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Abstract It has often been claimed that SBSE uses so-called ‘embarrassingly parallel’ algorithms
that will imbue SBSE applications with easy routes to dramatic performance improvements. How-
ever, despite recent advances in multicore computation, this claim remains largely theoretical; there
are few reports of performance improvements using multicore SBSE. This paper shows how inexpen-
sive General Purpose computing on Graphical Processing Units (GPGPU) can be used to massively
parallelise suitably adapted SBSE algorithms, thereby making progress towards cheap, easy and useful
SBSE parallelism. The paper presents results for three different algorithms: NSGA2, SPEA2, and the
Two Archive Evolutionary Algorithm, all three of which are adapted for multi-objective regression
test selection and minimization. The results show that all three algorithms achieved performance im-
provements up to 25 times, using widely available standard GPUs. We also found that the speed-up
was observed to be statistically strongly correlated to the size of the problem instance; as the problem
gets harder the performance improvements also get better.

1 Introduction

Search Based Software Engineering (SBSE) is a promising sub-area within Software Engineering that
reformulates Software Engineering problems as search-based optimisation problems [12,22,24]. There
has been much recent interest in SBSE, with over 800 papers on the topic and several recent surveys [2,
3, 26,42].

One weakness shared by many SBSE techniques is their significant execution time. It is an inherent
drawback because many meta-heuristic optimisation algorithms are designed in such a way that
they evaluate a large number of potential candidates to arrive at the set of proposed solutions. This
process is often computationally demanding and can render an SBSE technique infeasible in practice,
because it would simply require too much time to optimise for complex real-world SE problems. Lack
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of scalability has been shown to be an important barrier to wider uptake of Software Engineering
research [9, 13,41].

Fortunately, many of the algorithms used in SBSE, such as the most widely used evolutionary
algorithms [26], are classified as ‘embarrassingly parallel’ due to their inherent potential for parallelism.
The high computational requirement created by the necessity to examine many solutions does not
necessitate long elapsed time as the examinations can be done in parallel. The computation process
(fitness evaluation) for each candidate solution is identical, thereby making the overall process well-
suited to Single Instruction Multiple Data (SIMD) parallelism.

The use of multicore computing is rapidly becoming commonplace, with very widely available
and inexpensive platforms that offer several hundreds of processing elements that implement SIMD
parallelism. Furthermore, it is likely that we shall see significant advances in such platforms in the
near future, with thousands and perhaps tens of thousands of simple processing elements becoming
available within the reach of ‘standard’ desktop computation.

Many SBSE fitness functions are ideally-suited to such simple processing elements. However, there
has been little work on multicore SBSE. The first authors to suggest the use of multicore SBSE
were Mitchell et al. [36] who used a distributed architecture to parallelise modularisation through the
application of search-based clustering. Subsequently, Mahdavi et al. [34] used a cluster of standard
PCs to implement a parallel hill climbing algorithm. More recently, Asadi et al. [4] used a distributed
architecture to parallelise a genetic algorithm for the concept location problem. However, hitherto, no
authors1 have used General Purpose computing on Graphical Processing Units (GPGPU) for SBSE.

In this paper we propose GPGPU SBSE; the use of GPGPU devices to achieve multicore exe-
cution of SBSE, using simple fitness computations mapped across the multiple processing elements
of standard GPGPU architectures. We report results for the application of GPGPU SBSE to the
multi-objective regression test selection problem (also known as test case minimization).

In order to apply GPGPU to Software Engineering optimisation problems, the specialized graphics
manipulation hardware needs to be harnessed for a purpose for which it was not originally designed.
Fortunately, the recent trend towards ‘general purpose’ graphics processing units lends itself well to
this task. The underlying firmware typically implements certain matrix manipulation operations very
efficiently. The key to unlocking the potential of GPGPU therefore lies in the ability to reformulate
the optimisation problem in terms of these specific matrix manipulation operations.

This paper focusses on the problem of Search Based Regression Testing, which is one problem in
the general area of Search Based Software Testing. Regression Testing is concerned with the process
of re–testing software after change. After each change to the system, the pool of available test data
needs to be re-executed in order to check whether change has introduced new faults. Regression Testing
therefore seeks to answer the question ‘has the software regressed?’. There have been several survey
papers on Regression Testing applications and techniques that provide a more detailed treatment [19,
27,55].

In search based regression testing, the goal is to use search based optimisation algorithms to
find optimal sets of test cases (regression test suite minimisation [54]) or to order test cases for
regression testing (regression test prioritisation [33, 49]). This paper concentrates upon the former
problem of regression test minimisation. Recent results have shown that this is a promising area of
SBSE application; the results obtained from the SBSE algorithms have been shown to be human
competitive [47].

Fast regression test minimisation is an important problem for practical software testers, partic-
ularly where large volumes of testing are required on a tight build schedule. For instance, the IBM
middleware product used as one of the systems in the empirical study in this paper is a case in point.

1 This paper is an extended version of our SSBSE 2011 paper [58], which was the first to propose GPGPU SBSE.
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While it takes over four hours to execute the entire test suite for this system, the typical smoke test
scenario performed after each code submit is assigned only an hour or less of testing time, forcing
the tester to select a subset of tests from the available pool. A multi-objective approach to test suite
minimisation [54] provides an ideal solution as it can recommend subsets of tests that can be exe-
cuted within different time budgets. However, as the selection of tests in the smoke tests is not static
and depends on the code submitted, the given time budget should account for both the computation
involved in test suite minimisation and for running the tests. Therefore it is important that test suite
optimization will be done in a small fraction of the time, thereby allowing sophisticated minimisation
to be used on standard machines.

The paper modifies three widely used evolutionary algorithms (SPEA2, NSGA2 and the Two
Archive Algorithm) for the multi-objective regression test minimisation problem. The algorithms are
modified to support implementation on a GPU by transforming the fitness evaluation of the population
of individual solutions into a matrix-multiplication problem, which is inherently parallel and renders
itself very favourably to the GPGPU approach. This transformation to matrix-multiplication is entirely
straightforward and may well be applicable to other SBSE problems, allowing them to benefit from
similar scale-ups to those reported in this paper.

The modified algorithms have been implemented using OpenCL technology, a framework for GPGPU.
The paper reports the results of the application of the parallelised GPGPU algorithms on 13 real-
world programs, including widely studied, but relatively small examples from the Siemens’ suite [29],
through larger more realistic real-world examples from the Software-Infrastructure Repository (SIR)
for testing [14], and on a very large IBM middleware regression testing problem.

The primary contributions of the paper are as follows:

1. The paper presents results for real-world instances of the multi-objective test suite minimisation
problem. The results indicate that dramatic speed–up is achievable. For the systems used in the
empirical study, speed–ups over 25x were observed. The empirical evidence suggests that, for larger
problems where the scale-up is the most needed, the degree of speed–up is the most dramatic; a
problem that takes over an hour using conventional techniques, can be solved in minutes using the
GPGPU approach. This has important practical ramifications because regression testing cycles
are often compressed: overnight build cycles are not uncommon.

