automation is essential to address the multiplicity problem.

The Proposed Solution: The key idea is that evolutionary computation can evolve software improvement
collaborators; automated tools that offer specifically-evolved, explained and justified advice on improve-
ments that meet multiple non-functional requirements, while maintaining and extending functionality.

We think of them as ‘collaborators’ in the sense that they collaborate with the human engineer,
maximising the value of their complementary skill set. Humans have insights and domain knowledge
inaccessible to machines. By contrast, the machine has the ability to intelligently search large spaces,
guided by fitness and can provide reliable experimental data to back up its advice at a scale, breadth and
precision unmatchable by humans. To exploit these complementary skills, EPIC will develop theory and
algorithms that will automatically construct, from an existing system, sets of improvements, proposed to
the human, underpinned by quantitative data that justifies and explains each improvement proposed.

Illustrative Examples of the Epi-Collaborators: Suppose the software engineer wants to develop a media
player for a mobile device, and to minimise energy consumption to extend battery life while doing so. Using
EPIC, the engineer consults specifically-evolved Epi-Collaborators that provide a set of recommended
software edits, transplants, and prototype features, backed by evidence from automated experimentation,
conducted by the Epi-Collaborators themselves.

The parameter-exposing Epi-Collaborator might advise “expose local variable bar and supply actual
parameter 42 to bar, in function call foo at line 3425”. The grow-and-graft Epi-Collaborator might
offer an entirely new fragment of code that implements a compression routine for the mobile platform,
using an existing desktop compression implementation as a test oracle. Finally, the transplantation Epi-
Collaborator could help further, by offering a transplantation of a critical coder-decoder (codec) from a
separate donor system into the new mobile device version.
Evidence for Feasibility: It will undoubtedly be a technical challenge to provide automatically-evolved
collaborators that offer such advice. Nevertheless, there is strong evidence that what I propose is feasible:
my team and I have recently demonstrated proof-of-concept solutions that have, indeed, exposed and
optimised deeply-embedded and previously hidden parameters, and optimised values that satisfy multiple
objectives [141], reduced energy consumption (by 25%) [26], grown-and-grafted compression and other
routines [67, 83, 84], and transplanted features into real-world media players [?].

However, although this initial work has attracted a great deal of attention and won many awards
[?, 67, 113], it merely scratches the surface of what is ultimately possible. EPIC will transform these
existing glimpses of automated system improvement into a theory and practice of Epi-Collaboration.
The Importance of Epi-Collaborator Evidence, Justification and Explanation: We need techniques that
justify and explain improvements. Instead of simply proposing to the engineer “supply actual parameter
42” (as might be achieved now), a more sophisticated Epi-Collaborator would offer something more in
the nature of “When the global configuration parameter video-mode is set to hi-res, then 42 is the
value of the local variable bar that yields the observed minima for the equation energy consumed =
foo(pixel-res/bar). This edit passes all test cases, and reduces energy consumption by 5%-8% (95%
confidence interval)”. This goes beyond merely “telling the engineer what to do”. It explains why.

How EPIC Addresses the Multiplicity Problem: Coping with multiplicity involves transplanting and
adapting existing code for multiple platforms, identifying and optimising aspects of the code for each such
platform, and developing new features to exploit the opportunities offered by each platform. Currently, all
of these activities are painfully human-intensive. EPIC proposes a quantum leap in automation, relieving
the human engineer of much of this work, which is tedious yet requires both intelligence and tenacity.
Together, therefore, the human and the Epi-Collaborators will be more efficient and more effective.
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State of the Art
EPIC uses an approach to Software Engineering, known as Search Based Software Engineering (SBSE).
SBSE is the name given to a body of scientific work in which search based optimisation is applied to
software engineering [58, 59, 69]. The aim of SBSE research is to move software engineering problems
from human-based search to machine-based search. The philosophy that underpins all applications of
SBSE (and which also underpins the EPIC project) is to exploit human creativity and machines’ tenacity
and reliability, rather than requiring humans to perform the more tedious, error-prone (and thereby costly)
aspects of the engineering process. SBSE can also provide insights and decision support [3, 69].

Since the term SBSE was first coined in 2001

Figure 1: Growth in SBSE publications

[66], there has been an explosion of activity, cre-
ating a body of work that is sufficiently large to
support several surveys and analyses of the litera-
ture and includes diverse software engineering topics
such as requirements, predictive modelling, design,
and testing. Figure 1 shows the recent growth1 in
publications on SBSE.

The most closely related work is recent devel-
opments in automated repair, which seeks to find
patches that fix bugs [89] and Genetic Improvement,
which generalises repair, seeking to improve existing
programs’ functional and non-functional properties,

using computational search [86, 112, 113, 138]. Genetic improvement is one example of a recent trend in
program improvement, in which existing programs are modified or augmented to improve properties of
interest to developers and users [91, 92, 125, 126]. Whereas previous work on genetic programming has
tended to build novel code from scratch [79, 87], this more recent trend of program improvement starts
from existing systems and seeks to improve them.

Research Aims and Objectives
My overall aim is to provide automated collaborators; software tools that help developers to adapt
and improve existing software systems by recommending changes, backed up by quantitative evidence.
Specifically, EPIC will develop and evaluate algorithms and techniques that automatically construct
Epi-Collaborators for software transplantation, growing-and-grafting and for uncovering tuneable deep
parameters, using evolutionary computation to tailor each to the specific program to be improved. The
project will also develop firm scientific foundations, grounded in software testing, verification and fit-
ness landscape analysis, drawing together results from the construction of specific Epi-Collaborators, to
provide a general approach to the scientific problem of automated program improvement.

Overview of Work Packages
EPIC will pursue its goals of transplantation, grow-and-graft and parameter exposition/tuning through
three complementary work packages. These three specific targeted work packages will be underpinned by
two more foundational work packages that draw their work together and provide cross-cutting scientific
foundations in testing, verification, fitness, landscape analysis and hybrids. The work package structure
(depicted in Figure 5) has been designed to support seamless extension in the number of specific targeted
work packages, thereby supporting incorporation of other Epi-Collaborators.

WP1 (Specific Targeted Work Package): Automated Transplantation Epi-Collaborator: This work pack-
age will develop techniques for automated software transplantation, which can be used to provide an
Epi-Collaborator that oversees the task of automatically transplanting code from one system to another.
Automated transplantation will relieve the engineer of a great deal of the laborious and painstaking work
involved in this frequent reuse-orientated software development task. Automated transplantation is highly
technically challenging, because we need to identify the code to be transplanted and to identify the map-
pings between name spaces in the two different systems, while ensuring that the transplantation carries
over all the desired functionality and avoids any side-effects (regression testing).

1Source: SBSE Repository (http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html); 2014 is
the most recent full year with stable reliable publications data, due to publication time lag. Partial data for 2015 confirms
the trend observed, based on historical data for this point in the publication cycle over the past 5 years.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html
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Despite the challenge posed by automated transplantation, my team and I have published proof-
of-concept results [18] that demonstrate simple automated transplantation, providing evidence for the
feasibility of WP1. These initial results received the distinguished paper award at the International Sym-
posium on Software Testing and Analysis (ISSTA 2015), and won the gold medal for human competitive
results at the GECCO 2016 HUMIE awards, demonstrating transplantation’s enormous potential.

Many possibilities for automated transplantation are opened up by these initial results, and I want
the EPIC project to take it much further: I want advanced transplantation, able to transplant ‘near-miss’
features (those not implemented in the donor in exactly the required way, but sufficiently close to be
useful). I plan to use recent advances in genetic improvement developed by my group [86] to automate
such near-miss transplantation. Finally, I want a new kind of transplant-based reuse, by abstracting from
multiple transplants to reusable well-documented library functions, using testing as a form of ‘disciplined
systematic documentation’ to explain, justify and document the new library functions.

WP2 (Specific Targeted Work Package): Grow-and-Graft Feature Extension Epi-Collaborator: The vision
of automated transplantation set out in WP1 will work when the software engineer has available existing
systems, with associated legal and technical permissions in place for transplantation. But what happens
when this is not the case; how can Epi-Collaboration help when transplantation is not possible?

To address this, WP2 will develop techniques to automatically grow entirely new functionality and
graft it into existing systems. My work with Bill Langdon and Yue Jia has demonstrated the feasibility
of this approach [83]. We automatically grew a bilingual translation system on top of Google translate,
and grafted it into Pidgin, a 200,000-line instant messaging system with several million users worldwide,
winning the 2014 Symposium on Search Based Software Engineering challenge [67].

Although this proof of concept was exciting and generated a great deal of interest, we are as yet, some
way from a complete scientific theory of grow-and-graft software engineering. Our initial work simply
used genetic programming to grow a feature which, in isolation, is apparently simply a toy program, but
when transplanted into the real-world system becomes a useful additional feature. WP2 will go far beyond
this, by exploiting model-based software decompositions (produced by the human) to automatically grow
multiple low-level features, and subsequently composing and grafting them into the system, guided by the
model. WP2 will also develop hybrids of genetic programming and other techniques such as constraint
solving, transformation and analysis (drawn from WP4).

WP3 (Specific Targeted Work Package): Automated Deep Parameter Epi-Collaborator: This work pack-
age will develop techniques to expose tuneable parameters deeply buried in software systems and pre-
viously unknown to the developer of the software. It will then search for values to tune the exposed
parameters to optimise system performance. Such parameters need not necessarily simply be scalar val-
ues, but could be arbitrary data structures. All that the Epi-Collaborator will require is that the space
of possible parameter instantiations is sufficiently well-defined, that it can search for optimal (or near
optimal) instantiations of the parameter.

When a software developer creates the initial version of the system, the possible platforms on which
it will ultimately be deployed (after many releases) simply cannot be predicted. Therefore, even the most
gifted engineer cannot identify and expose all parameters that may ultimately prove to be relevant and
important to optimise performance on all possible platforms on which the software will be deployed. How-
ever, given a particular platform, an Epi-Collaborator can search for additional parameters, for which it
can find sufficient evidence of performance improvement, and recommend exposing these parameters. The
Epi-Collaborator can then suggest suitable instantiations of parameter choices to maximise performance.

My team and I demonstrated that this parameter exposition approach can automatically identify
and expose hidden parameters in widely-used real-world C systems, and can subsequently tune them
to optimise both dynamic memory consumption and execution time [141]. WP3 will focus on multiple
objectives (one per non-functional property), targeting the multi-objective program improvement vision
set out in my keynote paper at the ACM/IEEE Automated Software Engineering conference [68]. However,
it will go further by automating experiments that generalise observed improvements to better explain and
document the suggestions offered by the Epi-Collaborator.
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WP4 (Foundational Work Package): Testing, Verification, Fitness Functions and Landscapes: Previous
work on genetic improvement has focused on software testing as the primary driver of correctness. Clearly,
it will be important to ensure rigorous testing, in situations where we rely on regression testing, for
example, to ensure the improved program does not break some existing functionality. However, the
project will also use recent results in verification to go beyond what can be achieved merely by software
testing alone and to explain and justify Epi-Collaborator suggestions.

Any approach to software engineering

Figure 2: Work packages overview

based on evolutionary computation also
relies upon effective fitness functions and
candidate solution representations, built
on a deep theoretical understanding of the
different search landscapes involved.

The EPIC project will provide a sound
theoretical foundation on which other re-
searchers, both within EPIC and outside
the project, can build. Specifically, WP4
will address four objectives: 1). How can
we make use of existing automated test
data generation techniques [7] to improve
confidence in the verification and valida-
tion of genetically improved program vari-
ants? 2). How can we deploy recent ad-
vances in software verification techniques
[40], to give assurances that practically
improved program variants are free from

certain classes of fault? 3). What is the best fitness function and representation to guide the search
towards functionally correct solutions? Closely related to this question, is the concern to find the best
representation. 4). What properties characterise the search landscape for different applications; are there
commonalities between different specific application domains and how do these affect the choice of genetic
operators? These questions will apply across all three specific targeted investigations, each of which will
have its own domain-specific fitness functions and representations. From these domain specific choices, we
aim to draw out common scientific principles and findings and engineering recommendations. The need
to provide high quality guidance for the search process remains an open problem, with existing results
highlighting the need for better techniques for guidance [89, 115].
WP5 (Foundational Work Package): Analysis, Transformation, Constraint Solving and Machine Learn-
ing: While there is strong evidence that evolutionary computation can provide one approach to implement
the intelligence required in an Epi-Collaborator, I do not want the project to become dogmatic, merely
obsessed with evolutionary computation alone. I believe that other techniques, such as program transfor-
mation, constraint solving and program analysis will offer attractive complementary solution approaches
that can be combined with evolutionary computation to improve effectiveness and efficiency. These
techniques also provide a way to trade the degree of search-space exploration possible against stronger
correctness guarantees.

Specifically, WP5 will address four objectives: 1). How can we use analysis, transformation, machine
learning and constraint solving to justify, explain and document Epi-Collaborator suggestions? 2). How
can we search over semantics-preserving program transformation [20, 35, 43, 61, 134], to produce improve-
ments that are guaranteed to be correct-by-construction; where genetic programming has found attractive
solutions, can these be reconstructed by semantics-preserving transformation, thereby ensuring correct-
ness? 3). How can we best exploit and automatically learn from the existing knowledge and insights that
derive from program analysis techniques such as program slicing [22, 38, 53], to better guide the search
for program improvements and transplantations and to constrain the search space? 4). How can we best
incorporate constraint solving techniques [72, 80] to search over the space of program improvements that
are correct-by-construction and yet also meet additional human-defined constraints?
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Answers to Some Anticipated Questions
This section anticipates and answers some of the questions for which referees would naturally want answers.

Won’t the code generated become unmaintainable? The Epi-Collaborators’ quantitative evidence, not
only justifies and explains improvements to the engineer, but will also provide excellent systematic,
consistent and complete documentation. There is evidence that such documentation can outperform
human-written documentation, because it is reliable and accurate [49]. In this way Epi-Collaborators
provide code improvement suggestions and detailed, accurate and relevant documentation, relieving the
human of much of the (often overlooked) documentation obligations that accompany their change commits.

How does this differ from previous software engineering assistants? Existing program assistants automate
‘leg work’, but leave all the intelligence entirely to the human, whereas EPIC will leave the decision-making
to the human, but will automate the tedious intellectual activities required for computational search.

Can evolutionary computation guarantee the correctness of program improvements suggested? Yes. WP
4 will exploit program verification, while WP5 will develop hybrids with constraint solving, program
analysis and transformation that will imbue Epi-Collaborators with the ability to constrain the search to
suggestions that are guaranteed to be meaning-preserving (by construction).

Is the EPIC project simply automating that which engineers already do manually? Yes. Software engi-
neers routinely seek to transplant existing code, develop new features and to expose and optimise tuneable
parameters. EPIC will automate this activity. However, whereas humans cannot fully understand (and
thereby optimise) multiple competing objectives, computational search techniques, by contrast, are readily
able to ‘intelligently’ search large multi-objective spaces, while respecting complex constraints.