2. The paper studies three different multi-objective evolutionary algorithms based on both GPU-
and CPU-based parallelisation methods to provide robust empirical evidence for the scalability
conferred by the use of GPGPU. The GPGPU parallelisation technique maintained the same level
of speed–up across all algorithms studied. The empirical evidence highlights the limitations of
CPU-based parallelisation: with smaller problems, multi threading overheads erode the speed–up,
whereas with larger problems it fails to scale as well as GPU-based parallelisation.

3. The paper explores the factors that influence the degree of speed–up achieved, revealing that both
program size and test suite size are closely correlated to the degree of speed–up achieved. The data
have a good fit to a model for which increases in the degree of scale-up achieved are logarithmic
in both program and test suite size.

The rest of the paper is organised as follows. Section 2 presents background material on test
suite minimisation and GPGPU-based evolutionary computation. Section 3 describes how the test
suite minimisation problem is re-formulated for a parallel algorithm, which is described in detail in
Section 4. Section 5 describes the details of the empirical study, the results of which are analysed in
Section 6. Section 7 discusses threats to validity and Section 8 presents the related work. Section 9
concludes.
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2 Background

Multi-Objective Test Suite Minimisation: The need for test suite minimisation arises when the
regression test suite of an existing software system grows to such an extent that it may no longer be
feasible to execute the entire test suite [44]. In order to reduce the size of the test suite, any redundant

test cases in the test suite need to be identified and removed. One widely accepted criterion for redun-
dancy is defined in relation to the coverage achieved by test cases [5,45]. If the test coverage achieved
by test case t1 is a subset of the test coverage achieved by test case t2, it can be said that the execution
of t1 is redundant as long as t2 is also executed. The aim of test suite minimisation is to obtain the
smallest subset of test cases that are not redundant with respect to a set of test requirements. More
formally, test suite minimisation problem can be defined as follows [55]:

Test Suite Minimisation Problem

Given: A test suite of m tests, T , a set of l test requirements {r1, . . . , rl}, that must be satisfied to
provide the desired ‘adequate’ testing of the program, and subsets of T , Tis, one associated with each
of the ris such that any one of the test cases tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a minimal representative set2, T ′, of test cases from T that satisfies all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rl} is satisfied. A
test-case requirement, ri, is satisfied by any test case, tj , that belongs to Ti, a subset of T . If we
represent test cases as vertices of a bipartite graph on the left side, and the requirements on the right
side, and the satisfiability relationship as edges between two sides, the minimal representative set of
test cases is the hitting set of Tis (i.e. the subset of vertices on the left, the union of whose connected
right side vertices equals the set of all requirements). Furthermore, in order to maximise the effect of
minimisation, T ′ should be the minimal hitting set of Tis. The minimal representative set problem is
an NP-complete problem as is the dual problem of the minimal set cover problem [20].

The NP-hardness of the problem encouraged the use of heuristics and meta-heuristics. The greedy
approach [38] as well as other heuristics for minimal hitting set and set cover problem [10, 28] have
been applied to test suite minimisation but these approaches were not cost-cognisant and only dealt
with a single objective (test coverage). With the single-objective problem formulation, the solution to
the test suite minimisation problem is one subset of test cases that maximises the test coverage with
minimum redundancy.

Later, the problem was reformulated as a multi-objective optimisation problem [54]. With the
multi-objective problem formulation, the solution to the test suite minimisation problem is not just a
single solution but a set of non-dominated, Pareto-efficient solutions. This set of solutions reveals the
trade-off between test coverage and the cost of testing that is specific to the test suite in consideration.
For example, with the solution to the multi-objective test suite minimisation problem, it is possible
not only to know what the minimal subset that achieves the maximum test coverage is, but also to
know how much test coverage is possible for any given testing budget.

Since the greedy algorithm may not always produce Pareto optimal solutions for multi-objective
test suite minimisation problems, Multi-Objective Evolutionary Algorithms (MOEAs) have been ap-
plied [35, 54]. While this paper studies three selected MOEAs, the principle of parallelising fitness
evaluation of multiple solutions in the population of an MOEA applies universally to any MOEA.

2 Given a universe (in our context, all test requirements), a representative set is the set of subsets of universe (in
our context, subsets of test requirements achieved by different tests) that whose union is equal to the universe.
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GPGPU and Evolutionary Algorithms: Graphics cards have become a compelling platform for
intensive computation, with a set of resource-hungry graphic manipulation problems that have driven
the rapid advances in their performance and programmability [39]. As a result, consumer-level graphics
cards boast tremendous memory bandwidth and computational power. For example, ATI Radeon
HD4850 (the graphics card used in the empirical study in the paper), costing about $150 as of
April 2010, provides 1000GFlops processing rate and 63.6GB/s memory bandwidth. Graphics cards
are also becoming faster more quickly compared to CPUs. In general, it has been reported that
the computational capabilities of graphics cards, measured by metrics of graphics performance, have
compounded at the average yearly rate of 1.7x (rendered pixels/s) to 2.3x (rendered vertices/s) [39].
This significantly outperforms the growth in traditional microprocessors; using the SPEC benchmark,
the yearly rate of growth for CPU performance has been measured at 1.4x by a recent survey [17].

The disparity between the two platforms is caused by the different architecture. CPUs are opti-
mised for executing sequential code, whereas GPUs are optimised for executing the same instruction
(the graphics shader) with data parallelism (different objects on the screen). This Single Instruction
Multiple Data (SIMD) architecture facilitates hardware-controlled massive data parallelism, which
results in the higher performance for certain types of problems in which a large dataset has to be
submitted to the same operations.

It is precisely this massive data-parallelism of General-Purpose computing on Graphics Processing
Units (GPGPU) that makes GPGPU as an ideal platform for parallel evolutionary algorithms. Many of
these algorithms require the calculation of fitness (single instruction) for multiple individual solutions
in the population pool (multiple data). Early work has exploited this potential for parallelism with
both single- and multi-objective evolutionary algorithms [48,50,51]. However, most existing evaluation
has been performed on benchmark problems rather than practical applications.

3 Parallel Formulation of MOEA for Test Suite Minimisation

Parallel Fitness Evaluation: The paper considers, for parallelisation, a multi-objective test suite
minimisation problem from existing work [54]. In order to parallelise test suite minimisation, the
fitness evaluation of a generation of individual solutions for the test suite minimisation problem is re-
formulated as a matrix multiplication problem. Instead of computing the two objectives (i.e. coverage
of test requirements and execution cost) for each individual solution, the solutions in the entire
population are represented as a matrix, which in turn is multiplied by another matrix that represents
the trace data of the entire test suite. The result is a matrix that contains information for both test
goal coverage and execution cost. While the paper considers structural coverage as the test goal, the
proposed approach is equally applicable to any other testing criteria, either coverage generated such
as data-flow coverage and functional coverage or even those generated manually, provided that there
is a clear mapping between tests and the test requirements they achieve.

More formally, let matrix A contain the trace data that capture the test requirements achieved by
each test; the number of rows of A equals the number of test requirements to be covered, l, and the
number of columns of A equals the number of test cases in the test suite, m. Entry ai,j of A stores 1
if the test goal fi was executed (i.e. covered) by test case tj , 0 otherwise.