Will the Epi-Collaborators impact security and privacy? Yes. The Epi-Collaborators will help strengthen
security by suggesting patches that fix vulnerabilities. Furthermore, the EPIC project will use existing
work on measuring information flow and leakage [32] and information theoretic testing [9, 144] as one of
the fitness functions to guide the search for improvements that reduce such leakage, thereby improving
security and privacy. In this way, Epi-Collaborators provide security and privacy hardening improvements.

Why these three Epi-Collaborators? What about other Epi-Collaborators? I have chosen to focus on the
three specific Epi-Collaborators of transplantation, grow-and-graft and parameter exposition, because I
believe these approaches all show great promise, and are mutually supporting and symbiotic. However,
I will also explore other Epi-Collaborators through aligned projects funded by other means, such as self-
funding PhD studentships, national funding, and collaborations with visitors to my research group. In
my lab, we typically have between two and four visitors at any one time, and several self-funded PhD
studentships per year, so this will provide a valuable resource to augment the project. I have carefully
designed the project structure to support easy incorporation of such additional Epi-Collaborators.

What about the intellectual property rights of the transplanted code? Only the human engineer can know
whether he or she has the rights and permissions to perform a transplantation. Nevertheless, the Epi-
Collaborator will help considerably by systematically documenting traceability, making the provenance of
transplants much easier to understand than with human transplantation. This is another example of the
EPIC philosophy of complementary skills; human decides, Epi-Collaborator implements and documents.

What about requirements and models? Requirements engineering and model-driven software engineering
will both be important for EPIC. For instance, the project will draw on the latest results in elicitation
and understanding of non-functional requirements, while models will be used to help understand system
decomposition, guiding the Epi-Collaborators towards manageable sub-components of the model.

Isn’t the UK leaving the EU: what happens about Brexit? This proposal stands on the basis of the
scientific excellence evidenced above. The team I lead at UCL is deeply embedded in a network of leading
European scientific institutions. This collaboration has always been and will remain critical to success
and it will be sustained. The U.K. Government is committed to ensuring the engagement of UK scientists
in European projects on an ongoing basis.
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Figure 3: The Global Spread and Geographic Intensity of SBSE Authorship

Part B2a: State of the Art and Objectives

State of the Art
The EPIC project lies primarily within the field of Search Based Software Engineering (SBSE) [48,
66, 69], particularly recent developments in Genetic Improvement and related techniques that seek to
automatically improve existing software systems [86, 91, 92, 112, 125, 126, 138]. This section summarises
the state-of-the-art in SBSE and Genetic Improvement.
SBSE uses computational search techniques, and in particular evolutionary computation [59], to tackle
demanding optimisation problems in software engineering, characterised by multiple conflicting and com-
peting objectives. There has been an explosion of activity, as illustrated by the global spread of SBSE
research, depicted2 in Figure 3. This explosion in SBSE work has created a body of research that is
now sufficiently large that it has many surveys and analyses. These surveys cover specific subareas of
SBSE research targeting a wide range of software engineering activities, domains and problems, including
software project management and estimation [3, 44], requirements [45], design [62, 117], non-functional
properties [4] and testing [5, 65, 99, 142].

SBSE has also found its way into industrial practice. One of the earliest industrial examples of
the application of SBSE was the Daimler evolutionary testing system [137]. More recently, Microsoft
used SBSE to handle floating point computation in its Pex software testing tool [27, 82], while Google
incorporated SBSE regression test optimisation into its test process [145]. NASA [36], Motorola [14] and
Ericsson [146] have also experimented with SBSE for requirements analysis and optimisation.

There are many SBSE tools that build on the scientific foundations of SBSE and that support SBSE
applications right across the range of software engineering activities, from release planning [105], through
design [102] to testing [6, 47, 76, 81, 131] re-modularisation and refactoring [102, 103] and repair [90].
Tools such as EvoSuite [47] and AUSTIN [81] for testing, GenProg [90] for repair and Bunch [102]
for re-modularisation are well-known and widely used. However, none of these tools offers the kind of
collaborative assistance envisaged by the EPIC project. The closest related work to the EPIC project lies
in the area of Genetic Improvement.

2Source: SBSE repository: crestweb.cs.ucl.ac.uk/resources/sbse repository/
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Genetic Improvement is a recently emerging trend within SBSE that has had notable recent success.
Genetic Improvement uses computational search to improve existing software systems’ functional and
non-functional properties. Recent results have demonstrated that genetic improvement can repair broken
functionality [12, 89], dramatically scale-up benchmarks [112, 138], and also real-world systems, such as
a DNA sequence analysis tool of 50,000 line of C++ [86], graphic shaders [126] and 2D Stereo and 3D
medical imaging systems [84]. The related loop perforation approach has also been demonstrated to speed
up several systems [125], while other program improvement-based approaches have reduced energy [26,
91, 92, 124] and dynamic memory [141] consumption. However, none of these previous approaches provide
evidence to justify and explain the improvements, nor do any offer correct-by-construction improvements
as proposed for the EPIC project and few cater for multiple objectives [139, 141].

The Multiplicity Problem
Software engineering has always been an exceptionally demanding activity, stretching human intellect and
ability to its very limits. Unfortunately, the demands of the emerging ‘multiplicity paradigm’ [29], require
the ability to optimise multiple competing objectives: there are multiple different platforms, each with
its own characteristics and peculiarities, and for each of these different platforms there may be multiple
different user communities, each with their own set of requirements and needs.

Yet more challenging are the multiple sets of operational (aka non-functional) requirements that need
to be met in emerging software engineering paradigms, such as mobile computing and Internet of Things.
Software systems have always had to cater for speed and space objectives, to which compiler technology
has become accustomed and well-adapted to tackle. However, in the newer multiplicity paradigm, software
engineers need to simultaneously optimise for many more competing and conflicting objectives, including
energy consumption, dynamic memory consumption and communication latency. Not only are these
objectives in conflict but, equally importantly, the impact of changes made by the software engineer on
each of these objectives is poorly understood. Further incremental improvements in compiler technology
are insufficient to handle this multiplicity problem.

Faced with these problems of multiple platforms, multiple objectives and multiple sets of requirements,
software engineers have developed a number of coping technologies, such as model-driven approaches to
software engineering [34, 46, 114] (for which SBSE is also beneficial [62]). Models abstract away from
details, allowing multiple instantiations. This is important in managing problems of scale, but it does
not directly tackle the problem of selecting from the enormous space of possible instantiations, many of
which will turn out to be highly suboptimal, while only a few (per platform of interest) will prove to be
well-optimised for the multiple objectives required.

Traditionally, few software engineers would even consider an approach that attempts to search this
space; because of the limits of human intellectual ability, no human-based methodology would be feasible.
This is why the EPIC approach is a radical departure from tradition: it will develop techniques that
automatically search this enormous space, thereby helping the human to navigate the space of possi-
ble software system instances, using Epi-Collaborators that augment human engineering abilities with
systematically documented, explained and justified improvement suggestions.

Current software development practices risk retreating into an ever more conservative one-size-fits-all
approach. Without an approach like EPIC, we will continue to generate increasingly less optimal software
systems, ill-adapted to their platforms, as the search space inevitably and inexorably grows. More labour-
intensive software development is not only costly and time-consuming, but also wastes natural resources,
such as energy. Indeed, an increasing proportion of global energy consumption derives from computation
[127, 136]. If we cannot find a step change in our software development techniques, we will increasingly
squander precious resources, as software systems become ever less optimal in the face of rising multiplicity.

The EPIC Philosophy
The thesis that underlies my approach to the EPIC project is that humans and machines have comple-
mentary skills and that, as a result, we need software development methods that not only respect this
complementarity, but actively exploit it to radically augment existing human skills with ‘intelligent’ com-
putational search. EPIC represents a fundamental shift in the demarcation between human and machine,
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significantly augmenting human cognitive ability by dramatically extending software engineers’ ability to
navigate complex multi-objective system improvement spaces.

Faced with the enormous problems of multiplicity, I believe it is only natural to deploy computational
search techniques, such as evolutionary computation, to navigate this space. My team and I at UCL have
recently demonstrated that SBSE techniques are capable of finding useful code fragments in this enormous
‘multiplicity space’ that optimise for speed, energy consumption, and dynamic memory [26, 141]. We have
also demonstrated that computational search can be used to reconstruct core functionality, and to grow-
and-graft it from one system to another [67, 85]. Finally, using a combination of program analysis and
genetic programming [18], we have been able to identify, extract and transplant functionality from one
(donor) system to an entirely unrelated (host) system.

These initial proof of concept results demonstrate SBSE’s potential to contribute to the software devel-
opment process in ways that were previously the preserve of humans. However, I believe we have merely
scratched the surface of what is possible. Our initial results are important, because they demonstrate
feasibility of the approach set out in this proposal, but EPIC will fully realise this vision.

Empirical Results that Support the EPIC Philosophy
Notwithstanding our initial proof-of-concept results, there remains a high degree of challenge in the
project. Fortunately, there are also recent empirical results that support the central thesis of EPIC, which
indicate that Epi-Collaborators will find useful improvements. For instance, we know from the findings of
Gabel and Su [50] that a surprisingly large amount of code has to be written before the software engineer
will have produced something that does not already exist elsewhere in the software repository. All code
fragments of fewer than seven lines of code can be found somewhere else in SourceForge [50], so we know
that any improvement that involves fewer than seven lines of code could potentially be found by an Epi-
Collaborator. More recently, my own group presented an extensive empirical study of real-world code
commits that indicated that approximately 43% of code committed to repositories by software engineers
can be constructed by simple grafts of existing code in the software repository [17] (see Figure 4), an
observation that has further stimulated interest in Genetic Improvement and related research.

These findings underscore the feasibility of searching for existing fragments of code that can be partly
rewritten and recomposed to improve software systems. However, in the EPIC proposal, EPIC will go
beyond merely recombining fragments of code. I plan to use genetic programming, guided and constrained
by automated software testing, verification, constraint solving, analysis and transformation to evolve
improved programs, drawing upon existing fragments, but not relying solely on their re-combination.

Research Aims and Objectives
The overall aim of the project is to provide automated collaborators; software tools that help developers
to adapt and improve existing software systems, by recommending changes, backed up by quantitative
evidence, automatically generated by the collaborator.

Specifically, EPIC will develop and evaluate algorithms and techniques that automatically construct
Epi-Collaborators that can transplant features from an existing system, grow entirely new features and
graft them into a system, and that can expose and tune previously hidden parameters, all with respect
to multiple objectives and providing evidence and justifications for the improvements suggested. These
Epi-Collaborators are not only complementary to the engineers’ skills, but they are also mutually com-
plimentary to one another; an engineer can combine Epi-Collaborator results, for example exposing and
tuning parameters in transplanted code.

The EPIC project will also develop firm scientific foundations, grounded in software testing, ver-
ification and fitness landscape analysis, drawing together results from the construction of specific Epi-
Collaborators, to provide a general approach to the scientific problem of automated program improvement.

Scientific Challenges
Epi-Collaborators will need to demonstrate a level of intelligence significantly beyond the one provided by
current software engineering automated support. This poses many scientific challenges, but fortunately
the time is ripe for the EPIC approach, because the techniques on which it will draw (testing, verification,
constraint satisfaction, machine learning, program analysis and transformation) have all recently matured
to the point at which each can be brought to bear to dramatically extend the power of computational
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Figure 4: The Surprising Graftability of Human-Generated Software Commits [17]. We investigated the
degree to which commits, made by engineers, to the software repositories of 12 different software systems
could have been composed using fragments of existing code already in the system updated by the commit.
The left hand side of the figure depicts the experimental procedure we followed. We consider the existing
code base of the system, as the source of potential grafts; a set of snippets S1 . . . Sn. We then measure
the percentage of the commit made by the human engineer (the commit host) that could have been
formed using only these snippets. On the right hand side, we present a histogram of the results, in which
the horizontal axis denotes graftability (the percentage of a commit that can be composed entirely from
existing snippets, in buckets of 10%). The vertical axis of the histogram reports the number of commits
found to contain x% of snippets, where x is the location of the histogram bar on the horizontal axis.
In total, we considered 15,723 different commits, finding a surprisingly high level of graftability (43%),
providing compelling feasibility evidence for a search based approach to program improvement.

search. In this section, I briefly outline four such challenges, while the next section explains the ways I
propose to draw on these techniques to support computational search.

Automated experimentation: How to automate experimentation to move from specific code interven-
tions to general characterisations of the intervention space, thereby providing more valuable feedback
and robust interventions. Epi-Collaborators need to be able to generalise and abstract from specific
observations, for example, parameter values that improve performance.

Near-miss transplantation: How to fully automate transplantation of near-miss donor code that does
not quite meet the required functionality of the host. This will radically increase the pool of potential
transplants from which Epi-Collaborators can extract donor code, and will also extend the types of features
that can be transplanted, since we can pick features that are almost-but-not-quite fit for a given purpose,
and improve them to make them fit-for-purpose.

Correctness verification: How to target verification, constraint solving, analysis and transformation
techniques to provide incontrovertible evidence of the efficacy of transplants and code improvements.

Scalability: How to find efficient computational search techniques based, for example, on theoretical
and experimental understanding of search landscape characteristics, so that Epi-Collaboration can scale
to real-world software engineering problems.

All of these challenges will be tackled by the project, as explained in the next section on the method-
ology to be adopted by the EPIC project.
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Part B2b: Methodology
The project structure is illustrated in Figure 5. The project consists of five work packages. The overall
project structure has two ‘horizontal’ (cross cutting) foundational work packages that will be undertaken
by post doctoral researchers, and three vertical work packages that target specific Epi-Collaborators (and
which will be tackled by PhD students).

Work packages WP1, WP2 and WP3 are specific targeted work packages, each of which will implement
a particular approach to Epi-Collaboration. They were described in the synopsis in Part B1, together with
an overview of work packages WP4 and WP5. This section includes the descriptions of work packages
WP1, WP2 and WP3 from Part B1 of this proposal for ease of reference. It then gives a more in-
depth account of the technical and scientific foundations of the project, that will be tackled by the
foundational work packages WP4 and WP5, and the cross-cutting software engineering aspects that will
apply throughout the project.

WP1 (Specific Targeted Work Package): Automated Transplantation Epi-Collaborator: This work pack-
age will develop techniques for automated software transplantation, which can be used to provide an
Epi-Collaborator that oversees the task of automatically transplanting code from one system to another.
Automated transplantation will relieve the engineer of a great deal of the laborious and painstaking work
involved in this frequent reuse-orientated software development task. Automated transplantation is highly
technically challenging, because we need to identify the code to be transplanted and to identify the map-
pings between name spaces in the two different systems, while ensuring that the transplantation carries
over all the desired functionality and avoids any side-effects (regression testing).

Despite the challenge posed by automated transplantation, my team and I have published proof-
of-concept results [18] that demonstrate simple automated transplantation, providing evidence for the
feasibility of WP1. These initial results received the distinguished paper award at the International Sym-
posium on Software Testing and Analysis (ISSTA 2015), and won the gold medal for human competitive
results at the GECCO 2016 HUMIE awards, demonstrating transplantation’s enormous potential.