A =


a1,1 . . . a1,m
a2,1 . . . a2,m

. . .

al,1 . . . al,m


The multiplier matrix, B, is a representation of the current population of individual solutions that

are being considered by a given MOEA. Let B be an m-by-n matrix, where n is the size of population
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for the given MOEA. Entry bj,k of B stores 1 if test case tj is selected by the individual pk, 0 otherwise.
In other words, each column in matrix B corresponds to a vector of decision variables that denote the
selected test cases.

B =


b1,1 . . . b1,n
b2,1 . . . b2,n

. . .

bm,1 . . . bm,n


The fitness evaluation of the entire generation is performed by the matrix multiplication of

C = A × B. Matrix C is a l-by-n matrix; entry ci,k of C denotes the number of times test goal
fi was covered by different test cases that had been selected by the individual pk.

Cost and Coverage In order to incorporate the execution cost as an additional objective to the
MOEA, the basic reformulation is extended with an extra row in matrix A. The new matrix, A′, is
an l+ 1 by m matrix that contains the cost of each individual test case in the last row. The extra row
in A′ results in an additional row in C′ which equals to A′ ×B as follows:

A′ =


a1,1 . . . a1,m
a2,1 . . . a2,m

. . .

al,1 . . . al,m
cost(t1) . . . cost(tm)

 C′ =


c1,1 . . . c1,n
c2,1 . . . c2,n

. . .

cl,1 . . . cl,n
cost(p1) . . . cost(pn)


By definition, an entry cl+1,k in the last row in C′ is defined as cl+1,k =

∑m
j=1 al+1,j · bj,k =∑m

j=1 cost(tj) · bj,k. That is, cl+1,k equals the sum of costs of all test cases selected (bj,k equals 1) by
the k-th individual solution pk, i.e. cost(pk). Similarly, after the multiplication, the k-th column of
matrix C′ contains the coverage of test requirements achieved by individual solution pk. However, this
information needs to be summarised into a percentage coverage, using a step function f as follows:

coverage(pk) =
∑m
i=1 f(ci,k)

l , f(x) = 1 (x > 0) or 0 (otherwise). The role of the step function is to
translate the linear sum of how many times a test goal has been covered into boolean coverage of
whether it was covered or not.

The cost objective can be calculated as a part of the matrix multiplication because it can be
linearly computed from the decision variable vectors (columns of matrix B). Other objectives that
share the linearity may also be computed using matrix multiplication. However, the coverage of test
requirements requires a separate step to be performed. Each column of C′ contains the number of
times individual testing requirements were covered by the corresponding solution; in order to calculate
the coverage metric for a solution, it is required to iterate over the corresponding column of C′. The
coverage calculation is highly parallel in nature because each column can be independently iterated
over and, therefore, can take the advantage of GPGPU architecture by running multiple threads.

4 Algorithms

This section presents the parallel fitness evaluation components for CPU and GPU and introduces
the MOEAs that are used in the paper.

Parallel Matrix Multiplication Algorithm: Matrix multiplication is inherently parallelisable as the
calculation for an individual entry of the product matrix does not depend on the calculation of any
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Algorithm 1: Parallel Matrix Multiplication
Input: The thread id, tid; arrays containing l+1
by m and m by n matrices, A and B; the width
of matrix A′ and B, wA′ and wB

Output: An array of length (l + 1)n to store
matrix C′

MatMult(tid, A′, B, wA′ , wB)
(1) x← tid mod wB

(2) y ← btid/wBc
(3) v ← 0
(4) for k = 0 to wA′ − 1
(5) v ← v +A′[y · wA′ + k] ·B[k · wB + x]
(6) C′[y ∗ wB + x]← v

Algorithm 2: Parallel Coverage Collection
Input: The thread id, tid; an array contain-
ing the result of matrix-multiplication, C′; the
width of matrix A′, wA′ and the height of ma-
trix A′, hA′

Output: An array containing the coverage
achieved by each individual solution, coverage
CollectCoverage(tid, C′, wA′ , hA′)
(1) e← 0
(2) for k = 0 to hA′ − 1
(3) if C′[k · wB′ + tid] > 0 then e← e+ 1
(4) coverage[tid]← e/(hA′ − 1)

other entry. Algorithm 1 shows the pseudo-code of the parallel matrix multiplication algorithm using
the matrix notation in Section 3.

Algorithm 1 uses one thread per element of matrix C′, resulting in a total of (l + 1) · n threads.
Each thread is identified with unique thread id, tid. Given a thread id, Algorithm 1 calculates the
corresponding element of the resulting matrix, C′

y,x given the width of matrix A, wA, i.e. y = tid
wB

and
x = tid mod wB .

Coverage Collection Algorithm: After matrix-multiplication using Algorithm 1, coverage informa-
tion is collected using a separate algorithm, pseudo-code of which is shown in Algorithm 2. Unlike
Algorithm 1, the coverage collection algorithm only requires n threads, i.e. one thread per column in
matrix C′.

The loop in Line (2) and (3) counts the number of structural elements that have been executed by
the individual solution ptid. The coverage is calculated by dividing this number by the total number
of structural elements that need to be covered.

While coverage information requires a separate collection phase, the sum of costs for each individual
solution has been calculated by Algorithm 1 as a part of the matrix multiplication following the
extension in Section 3.

5 Experimental Setup

5.1 Research Questions

This section presents the research questions studied in the paper. RQ1 and RQ2 concern the scal-
ability achieved by the speed-up through the use of GPGPU, whereas RQ3 concerns the practical
implications of the speed-up and the consequent scalability to the practitioners.

RQ1. Speed–up: what is the speed–up factor of GPU- and CPU-based parallel versions of MOEAs
over the untreated CPU-based version of the same algorithms for multi-objective test suite minimi-
sation problem?
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RQ2. Correlation: what are the factors of the problem instances that have the highest correlation to
the speed–up achieved, and what is the correlation between these factors and the resulting speed–up?

RQ3. Insight: what are the realistic benefits of the scalability that is achieved by the GPGPU ap-
proach to software engineers?

RQ1 is answered by observing the dynamic execution time of the parallel versions of the studied
algorithms as well as the untreated single-threaded algorithms. For RQ2, two factors constitute the
size of test suite minimisation problem: the number of test cases in the test suite and the number
of test requirements in System Under Test (SUT) that need to be covered. The speed–up values
measured for RQ1 are statistically analysed to investigate the correlation between the speed–up and
these two size factors. RQ3 is answered by analysing the result of test suite minimisation obtained
for a real-world testing problem.

5.2 Subjects

Table 1 shows the subject programs for the empirical study. 12 of the programs and test suites are
from the Software Infrastructure Repository (SIR) [14]. In order to obtain test suites with varying
sizes ranging from a few hundred to a few thousand test cases, the study includes multiple test suites
for some subject programs. For printtokens and schedule, smaller test suites are coverage-adequate
test suites, whereas larger test suites include all the available test cases. To avoid selection bias, four
smaller test suites were randomly selected from the pool of available tests for each program. In the
case of space, SIR contains multiple coverage-adequate test suites of similar sizes; four test suites were
selected randomly.