Many possibilities for automated transplantation are opened up by these initial results, and I want
the EPIC project to take it much further: I want advanced transplantation, able to transplant ‘near-miss’
features (those not implemented in the donor in exactly the required way, but sufficiently close to be
useful). I plan to use recent advances in genetic improvement developed by my group [86] to automate
such near-miss transplantation. Finally, I want a new kind of transplant-based reuse, by abstracting from
multiple transplants to reusable well-documented library functions, using testing as a form of ‘disciplined
systematic documentation’ to explain, justify and document the new library functions.

WP2 (Specific Targeted Work Package): Grow-and-Graft Feature Extension Epi-Collaborator: The vision
of automated transplantation set out in WP1 will work when the software engineer has available existing
systems, with associated legal and technical permissions in place for transplantation. But what happens
when this is not the case; how can Epi-Collaboration help when transplantation is not possible?

To address this, WP2 will develop techniques to automatically grow entirely new functionality and
graft it into existing systems. My work with Bill Langdon and Yue Jia has demonstrated the feasibility
of this approach [83]. We automatically grew a bilingual translation system on top of Google translate,
and grafted it into Pidgin, a 200,000-line instant messaging system with several million users worldwide,
winning the 2014 Symposium on Search Based Software Engineering challenge [67].

Although this proof of concept was exciting and generated a great deal of interest, we are as yet, some
way from a complete scientific theory of grow-and-graft software engineering. Our initial work simply
used genetic programming to grow a feature which, in isolation, is apparently simply a toy program, but
when transplanted into the real-world system becomes a useful additional feature. WP2 will go far beyond
this, by exploiting model-based software decompositions (produced by the human) to automatically grow
multiple low-level features, and subsequently composing and grafting them into the system, guided by the
model. WP2 will also develop hybrids of genetic programming and other techniques such as constraint
solving, transformation and analysis (drawn from WP4).

WP3 (Specific Targeted Work Package): Automated Deep Parameter Epi-Collaborator: This work pack-
age will develop techniques to expose tuneable parameters deeply buried in software systems and pre-
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viously unknown to the developer of the software. It will then search for values to tune the exposed
parameters to optimise system performance. Such parameters need not necessarily simply be scalar val-
ues, but could be arbitrary data structures. All that the Epi-Collaborator will require is that the space
of possible parameter instantiations is sufficiently well-defined, that it can search for optimal (or near
optimal) instantiations of the parameter.

When a software developer creates the initial version of the system, the possible platforms on which
it will ultimately be deployed (after many releases) simply cannot be predicted. Therefore, even the most
gifted engineer cannot identify and expose all parameters that may ultimately prove to be relevant and
important to optimise performance on all possible platforms on which the software will be deployed. How-
ever, given a particular platform, an Epi-Collaborator can search for additional parameters, for which it
can find sufficient evidence of performance improvement, and recommend exposing these parameters. The
Epi-Collaborator can then suggest suitable instantiations of parameter choices to maximise performance.

My team and I demonstrated that this parameter exposition approach can automatically identify
and expose hidden parameters in widely-used real-world C systems, and can subsequently tune them
to optimise both dynamic memory consumption and execution time [141]. WP3 will focus on multiple
objectives (one per non-functional property), targeting the multi-objective program improvement vision
set out in my keynote paper at the ACM/IEEE Automated Software Engineering conference [68]. However,
it will go further by automating experiments that generalise observed improvements to better explain and
document the suggestions offered by the Epi-Collaborator.

WP4 (Foundational Work Package): Test-

Figure 5: Work packages overview

ing, Verification, Fitness Functions and
Landscapes
WP4 will develop algorithms and methods
for automated software testing and verifi-
cation of genetically improved programs.
Here I explain the ways in which we will
advance testing techniques, and use veri-
fication, fitness and landscape analysis to
develop the theory and practice of genetic
improvement.

WP4 will be applied across all of the
different Epi-Collaboration improvement
techniques developed in the ‘vertical’ work
packages (WP1, WP2 and WP3), each of
which concerns a specific Epi-Collaborator.
WP4.1, Testing: Testing will naturally be
a core approach that EPIC will use to
guide the Epi-Collaborators towards so-

lutions that remain faithful to the functionality of the original program they seek to improve. Testing
will also be core to the EPIC project because it denotes one route towards providing the evidence Epi-
Collaborators will use to justify and explain their suggestions. In WP4.1, EPIC will advance the field of
automated testing, while in WP4.2 it will exploit recent advances in verification.
Leveraging Automated Testing: The quality of test cases will clearly have a critical impact on the quality
of genetically improved code. This is partly because testing will be used to guide the fitness function,
but also because verification techniques may be inapplicable in some cases (for example, due to limited
scaleability of the underlying verification technology). Fortunately, there have recently been great strides
in automated testing [7]. Search based software testing [65, 99], dynamic symbolic execution [27], and
their hybrids [13, 74] can generate test inputs that achieve good coverage of code components.

There are several high-quality tools for automated test data generation available [47, 81, 130]. While
there remain open problems and issues with automated testing, existing techniques provide a reasonable
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scientific and engineering basis on which to build, both better automated genetic improvement, and also
better automated test data generation.

Developing Novel Automated Test Generation: Existing automated test technology is relatively mature
when it comes to structural coverage, but there is less maturity in the area of testing non-functional
properties [4, 65]. The deployment of automated test technology to the problem of quality assurance
and guidance for genetic improvement raises a number of interesting scientific and engineering problems.
For example, ‘how can we best target test data generation at non-functional properties, such as energy
consumption and throughput?’ [65]. Search based software testing is a natural starting point here,
since any property that can be measured could, in theory, also be formulated as a fitness function to
guide the search for test data. EPIC also poses interesting challenges to traditional test data generation:
because we are trying to improve the system under test, some of the existing test cases may become
inapplicable. To address this problem we shall not only have to generate test cases to cover new code,
but we shall also regenerate test cases to cover new requirements, not anticipated when the original test
suite was constructed. To address this problem, we shall start by considering test case augmentation and
regeneration [122, 143].

Co-evolutionary optimisation: EPIC will exploit co-evolutionary optimisation [1, 11]. In a co-evolutionary
optimisation problem, two or more populations evolve simultaneously, such that the fitness function of
each population is defined by the current members of the other. In the literature on search based software
engineering, both co-operative [119] and competitive [1, 11] co-evolution have previously been studied.
The EPIC project will use competitive co-evolution to generate improved programs and test cases that
are better at revealing faults in these programs. Our goal will be to stimulate a ‘predator-prey arms race’
between the test cases and the improved programs they test. In this competitive co-evolutionary model,
the improved programs play the role of prey, while the test cases play the role of predators. The better
adapted the tests are at revealing faults, the better they play their role as predators. The aim is that
this, in turn, stimulates the improved programs to become better at passing even the most demanding co-
evolved test cases: test cases that have been evolved specifically to be predators, which are well-adapted
to exploit weaknesses in their prey.

WP4.2, Verification: In WP4.2 EPIC will draw on recent advances in software verification, using verifi-
cation techniques to check for correctness, and to provide the evidence to support the correctness claims
of Epi-Collaborators, where correctness is found to hold.
Maintaining Correctness: I will collaborate with Daniel Kroening and his group at the University of
Oxford, and verification researchers at UCL to incorporate and extend recent developments such as
regression verification [54] to provide stronger correctness guarantees for improved programs, fragments
and transplants produced by the Epi-Collaborators.

Our notion of correctness, inspired by regression verification, will be that the improved system should
be ‘as correct as’ the original, thereby augmenting and potentially strengthening the assurances over
traditional genetic improvement, which relies solely on test adequacy alone. My team and I have already
held two full day informal workshops with Daniel Kroening and his group at Oxford. He has kindly agreed
to collaborate with us on this stream of the EPIC project.

I will also, naturally, draw on expertise from our own UCL departmental colleagues working on
verification: Peter O’Hearn (with whom I have already begun collaboration) and the UCL Programming
Principles, Logic and Verification group (http://pplv.cs.ucl.ac.uk). This stream of investigation will allow
us to investigate whether we can provide a verification-based guarantee that the genetically improved
program is, at least, as correct as the program from which it has been improved.

Correct-by-Construction Genetic Improvement: While the deployment of ‘as correct as’ guarantees will
give us a stronger guarantee than pure regression testing alone, we can go further by seeking to produce
genetically improved programs that are correct-by-construction in some situations. We shall explore both
constraint-based genetic improvement and transformation-based genetic improvement.

Correctness as an Objective: A natural question arises: if we are successful in finding techniques that
are correct (by construction), then why would we wish to seek any other kind of genetic improvement?
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There are two answers to this question, one scientific and the other based on engineering practicalities.
1. (Scientific issue): Transformation sequences and constraints may overly constrain the search space, so
that globally optimal (and correct) solutions may not be found, as has been found with other other highly-
constrained search problems [55]; 2. (Engineering issue): There may be situations in which correctness-
by-construction genetic improvement simply does not scale sufficiently to apply to larger systems. In
order to tackle these issues, we shall explore techniques that combine correctness-by-construction genetic
improvement with other forms of genetic improvement. This allows us to consider a search space in
which correctness itself is an objective, rather than a boolean property of the system. With such a
hybrid approach, we hope to produce improved versions of the program that are sufficiently exciting and
interesting to the programmer that he or she will be prepared to discharge any remaining correctness
obligations, left open by the partial use of correctness-by-construction improvement techniques.

WP4.3: Fitness Functions and Landscapes WP4.3 will draw out and develop theoretical and practical
aspects of representation, operator and fitness function design, investigating the impact of these choices
on solution quality and algorithm performance. This work will cut across all of the three specific targeted
work packages and also draw on and feed into other research work on genetic programming and search
based software engineering, both within my lab, CREST, and within the wider community.

We will use theoretical approaches, such as landscape analysis [31, 140] and algorithmic analysis [70]
to more fundamentally understand the structure and properties of the search landscapes imbued by the
software engineering problems we will tackle. This will support a deeper understanding of algorithm per-
formance, offering theoretical bounds on performance and solution quality. This theoretical analysis will
not be performed in isolation, but will be conducted in partnership with the empirical and experimental
analysis, using empirical results to test theoretical assumptions, and experimental analysis to investigate
the practical implications of theoretical bounds.

Linear Genetic Programming: Most existing genetic improvement work uses a variable-length linear
representation of program improvements. However, other Genetic Programming (GP) applications use
syntax tree-based representations [79]. Linear GP [16] approaches continue to prove important and
applicable, while Nordin’s [108] work has been incorporated into the commercial GP tool Discipulus. We
will experiment with different representations, in order to better understand their impact. This issue will
naturally also arise in work package WP4.3, but will cut across all three of the specific targeted work
packages, since each may find that a different representation is suitable for their problem(s).

Cartesian Genetic Programming: Another potentially attractive approach for genetic improvement lies
in the use of Cartesian Genetic Programming [101]. This has proved to be one of the most successful
variants of GP, with more than 220 papers being published. Using Cartesian Genetic Programming, the
tree is replaced by a grid of computing nodes in which both their contents and connectivity is evolved.
Cartesian Genetic Programming has been widely applied [100] and extended [135]. However, it has not
previously been used in genetic improvement, but its examination for this field is long overdue: existing
genetic improvement approaches fail to make anything but the most basic distinctions between phenotype
and genotype. More work is clearly required to understand what possibilities emerge when this link is
stretched further. The previous work on Cartesian Genetic Programming has shown that moving to
a space that facilitates evolution of fit individuals can dramatically improve performance and solution
quality. There is no scientific reason to suppose that similar performance improvements will not also
apply to genetic improvement work.

Grammatical Evolution: Another highly successful approach is Grammatical Evolution [111]. Using
Grammatical Evolution, a linear genome is used to navigate a path through a user-supplied BNF grammar.
At each branch point in the grammar, the next element in the genome deterministically decides which
production rule to apply. When terminals in the grammar are reached they are output and become the
GP individual’s phenotype.

This form of genetic programming may allow us to include constraints on the search space, which
may be naturally formulated in terms of grammatical production rules. In this way, we may be able to
incorporate correctness and other concerns as constraints on the search space.
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Genetic Operators and Fitness: WP4.3 will also consider the interplay between the representation, the
genetic operators and the fitness function. Naturally, for each of the specific targeted projects, there
will be different fitness functions, since these are largely domain specific. WP4.3 will draw out common
scientific and engineering principles, on which other researchers may build. Such generalisation from
specifics will necessarily involve the exploitation and development of recent results concerning the use of
genetic programming operators. For example, the ‘standard’ tree crossover [79] can create offspring that
do not lie ‘between’ the crossover’s chosen parents. Moraglio suggested a geometric interpretation which
he and co-authors have used to devise new types of genetic programming leading to Geometric Semantic
Genetic Programming [104].

WP5 (Foundational Work Package): Analysis, Transformation, Constraint Solving and Machine Learn-
ing: I have spent much of my career demonstrating that evolutionary computing has a lot to offer software
engineers, but I do not believe that it is the only answer to all problems. Indeed, I believe hybridisa-
tion with more traditional programming language techniques, such as analysis and transformation, is
essential to make evolutionary search practical, scalable and applicable to real-world software engineering
systems. I also think other important techniques, associated with the broad area of Artificial Intelli-
gence (AI) are important to complement and augment search based techniques [60]. WP5 will develop
hybridised algorithms that exploit these traditional software engineering and AI techniques, combining
them with evolutionary computing. This will not only be scientifically important for the EPIC project,
but through this hybridisation work, EPIC will additionally play its role in bringing together computer
science communities that would not otherwise often collaborate and communicate with one another.
WP5.1: Automated Experimentation for Evidence EPIC’s Epi-Collaborators will offer suggestions for
improvements to software systems to the engineer, backing these up with evidence from automated ex-
periments, to justify and explain the suggestions made. Ultimately, these will be developed to incorporate
machine learning techniques, guided by engineer-feedback to specifically tailor the Epi-Collaborators to
the engineers they serve. WP5.1 will investigate two kinds of automated experimental evidence provision:-
Experiments to Generalise From Specific Instances: Epi-Collaborators will automate experiments that
generalise specific improvements they find, characterising general improvement properties, aiming to
better document, explain and justify the Epi-Collaborator’s suggestions. For example, suppose the
Epi-Collaborator finds that WidgetSize, has a value 17 that optimises the execution time. The Epi-
Collaborator will automatically run experiments to find the underlying relationship, using genetic pro-
gramming to evolve an equation that captures the relationship between WidgetSize and execution time.

We will use parsimony as part of the overall fitness function, in order to aid readability of the evolved
equation, and only pass the result to the engineer if it satisfies readability constraints. In this way, an
Epi-Collaborator might recommend a value 17, but it would also give the engineer an equation that
explains the relationship, thereby better explaining why 17 is the optimal choice recommended.

We will develop other automated experiments to generalise by generating assertions from test cases
[42]. For example, starting from the Epi-Collaborator’s observation that WidgetSize=17 at line 21,890
is found to give best execution time, the Epi-Collaborator will use search based software testing [65] to
generate a test suite that traverses this portion of the code, using test cases to guide assertion inference.