The subjects also include a large system-level test suite from IBM. For this subject, the coverage
information was maintained at the function level. The test suite contains only 181 test cases, but
these test cases are used to cover 61,770 functions in the system.

Each test suite has an associated execution cost dataset. For the subject programs from SIR, the
execution costs were measured by observing the number of instructions required by the execution of
tests. This was performed using a well-known profiling tool, valgrind [37], which executes the given
program on a virtual processor. For ibm, physical wall-clock time data, measured in seconds, were
provided by IBM. The entire test suite for ibm takes more than 4 hours to execute.

5.3 Implementation & Hardware

Implementation: The paper uses the open source Java MOEA library, jMetal [15, 16] as a library
of untreated versions of MOEAs: NSGA-II and SPEA2 are included in the jMetal library; The Two
Archive algorithm has been implemented using the infrastructure provided by the library. The un-
treated versions of MOEAs evaluate the fitness of individual solutions in the population one at a time,
which incurs method invocations regarding the retrieval of coverage and cost information.

The GPGPU-based parallel versions of these three algorithms are implemented in the OpenCL
GPGPU framework using a Java wrapper called JavaCL [8]. The CPU-based parallel versions of the
three algorithms use a parallel programming library for Java called JOMP [7]. JOMP allows parameterised
configuration of the number of threads to use. The parallelisation is only applied to the fitness eval-
uation step because it is not clear whether certain steps in the studied algorithms, such as sorting,
may yield sufficient efficiency when performed in parallel.
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Table 1 Subject programs used for the empirical study.

Subject Description Program Size Test Suite Size

printtokens Lexical analyser 188 315-3192

4,130
schedule Priority scheduler 142 224-2272

2,650
printtokens2 Lexical analyser 199 4,115
schedule2 Priority scheduler 142 2,710
tcas Aircraft collision avoidance system 65 1,608
totinfo Statistics computation utility 124 1,052
flex Lexical analyser 3,965 103
gzip Compression utility 2,007 213
sed Stream text editor 1,789 370
space Array Definition Language (ADL) interpreter 3,268 154-1603

replace Pattern matching & substitution tool 242 5,545
bash Unix shell 6,167 1,061
ibm An IBM middleware system 61,7701 181

1 For the IBM middleware system, the program size represents the number of functions that need
to be covered. The coverage objective for the IBM system also denotes function coverage. For
all other subject, the size and the coverage objective are measured and calculated using LOC.

2 For schedule and printtokens, four coverage-adequate test suites were randomly selected from
those provided by SIR, as well as the complete test suite.

3 For space, four randomly selected, coverage-adequate test suites were used.

All three algorithms are configured with population size of 256 following the standard recommen-
dation to set the number of threads to multiples of 32 or 64 [1]. The archive size for SPEA2 and The
Two Archive algorithm is also set to 256. The stopping criterion for all three algorithms is to reach
the maximum number of fitness evaluations, which is set to 64,000, allowing 250 generations to be
evaluated.

All three algorithms solve the test suite minimisation problem by selecting Pareto-optimal subsets
of test cases, represented by binary strings that form columns in matrix B in Section 3. The initial
population is generated by randomly setting the individual bits of these binary strings so that the
initial solutions are randomly distributed in the phenotype space.

NSGA-II and SPEA2 use the binary tournament selection operator. The Two Archive algorithm
uses the uniform selection operator as described in the original paper [40]: the selection operator first
selects one of the two archives with equal probability and then selects one solution from the cho-
sen archive with uniform probability distribution. All three algorithms use the single-point crossover
operator with probability of crossover set to 0.9 and the single bit-flip mutation operator with the
mutation rate of 1

n where n is the length of the bit-string (i.e. the number of test requirements).

Hardware: All algorithms have been evaluated on a machine with a quad-core Intel Core i7 CPU
(2.8GHz clock speed) and 4GB memory, running Mac OS X 10.6.5 with Darwin Kernel 10.6.0 for
x86 64 architecture. The Java Virtual Machine used to execute the algorithms is Java SE Runtime
with version 1.6.0 22. The GPGPU-based versions of MOEAs have been evaluated on an ATI Radeon
HD4850 graphics card with 800 stream processors running at 625MHz clock speed and 512MB GDDR3
onboard memory.
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5.4 Evaluation

The paper compares three MOEAs, each with five different configurations: the untreated configuration
(hereafter refered to CPU), the GPGPU configuration (GPU) and the JOMP-based parallel configurations
with 1, 2, and 4 threads (JOMP1/2/4). The configuration with one thread (JOMP1) is included to observe
the speed-up achieved by evaluating the fitness of the entire population using matrix multiplication,
instead of evaluating the solutions one by one as in the untreated versions of MOEA. Any speed–
up achieved by JOMP1 over CPU is, therefore, primarily achieved by the code-level optimisation that
removes the method invocation overheads. On the other hand, JOMP1 does incur an additional thread
management overhead.

In total, there are 15 different configurations (three algorithms with five configurations each).
For each subject test suite, the 15 configurations were executed 30 times in order to cater for the
inherent randomness in dynamic execution time, measured using the system clock. The speed-up is
calculated by dividing the amount of the time that the CPU configuration required with the amount
of the time that parallel configurations required. While we discuss the speed-up values only using the
total execution time, we also provide observations of the three parts break-down of the total execution
time (T imetotal) for each algorithm as below:

– Initialisation (T imeinit): the time it takes for the algorithm to initialise the test suite data in a
usable form; for example, GPU configurations of MOEAs need to transfer the test suite data onto
the graphics card.

– Fitness Evaluation (T imefitness): the time it takes for the algorithm to evaluate the fitness values
of different generations during its runtime.

– Remaining (T imeremaining): the remaining parts of the execution time, most of which is used for
archive management, genetic operations, etc.

6 Results

This section presents the speed-up measurements of the single-threaded, CPU-based multi-threaded,
and GPGPU-based multi-threaded approaches and analyses the correlation between the speed-up and
problem size.

6.1 Speed–up

Figure 1 presents the mean paired speed–up results of all configurations. The mean paired speed–up
values were calculated by dividing the execution time of CPU with the corresponding execution time
of the parallel configurations for each of the 30 observations. Tables 2, 3 and 4 contain the speed–up
data in more detail, whereas the statistical analysis of the raw information can be obtained from
Tables 12, 13 and 14 in the appendix.

Overall, the observed paired mean speed–up ranges from 0.47x to 25.09x. While the different
archive management strategies used by each MOEAs make it difficult to compare the execution time
results directly (because the different amount of heap used by each may affect JVM’s performance
differently), it is possible to observe the general trend that the speed–up tends to increase as the
problem size grows. The speed–up values below 1.0 show that the overhead of thread management and
the additional communication can be detrimental for the problems of sufficiently small size. However,
as the problem size grows, JOMP1 becomes faster than CPU with all algorithms, indicating that the
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Fig. 1 Mean paired speed-ups achieved by different algorithms and parallel configurations.

amount of reduced method call overhead eventually becomes greater that the thread management
overhead.

With the largest dataset, ibm, the GPU configuration of NSGA-II reduces the average execution
time of CPU, 4,347 seconds (1 hour 12 minutes and 27 seconds), to the average of 174 seconds (2
minutes and 54 seconds). The speed–up remains consistently above 3.0x for all three algorithms if the
problem size is larger than that of flex, i.e. about 400,000 (103 tests × 3,965 test requirements).

To provide inferential statistical analysis of the observed execution time data have been compared
using the Mann-Whitney ‘U’ test. The Mann-Whitney ‘U’ test is a non-parametric statistical hypoth-
esis test, i.e. it allows the comparison of two samples with unknown distribution. The execution time
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Table 2 Speed–up results for NSGA-II

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.83 1.21 1.54 2.14
printtokens-2 0.83 1.23 1.56 2.20
printtokens-3 0.82 1.21 1.53 2.13
printtokens-4 0.84 1.22 1.54 2.19
schedule-1 0.97 1.22 1.40 1.56
schedule-2 0.96 1.22 1.41 1.46
schedule-3 0.96 1.22 1.39 1.45
schedule-4 0.95 1.20 1.37 1.43
printtokens 0.76 1.24 1.44 4.52
schedule 0.69 1.08 1.26 3.38
printtokens2 0.72 1.18 1.37 4.38
schedule2 0.71 1.09 1.27 3.09
tcas 0.84 1.10 1.30 1.94
totinfo 0.90 1.28 1.61 2.50
flex 1.58 2.76 4.19 6.82
gzip 1.19 2.15 3.31 8.00
sed 1.02 1.87 3.04 10.28
space-1 1.77 3.22 5.10 10.51
space-2 1.86 3.34 5.19 10.88
space-3 1.80 3.27 5.16 10.63
space-4 1.76 3.25 5.12 10.54
replace 0.73 1.23 1.44 5.26
bash 1.54 2.90 4.87 25.09
ibm 3.01 5.55 9.04 24.85

Table 3 Speed–up results for SPEA2

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.92 0.94 1.24 1.00
printtokens-2 1.00 0.93 1.36 1.11
printtokens-3 0.97 0.93 1.23 1.03
printtokens-4 1.01 0.94 1.31 1.03
schedule-1 1.00 0.90 1.86 0.97
schedule-2 1.04 0.95 1.92 1.01
schedule-3 0.96 0.89 1.49 0.95
schedule-4 1.01 0.90 1.69 0.94
printtokens 0.76 1.17 1.33 3.49
schedule 0.71 1.04 1.19 2.62
printtokens2 0.73 1.13 1.29 3.41
schedule2 0.73 1.06 1.19 2.44
tcas 0.86 1.03 1.14 1.61
totinfo 0.91 1.16 1.35 1.97
flex 1.48 2.05 2.69 3.22
gzip 1.15 1.78 2.39 3.51
sed 1.05 1.80 2.70 6.71
space-1 1.78 2.83 3.98 6.28
space-2 1.82 2.88 4.03 6.41
space-3 1.80 2.86 4.06 6.45
space-4 1.77 2.86 3.98 6.18
replace 0.74 1.19 1.37 4.06
bash 1.56 2.93 4.88 22.96
ibm 3.13 5.72 9.29 24.62

data observed with JOMP1/2/4 and GPU configurations were compared to those from CPU configuration.
The null hypothesis is that there is no difference between the parallel configurations and CPU config-
uration; the alternative hypothesis is that the execution time of the parallel configurations is smaller
than that of CPU configuration.

Tables 5, 6 and 7 present the resulting p-values. With JOMP1 and JOMP2 configurations, the alter-
native hypothesis is rejected for 39 and 12 cases at the confidence level of 95%, respectively, out of
of 42 cases with subjects with problem sizes smaller than that of flex, providing evidence that the
parallel configurations required more time than the untreated configuration (CPU). With JOMP4 and
GPU configurations, the null hypothesis is universally rejected for all subjects with problem sizes larger
than that of flex, providing strong evidence that the parallel configurations required less time than
the untreated configuration (CPU). The particular results are naturally dependent on the choice of the
graphics card that has been used for the experiment. However, these results, taken together, provide
strong evidence that, for test suite minimisation problems of realistic sizes, the GPGPU approach can
provide a speed–up of at least 3.0x. This finding answers RQ1.

6.2 Correlation

Regarding RQ2, one important factor that contributes to the level of speed–up is the speed of each
individual computational unit in the graphics card. The HD4850 graphics card used in the experiment
contains 800 stream processor units that are normally used for the computation of geometric shading.
Each of these processors executes a single thread of Algorithm 1, of which there exist more than 800.
Therefore, if the individual stream processor is as powerful as a single core of the CPU, the absolute
upper bound on speed–up would be 800. In practice, the individual processors run with a clock speed
of 625MHz, which makes them much slower and, therefore, less powerful than a CPU core. This results
in speed–up values lower than 800.



Title Suppressed Due to Excessive Length 13

Table 4 Speed–up results for TAEA

Subject SJOMP1 SJOMP2 SJOMP4 SGPU

printtokens-1 0.73 1.19 1.68 2.60
printtokens-2 0.75 1.21 1.70 2.60
printtokens-3 0.73 1.18 1.66 2.61
printtokens-4 0.74 1.21 1.70 2.63
schedule-1 1.01 1.48 1.89 2.17
schedule-2 1.00 1.47 1.88 2.19
schedule-3 0.99 1.46 1.88 2.16
schedule-4 0.99 1.46 1.87 2.15
printtokens 0.47 0.82 0.98 4.58
schedule 0.49 0.84 1.03 3.94
printtokens2 0.47 0.83 1.00 4.63
schedule2 0.50 0.84 1.01 3.49
tcas 0.67 1.00 1.29 2.24
totinfo 0.68 1.09 1.54 2.99
flex 1.71 3.17 5.12 8.69
gzip 0.97 1.78 2.91 7.88
sed 0.85 1.60 2.66 10.85
space-1 1.79 3.29 5.33 12.01
space-2 1.83 3.39 5.53 12.51
space-3 1.79 3.33 5.49 12.21
space-4 1.77 3.31 5.43 11.93
replace 0.47 0.84 1.01 5.44
bash 0.88 1.69 2.89 17.71
ibm 2.06 3.87 6.54 20.97