Once again, we will use readability constraints to avoid bombarding the engineer with assertions.
The result of such experiments will be reported in the form: “When WidgetType = NormalDisplay and
Device = iphone, then 15 ≤ WidgetSize ≤ 17 will give the best observed execution time”.

Clearly, much can and needs to be done in order to make this feedback as readable as possible.
Initially, we will simply prioritise the assertions and equations auto-generated through experimentation,
according to ‘obvious’ metrics (length, number of free variables and sub-terms etc.). However, we can
then use engineer feedback to tune the prioritisation, thereby inferring new (and inherently well-tailored
engineer-specific) readability metrics to better guide future prioritisation.

Ultimately, I aim to experiment with reinforcement-based machine learning to specifically tailor the
experimental evidence to the engineers to whom it is offered. For this goal, EPIC will benefit from the
excellent machine learning group at UCL, with its expertise in Support Vector Machines, Monte Carlo
Tree Search and Deep Learning.
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Experiments to Enhance Test-Based Justification: One of the advantages of all three Epi-Collaborators
proposed in work packages WP1 – WP3 is that the techniques will automatically be aware of the specific
locations to be affected by transplantation, grafting and parameter tuning. This knowledge will facilitate
specific targeted testing, to generate a test suite that exercises and repeatedly covers the areas of code af-
fected by the Epi-Collaborators’ suggestions, and those revealed by dependence analysis to be transitively
affected.

Traditionally, automated test data generation is profoundly inhibited by the so-called ‘oracle problem’
[19, 128]. That is, although we may automate the generation of test inputs, how can we tell what the
desired output should be? Due to this oracle problem, traditional test data generation is only able to
generate test inputs, but cannot generate the corresponding expected output, with the result that testing
is only partially automated; humans still have to provide oracle information. Fortunately, EPIC does not
follow the traditional test data generation scenario, because it benefits from much deeper knowledge of
the changes made to the system under test. Therefore, the oracle problem will be significantly reduced
for Epi-Collaborators. For example, a critical justification Epi-Collaborators will need to provide to the
engineer will be compelling regression testing [41, 120, 142]. In this situation, not only do we know exactly
which parts of the code have been suggested for change by the Epi-Collaborator, but we will have the
original program to act as a regression test oracle, thereby facilitating complete automation.
WP5.2: Searching Over Semantics-Preserving Transformations: EPIC will use automated search based
transformations, which are meaning-preserving by design, in order to find sequences of transformations
that improve the non-functional properties of programs. Since each transformation sequence is meaning
preserving, the overall application of the sequence of transformations will also be meaning preserving.
This strand of our work will draw on the long heritage of research in search based software transformation
and re-factoring [25, 109, 121].

WP5.2 will also use transformation, but to provide explanations and justifications of the improvements
suggested. Where a transformation sequence can be found, consisting entirely of meaning preserving trans-
formations, that ultimately transforms the initial program to an improved version, this transformation
sequence will provide an excellent justification and documentation of the change suggested.

It also forms a means of communication between engineer and Epi-Collaborator, because the engineer
can refuse certain transformations as undesirable, where, for example the engineer believes they may
harm ongoing maintenance or because he or she simply does not understand them. Because EPIC’s
fundamental underlying approach is search based, this need not be a problem; the Epi-Collaborator can
search for alternative transformation sequences to ‘fill in the gaps’ left by such engineer refusals. Such
refusal sets also denote a further valuable feedback mechanism, providing a guidance for machine learning
and tailoring of the Epi-Collaborator to each engineer’s tastes and cognitive preferences.
WP5.3: Incorporating Constraint Satisfaction Techniques: EPIC will use constraint solving techniques
to find fragments of code that improve existing programs. The constraints in this case capture the
correctness obligations for the code we graft into the existing program to improve it. This approach is
inspired by recent work on constraint-based automated repair [107]. Essentially, we seek to generalise
constraint-based automated repair to constraint-based automated improvement; repair being a special
case of improvement, in which the bugfix is the improvement.
WP5.4: Exploiting Knowledge and Insights from Program Analysis: EPIC will also use program analysis,
and in particular dependence analysis [15, 23, 37, 73, 118], to document and explain its suggestions. This
will be particularly important in automated transplantation, for which dependence analysis can explain
the provenance of the code transplanted, and the nature of its dependence upon the core functionality that
the software engineer seeks to transplant. Such dependence analysis can also be used to automatically
maintain traceability links, another important software engineering concern, as explained in the next
section on relationships to the requirements and other software engineering communities.
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Developing and Enhancing Relationships to Other Research Areas
In the foundational work packages, I have explained the way in which EPIC will draw on and contribute
to research in constraint solving, program transformation, program analysis, machine learning and verifi-
cation. However, cutting across the three specific targeted work packages there will be strong links with
the software engineering research areas of Model Driven Software Engineering, Requirements Engineering,
Recommender Systems, Computer Supported Cooperative Work, and Testing. Throughout the project
EPIC will also draw on and contribute to research in Evolutionary Computing.

Through workshops, sabbatical visits, and tutorials, facilitated by the project, I plan to develop
and strengthen the links between the software engineering community and the evolutionary computing
communities, and between EPIC and these other areas of software engineering. For these workshops I
will use the highly successful CREST Open Workshop (COWs) Programme3, inviting leaders in these
communities as keynotes and invited speakers. Since 2009, my centre, CREST, has hosted 46 such COWs
at UCL (449 research talks so far), with 1,624 registrations from 252 institutions, spread over 44 countries.
Relationships with Model Driven Software Engineering: Model based software engineering is increasingly
important to cope with both the scale of software systems and the multiplicity problem [46]. Models
of software systems are expressed at a higher level of abstraction than code, thereby helping software
engineers to cope with scale. This will also be useful to the EPIC project; such models (designed by
the human) will help the machine, directing it to smaller components that can be grown and grafted
into systems or transplanted from elsewhere. In this way, models will form a convenient division of
responsibilities between human and machine.

Model-based testing will also offer another route to the generation of the test cases that guide and con-
strain Epi-Collaborators [21, 51, 129], while model-based slicing [8, 10] will be used to extract sub-models,
targeting Epi-Collabroators at particularly important aspects. We recently demonstrated techniques for
inferring test models [132], winning the 2016 SBSE challenge [147], and will leverage these techniques to
augment the testing used to explain and justify suggestions from Epi-Collaborators.

Models have also been used to cope with multiplicity, by capturing variability, and such models
would also be very useful to the EPIC project, allowing its automated techniques to focus on the smaller
components of Software Product Line architectures, to automatically extend them for specific instances,
and to merge branches to tackle branchmania [24]. I outlined this vision of ‘Search Based Software
Engineering for Software Product Lines’ in my keynote at the Software Product Line Conference in 2014
[62]. EPIC will build on and develop this interplay between Model Driven Engineering and Search Based
Software Engineering, supporting and nurturing workshops and collaborations at the intersection.
Relationships with Requirements Engineering: For any large-scale software engineering activity to be
successful, careful attention to the elicitation and management of requirements will be essential [30,
133]. Requirements Engineering is thus rightly a field of great importance for the software engineering
community, and one to which SBSE techniques have proved effective [45, 57, 71, 78].

In order to be successful, it is essential to maintain traceability links between requirements, models,
code and the test cases [33, 56]. This is a demanding problem for engineers, requiring attention to detail
and careful updating and consistency checking. One of the strengths of EPIC is the way in which it will
self-document, helping the engineer to maintain, justify, explain and document the connection between
code improvements, the requirements they satisfy, and the test cases that witness this satisfaction.

I plan for EPIC to make contributions to requirements engineering, focusing on traceability and
optimisation of requirements choices. EPIC will allow engineers to more quickly prototype new features.
This will be important in domains such as mobile computing that undergo rapid release cycles [96, 98] and
feature migration [123]. EPIC will investigate the extent to which Epi-Collaborators support exploratory
requirements elicitation; allowing the developer and requirements engineer to work together to explore and
rapidly prototype potential feature extensions, thereby investigating speculative requirements. However,
I also plan to learn from and incorporate developments from the requirements engineering community,
particularly in the elicitation and understanding of non-functional requirements.

3http://crest.cs.ucl.ac.uk/cow/
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Relationships with Recommender Systems and Computer Supported Collaborative Working: An Epi-
Collaborator can be thought of as a recommender system, thereby drawing in additional expertise from
an area of much recent interest and activity [2]. My team and I have recently used recommender-
based approaches for pricing crowdsourced software engineering tasks and identifying suitable developers
to undertake them, based on their skills [94, 95]. Recommender system research represents another
opportunity for fruitful cross-fertilisation of ideas, methods and techniques, between the EPIC project
and other related research communities.

I plan to extend my work with Licia Capra, another full professor in my group, with whom I have
recently been collaborating on crowdsourcing [93], benefiting from her expertise in Recommender Systems
[88] and Computer Supported Cooperative Work (CSCW) [39, 97, 116]. Through EPIC, I will work with
UCL-based colleagues, and the wider community to draw on recent results in recommender-based systems
and CSCW, investigating novel algorithms, approaches and techniques developed by that community.

As with the relationships to other areas of software engineering, the relationship to recommender
systems will be a two-way partnership, in which the EPIC project will both draw on and contribute
to developments in the field. In particular, EPIC’s approaches to automatically executing systematic
experiments to explain, justify and document recommendations will develop techniques that will cross
over into other domains of application for recommender-based systems.
Relationships with Software Testing: Automated software test data generation will be an important
aspect of the EPIC project throughout all activities, and will have a role to play in many of the tech-
niques we shall develop. We need high quality test cases to ensure faithfulness to the semantics to be
preserved, avoiding regression, and also to investigate the performance of the improvements against the
non-functional properties of interest.

EPIC would also use test suites to document and justify the suggestions made by the Epi-Collaborators,
and will use the existing system to be improved as a source of valuable oracle information. Fortunately,
there have been dramatic advances in automated software test input generation, on which the project will
be able to build [27, 65].

Epi-Collaborators offer new opportunities to develop advanced testing techniques, such as competitive
co-evolutionary testing, which I proposed for work package WP4. The transplants and new features
suggested by collaborators will also be used as the basis for new forms of software test data generation.
Specifically, EPIC will investigate a transplant-based test case generation approach. For a given feature,
F , to be tested in a host system, we will use Epi-Collaborators to identify multiple ‘near-miss’ donor
transplants for F . We will use counterexample-driven test data generation, to generate test cases that
distinguish between these near-miss donor transplants and the original program.

This will introduce a new form of higher order mutation testing [63, 64], in which the near-miss donor
transplant plays the role of a higher order mutant, constructed to be a semantic near-miss to the feature as
implemented by the developer. The research hypothesis we will investigate in this avenue of the project,
is that test cases that can distinguish between such a near-miss feature and the true feature will also
be good at uncovering faults. The key insight is that a near-miss feature captures the kind of ‘subtle
near-miss behaviour’ between a faulty program and the correct version [110].
Relationships with Evolutionary Computation: Evolutionary computation lies at the heart of the EPIC
project. Naturally, I expect to draw on developments and advances in this field. However, I also believe
that the EPIC approach can help to reinvigorate research in evolutionary computing in general, and in
genetic programming in particular. Our recent breakthroughs in genetic improvement [18, 86, 113] have
demonstrated this possibility, achieving human competitive results on real-world software systems using
variations and augmentations of genetic programming.
Relationships with Software Agents: Although Search Based Software Engineering has been applied to
autonomous software agents [77, 106], an Epi-Collaborator is not an autonomous agent, in the sense usually
intended by the Software Agents community [52, 75], because it deliberately leaves all critical decision-
making to the human engineer (thereby lacking full autonomy). Nevertheless, there are obvious intellectual
connections between the EPIC project vision and agent-based ideas, so the project will naturally seek to
learn from developments in Software Agents, incorporating them where appropriate.
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1 Note: written in November 2018

I am often asked about funding proposals and believe in sharing them, where possible, so here is this one
(minus confidential details). Please be aware that it was written in 2016 and ideas change over time.

I’ve had the good fortune to spend some time as a full timer at Facebook since the start of 2017,
working on practical, scalable software engineering. That experience has, naturally, changed some of my
ideas and plans. Nevertheless, I remain completely convinced by the central theme and approach set out
in this proposal. I plan to dedicate myself and my scientific work to it.

If anything, my experience of scale and real world challenges in the tech sector has underscored the
need for this approach to build the next generation of intelligent, empirically experimenting, software
engineering bots. This is a direction of fundamental importance for automated software engineering in
my view.

That is, we need to develop of ways to build bots that talk to us human developers in actionable
ways that export bots’ considerable, but highly peculiar, ‘skill set’, and to build the interfaces that com-
plement human skill sets, so that Software Engineering can benefit from the collection of techniques and
opportunities that combine optimisation, computational search, and Machine learning.

I believe that this will enable us to best draw on the resources of data and compute power with which
such a bot can become a really efficient, effective, dedicated empirical software engineering experimentor.
the result of these experiments will be scientifically-justified suggestions for improving softer systems.
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[117] O. Räihä. A survey on search–based software
design. Computer Science Review, 4(4):203–249,
2010.

[118] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hat-
cliff, and M. B. Dwyer. A new foundation for con-
trol dependence and slicing for modern program
structures. ACM Transactions on Programming
Languages and Systems, 29(5), 2007.

[119] J. Ren, M. Harman, and M. Di Penta. Co-
operative co-evolutionary optimization on soft-
ware project staff assignments and job scheduling.
In 3rd International Symposium on Search based
Software Engineering (SSBSE 2011), pages 127–
141, 10th - 12th September 2011. LNCS Volume
6956.

[120] G. Rothermel, R. Untch, C. Chu, and M. J. Har-
rold. Prioritizing test cases for regression test-
ing. IEEE Transactions on Software Engineering,
27(10):929–948, Oct. 2001.

[121] C. Ryan. Automatic re-engineering of software
using genetic programming. Kluwer Academic
Publishers, 2000.

[122] R. A. Santelices, P. K. Chittimalli, T. Apiwat-
tanapong, A. Orso, and M. J. Harrold. Test-suite
augmentation for evolving software. In 23rd Au-
tomated Software Engineering (ASE ’08), pages
218–227, L’Aquila, Italy, 2008. IEEE.

[123] F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia,
W. Martin, and Y. Zhang. Feature lifecycles
as they spread, migrate, remain, and die in app
stores. In 23rd IEEE International Requirements

Engineering Conference, RE 2015, Ottawa, ON,
Canada, August 24-28, 2015, pages 76–85, 2015.

[124] E. Schulte, J. Dorn, S. Harding, S. Forrest, and
W. Weimer. Post-compiler software optimization
for reducing energy. In Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 639–652, Salt Lake City, UT,
USA, 2014. ACM.

[125] S. Sidiroglou-Douskos, S. Misailovic, H. Hoff-
mann, and M. C. Rinard. Managing performance
vs. accuracy trade-offs with loop perforation. In
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