Table 5 Mann-Whitney U test for NSGA-II

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 1.00e+00 1.51e-11 8.46e-18 1.51e-11
printtokens-2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
printtokens-3 1.00e+00 1.51e-11 8.46e-18 8.46e-18
printtokens-4 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-1 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
schedule-3 1.00e+00 1.51e-11 1.51e-11 1.51e-11
schedule-4 1.00e+00 1.51e-11 1.51e-11 1.51e-11
printtokens 1.00e+00 8.46e-18 8.46e-18 8.46e-18
schedule 1.00e+00 1.51e-11 1.51e-11 8.46e-18
printtokens2 1.00e+00 1.51e-11 8.46e-18 1.51e-11
schedule2 1.00e+00 1.51e-11 8.46e-18 8.46e-18
tcas 1.00e+00 8.46e-18 8.46e-18 8.46e-18
totinfo 1.00e+00 1.51e-11 8.46e-18 8.46e-18
flex 8.46e-18 8.46e-18 1.51e-11 1.51e-11
gzip 1.51e-11 1.51e-11 1.51e-11 1.51e-11
sed 2.56e-07 8.46e-18 8.46e-18 1.51e-11
space-1 8.46e-18 8.46e-18 1.51e-11 1.51e-11
space-2 8.46e-18 8.46e-18 1.51e-11 1.51e-11
space-3 8.46e-18 8.46e-18 8.46e-18 1.51e-11
space-4 8.46e-18 8.46e-18 8.46e-18 1.51e-11
replace 1.00e+00 8.46e-18 1.51e-11 8.46e-18
bash 8.46e-18 8.46e-18 8.46e-18 8.46e-18
ibm 1.51e-11 8.46e-18 8.46e-18 1.51e-11

Table 6 Mann-Whitney U test for SPEA2

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 9.99e-01 9.91e-01 8.71e-01 7.19e-01
printtokens-2 7.84e-01 9.81e-01 2.23e-01 3.06e-02
printtokens-3 9.39e-01 9.91e-01 9.85e-01 4.21e-01
printtokens-4 5.32e-01 9.85e-01 2.06e-01 3.71e-01
schedule-1 6.01e-01 1.00e+00 9.80e-01 9.01e-01
schedule-2 3.99e-02 9.99e-01 9.71e-01 3.27e-01
schedule-3 9.37e-01 1.00e+00 9.42e-01 9.59e-01
schedule-4 4.74e-01 1.00e+00 9.78e-01 9.94e-01
printtokens 1.00e+00 8.46e-18 1.50e-11 8.46e-18
schedule 1.00e+00 1.51e-11 1.50e-11 1.51e-11
printtokens2 1.00e+00 8.46e-18 1.50e-11 8.46e-18
schedule2 1.00e+00 1.51e-11 1.50e-11 1.51e-11
tcas 1.00e+00 1.51e-11 5.51e-07 1.51e-11
totinfo 1.00e+00 1.51e-11 1.50e-11 8.46e-18
flex 8.46e-18 8.46e-18 1.50e-11 8.46e-18
gzip 8.46e-18 8.46e-18 1.50e-11 8.46e-18
sed 8.46e-18 8.46e-18 1.50e-11 8.46e-18
space-1 8.46e-18 1.51e-11 1.50e-11 8.46e-18
space-2 8.46e-18 8.46e-18 1.50e-11 1.51e-11
space-3 8.46e-18 1.51e-11 1.50e-11 8.46e-18
space-4 8.46e-18 1.50e-11 1.50e-11 8.46e-18
replace 1.00e+00 1.50e-11 1.50e-11 8.46e-18
bash 8.46e-18 1.50e-11 1.50e-11 8.46e-18
ibm 8.46e-18 1.50e-11 1.50e-11 8.46e-18

Table 7 Mann-Whitney U test for TAEA

Subject pJOMP1 pJOMP2 pJOMP4 pGPU

printtokens-1 1.00e+00 1.48e-11 1.50e-11 1.51e-11
printtokens-2 1.00e+00 1.50e-11 1.49e-11 1.51e-11
printtokens-3 1.00e+00 1.50e-11 1.50e-11 1.51e-11
printtokens-4 1.00e+00 1.49e-11 1.49e-11 1.51e-11
schedule-1 3.86e-02 1.48e-11 1.49e-11 1.51e-11
schedule-2 9.96e-01 1.49e-11 1.48e-11 1.50e-11
schedule-3 9.99e-01 1.50e-11 1.50e-11 1.51e-11
schedule-4 7.63e-01 1.50e-11 1.50e-11 1.50e-11
printtokens 1.00e+00 1.00e+00 1.00e+00 1.51e-11
schedule 1.00e+00 1.00e+00 3.66e-10 1.51e-11
printtokens2 1.00e+00 1.00e+00 5.85e-01 1.51e-11
schedule2 1.00e+00 1.00e+00 2.54e-06 1.51e-11
tcas 1.00e+00 4.50e-01 1.50e-11 1.51e-11
totinfo 1.00e+00 1.50e-11 1.50e-11 1.51e-11
flex 1.50e-11 1.50e-11 1.50e-11 1.50e-11
gzip 1.00e+00 1.50e-11 1.49e-11 1.51e-11
sed 1.00e+00 1.50e-11 1.50e-11 1.51e-11
space-1 1.50e-11 1.50e-11 1.50e-11 1.51e-11
space-2 1.50e-11 1.50e-11 1.50e-11 1.51e-11
space-3 1.50e-11 1.50e-11 1.50e-11 1.51e-11
space-4 1.50e-11 1.50e-11 1.50e-11 1.51e-11
replace 1.00e+00 1.00e+00 2.10e-02 1.51e-11
bash 1.00e+00 1.50e-11 1.50e-11 1.51e-11
ibm 1.50e-11 1.50e-11 1.50e-11 1.51e-11
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Table 8 Spearman’s rank correlation coefficients between three size factors and speed–ups

Algorithm Config ρz ρl ρm

NSGA-II

JOMP1 0.2257 0.6399 -0.8338
JOMP2 0.4908 0.7800 -0.6423
JOMP4 0.4788 0.8227 -0.6378
GPGPU 0.8760 0.8617 -0.2299

SPEA2

JOMP1 0.2327 0.6646 -0.7827
JOMP2 0.7897 0.7977 -0.3375
JOMP4 0.6852 0.7201 -0.3286
GPGPU 0.9022 0.7618 -0.1286

TAEA

JOMP1 -0.0084 0.5225 -0.9302
JOMP2 0.1527 0.6580 -0.8867
JOMP4 0.1671 0.6686 -0.8760
GPGPU 0.8723 0.8729 -0.2536

In order to answer RQ2, statistical regression analysis was performed on the correlation between
the observed speed–up and the factors that constitute the size of problems.

Three size factors have been analysed for the statistical regression: size of test goal set, size of test
suite and their product. The number of test requirements and the number of test cases are denoted
by l and m respectively, following the matrix notation in Section 3: l is proportional to the number of
threads the GPGPU-version of the algorithm has to execute (as the size of the matrix C′ is l-by-n and n
is fixed); m denotes the amount of computation that needs to be performed by a single thread (as each
matrix-multiplication kernel computes a loop with m iterations). In addition to these measurement,
another size factor z = l ·m is considered to represent the perceived size of the minimisation problem.
Table 8 shows the results of Spearman’s rank correlation analysis between size factors and observed
speed–ups.

Spearman’s rank correlation is a non-parametric measure of how well the relationship between two
variables can be described using a monotonic function. As one variable increases, the other variable will
tend to increase monotonically if the coefficient is close to 1, whereas it would decrease monotonically
if the coefficient is close to -1.

In all algorithms and configurations, the size factor l shows the strongest positive correlation with
speed–ups. The correlation coefficients for z are weaker than those for l or, in the case of JOMP1 for
the Two Archive algorithm, negative. The correlation for m remains negative for all algorithms and
configurations.

To gain further insights into the correlation between size and the speed–up observed, a regression
analysis was performed. Factor z is considered in isolation, whereas l and m are considered together;
each variable has been considered in its linear form (z, l and m) and logarithmic form (log z, log l
and logm). This results in 6 different combinations of regression models. Tables 9, 10 and 11 in the
appendix present the detailed results of regression analysis for the three algorithms respectively.

With a few exceptions of very small margins (NSGA-II with JOMP4 and SPEA2 with JOMP1, JOMP4,
and GPU), the model with the highest r2 correlation for all algorithms and configurations is Sp =
α log l + β logm + γ. Figure 2 shows the 3D plot of this model for the GPU and JOMP4 configuration
of the Two Archive algorithm.

The observed trend is that the inclusion of log l results in higher correlation, whereas models that
use l in its linear form tend to result in lower correlation. This supports the results of Spearman’s
rank correlation analysis in Table 8. The coefficients for the best-fit regression model for GPU, Sp =
α log l+ β logm+ γ, can explain why the speed–up results for space test suites are higher than those
for test suites with z values such as tcas, gzip and replace. Apart from bash and ibm, space has the
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ration fails to exploit within 60 minutes.

largest number of test requirements to cover, i.e. l. Since α is more than twice larger than β, a higher
value of l has more impact to Sp than m.

Based on the analysis, RQ2 is answered as follows: the observed speed–up shows a strong linear
correlation to the log of the number of test requirements to cover and the log of the number of test
cases in the test suite. The positive correlation provides evidence that GPU-based parallelisation scales
up.

Furthermore, within the observed data, the speed–up continues to increase as the problem size
grows, which suggests that the graphics card did not reach its full computational capacity. It may be
that, for larger problems, the speed–up would be even greater than those observed in this paper. The
finding that the scalability factor increases with overall problem size is a very encouraging finding; as
the problem gets harder, the solution gets better.

6.3 Insights

This section discusses a possible real-world scenario in which the parallelisation of multi-objective test
suite minimisation can have a high impact. A smoke test is a testing activity that is usually performed
in a very short window of time to detect the most obvious faults, such as system crashes. IBM’s smoke
test practice is to allow from 30 to 60 minutes of time to execute a subset of tests from a large test
suite that would require more than 4 hours to execute in its entirety.

Using static smoke test suite is problematic as running the same tests at every regression greatly
reduces the likelihood of finding bugs. Therefore it is important to recalculate the most relevant smoke
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test suite given the changes to the code. It is for this reason that the cost of computation, especially
the actual time it takes, becomes very important.

Figure 3 shows two possible smoke test scenarios based on the results of CPU and GPGPU configura-
tions of NSGA-II. It is a plot of how much test requirement coverage can be achieved during the given
time, including the time needed for multi-objective test suite minimisation. The solid line represents
the scenario based on the GPGPU configuration of the algorithm, whereas the dotted line represents
the scenario based on the CPU configuration. The beginning flat segment at the bottom shows the
time each configuration spends on the optimisation process; the curved segment shows the trade-off
between time and test coverage achieved by the optimised test suite. Since the CPU configuration of
NSGA-II takes longer than 60 minutes to terminate, it cannot contribute to any smoke test scenario
that must be completed within 60 minutes. On the other hand, the GPGPU configuration allows the
tester to consider a subset of tests that can be executed within 30 minutes. If the grey region was
wider than Figure 3, the difference between two configurations would have been even more dramatic.

This answers RQ3 as follows: a faster execution of optimisation algorithms enables the tester not
only to use the algorithms but also to exploit their results more effectively. This real-world smoke test
example from IBM demonstrates that scale–ups accrued from the use of GPGPU are not only sources of
efficiency improvement, they can also make possible test activities that are simply impossible without
this scalability.

The ability to execute a sophisticated optimisation algorithm within a relatively short time also
allows the tester to consider state-of-the-art regression testing techniques with greater flexibility. The
greater flexibility is obtained because the cost of the optimisation does not have to be amortised across
multiple iterations. Many state-of-the-art regression testing techniques require the use of continuously
changing sets of testing data, such as recent fault history [54] or the last time a specific test case has
been executed [18,30]. In addition to the use of dynamic testing data, the previous work also showed
that repeatedly using the same subset of a large test suite may impair the fault detection capability
of the regression testing [57].

7 Threats to Validity

Threats to internal validity concern the factors that could have affected the experiments in the paper.
While GPGPU architecture has been researched for some time, the commercially available GPGPU
frameworks such as CUDA and OpenCL are still in their early stages and, therefore, may contain
faults in the implementation.

The GPGPU matrix-multiplication routine has been manually tested and validated with additional
data apart from the test suites chosen for the empirical study. Regarding the precision of the GPGPU-
based calculation, the aim of the paper is to investigate the potential speed–up that can be gained by
using GPGPU, rather than to consider the effectiveness of the actual test suite minimisation in the
context of regression testing. Therefore, the precision issue does not constitute a major issue for the
aim of this study.

Threats to external validity concern any factor that might prevent the generalisation of the result
presented by the paper. Since the performance of GPGPU computing is inherently hardware specific,
the results reported in the paper may not be reproducible in their exact form using other combinations
of hardware components. However, with the advances in graphics card architecture, it is more likely
that experiments with the same approach with newer graphics card will only improve the speed–up
results reported in the paper.

It should be also noted that optimising test suite minimisation using evolutionary computation
is an inherently ideal candidate for GPGPU computation as the reformulated problem, matrix-
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multiplication, is highly parallel in nature. Other problems in search-based software engineering may
not render themselves as easily as the test suite minimisation problem. However, this issue is inherent
in any attempts to parallelise a software engineering technique and not specific to GPGPU approach.

Threats to construct validity arise when measurements used in the experiments do not capture the
concepts they are supposed to represent. The speed–up calculation was based on the measurements
of execution time for both algorithms using system clock, which was chosen because it represents
the speed of a technique to the end-user. Regarding the measurements of problem size used for the
regression analysis, there may exist more sophisticated measurements of test suites and program source
code that correlates better with the speed–up. However, both the number of test requirements and
the number of test cases are probably the most readily available measurements about source code and
test suites and provide a reasonable starting point for this type of analysis.

8 Related Work

Recent developments in graphics hardware provide an affordable means of parallelism: not only is the
hardware more affordable than that of multiple PCs but also the management cost is much smaller
than that required for a cluster of PCs, because it depends on a single hardware component. GPGPU
has been successfully applied to various scientific computations [6, 21], while Langdon [32] recently
used GPGPU for performance improvements in optimization problems. However, these techniques
have not been applied to Search Based Software Engineering problems, motivating the work of this
paper, i,e., the use of GPGPU to achieve performance improvements in SBSE.

As a first instance of GPGPU SBSE, we study the SBSE application domain of regression testing.
Regression test selection (also known as test suite minimisation) aims to reduce the number of tests
to be executed by calculating the minimum set of tests that are required to satisfy the given test
requirements. The problem has been formulated as the minimal hitting set problem [28], which is
NP-hard [20].

Various heuristics for the minimal representative set problem, or the minimal set cover problem
(the dual of the former), have been suggested for test suite minimisation [11, 38]. However, empiri-
cal evaluations of these techniques have reported conflicting views on the impact on fault detection
capability: some reported no impact [52,53] while others reported compromised fault detection capa-
bility [43,44].

One potential reason why test suite minimisation has a negative impact on the fault detection
capability is the fact that the criterion for minimisation is structural coverage; achieving coverage
alone may not be sufficient for revealing faults. This paper uses the multi-objective approach based
on Multi-Objective Evolutionary Algorithm (MOEA) introduced by Yoo and Harman [54]; the paper
also presents the first attempt to parallelise test suite minimisation with sophisticated criteria for
scalability. Multi-objective forms of regression testing problems are increasingly popular in SBSE
work, since most real-world regression testing scenarios need to satisfy multiple objectives [23]. Our
SBSE approach to regression testing has also been used at Google [59].

Population-based evolutionary algorithms are ideal candidates for GPGPU parallelisation [39]
and existing work has shown successful implementations for classical problems. Tsutsui and Fujimoto
implemented a single-objective parallel Genetic Algorithm (GA) using GPU for the Quadratic As-
signment Problem (QAP) [48]. Wilson and Banzaf implemented a linear Genetic Programming (GP)
algorithm on XBox360 game consoles [50]. Langdon and Banzaf implemented GP for GPU using an
SIMD interpreter for fitness evaluation [32]. Wong implemented an MOEA on GPU and evaluated
the implementation using a suite of benchmark problems [51]. Wong’s implementation parallelised not
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only the fitness evaluation step but also the parent selection, crossover & mutation operator as well
as the dominance checking.

Despite the highly parallelisable nature of many techniques used in SBSE, few parallel algorithms
have been used. Of 763 papers on SBSE [60] only three present results for parallel execution of SBSE.
Mitchell et al. used a distributed architecture for their clustering tool Bunch [36]. Mahdavi et al. [34]
used a cluster of standard PCs to implement a parallel hill climbing algorithm. Asadi et al. used a
distributed Server-Client architecture for Concept Location problem [4]. All three of these previous
approaches use a distributed architecture that requires multiple machines. The present paper is the
first work on SBSE that presents results for the highly affordable parallelism based on GPGPU.

There is existing work that re-implements meta-heuristic algorithms on GPGPU for non-SBSE
applications. This previous work ports the meta-heuristic algorithms in their entirety [51] to GPGPU,
whereas the present paper concerns the practical improvement in scalability of SBSE, rather than
the technical feasibility of GPGPU-based meta-heuristic implementation. The present paper thus re-
implements only the most parallelisable module in Multi-Objective Evolutionary Algorithms (MOEAs)
and performs an extensive empirical evaluation of the impact on scalability.

We believe that this approach may also prove to be applicable to many other SBSE problems. To
achieve this, it will be necessary to develop new ways to port the fitness computation to the GPGPU
device. For some applications, such as test data generation and re-generation problems [3, 56], this
may not be possible, because the fitness function requires execution of the program under test; we
cannot be sure that GPGPU devices will ever develop to the point that execution of arbitrary code
will become possible.

However, for other SBSE applications, such as requirements optimisation [46,61], prediction system
feature selection [31] and requirements sensitivity analysis [25], fitness computation remains an oft-
repeated and, thereby, SIMD-friendly requirement. Also, in these application areas, the underlying
Software Engineering problem may be characterised using a table (albeit a very large one). In such
cases, where the SBSE problem can be formulated in terms of the optimisation of choices, based on
a spreadsheet of known values, this may prove to port well onto the SIMD architecture offered by
GPGPU devices.

Furthermore, for requirements optimisation problems there is known to be a close similarity be-
tween the problem representation for search based requirements and search based regression test-
ing [26]. As a result, the techniques used here may also prove to be readily applicable to these
problems with little need for significant modification of our approach.

9 Conclusion

This paper presented the first results on GPGPU SBSE; the use of GPGPU-based massive parallelism
for improving scalability of regression testing, based on Search-Based Software Engineering (SBSE).
The advances in GPGPU architecture and the consequent availability of parallelism provide an ideal
platform for improving SBSE scalability through SIMD parallelism.

The paper presents an evaluation of the GPGPU-based test suite minimisation for real-world
examples that include an industry-scale test suite. This approach to GPGPU SBSE was evaluated
on three popular multi-objective evolutionary algorithms. The results show that the GPGPU-based
optimisation can achieve a speed–up of up to 25.09x compared to a single-threaded version of the same
algorithm executed on a CPU. The highest speed–up achieved by the CPU-based parallel optimisation
was 9.29x. Statistical analysis shows that the speed–up correlates to the logarithmic of the problem
size, i.e. the size of the program under test and the size of the test suite. This finding indicates that
as the problem becomes larger, the scalability of the proposed approach increases; a very attractive
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finding. Future work will include an empirical study of a wider range of test suites, as well as seeking
insights into why MOEAs benefit differently from parallelisation.
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Appendix

Tables 9, 10 and 11 present the results of regression analysis for the three algorithm respectively.
Tables 12, 13 and 14 contain the mean and standard deviation of T imetotal, T imeinit, T imefitness and
T imeremaining for NSGA-II, SPEA2 and Two Archive algorithm respectively.

Table 9 Regression Analysis for NSGA-II

Config Model α β γ R2

JOMP1

Sp ∼ z 1.56e-07 - 1.00e+00 0.4894
Sp ∼ log z 2.01e-01 - -1.34e+00 0.3423
Sp ∼ l +m 3.27e-05 -1.13e-04 1.17e+00 0.7060
Sp ∼ log l +m 2.69e-01 -4.83e-05 -4.79e-01 0.8487
Sp ∼ l + logm 3.12e-05 -1.78e-01 2.15e+00 0.7600
Sp ∼ log l + logm 2.62e-01 -6.83e-02 -6.15e-02 0.8509

JOMP2

Sp ∼ z 3.24e-07 - 1.58e+00 0.5009
Sp ∼ log z 4.78e-01 - -4.05e+00 0.4606
Sp ∼ l +m 6.64e-05 -1.82e-04 1.87e+00 0.6367
Sp ∼ log l +m 6.00e-01 -2.84e-05 -1.83e+00 0.9084
Sp ∼ l + logm 6.35e-05 -3.07e-01 3.58e+00 0.6836
Sp ∼ log l + logm 5.96e-01 -4.04e-02 -1.59e+00 0.9086

JOMP4

Sp ∼ z 5.80e-07 - 2.15e+00 0.5045
Sp ∼ log z 8.72e-01 - -8.13e+00 0.4814
Sp ∼ l +m 1.16e-04 -3.42e-04 2.70e+00 0.6199
Sp ∼ log l +m 1.08e+00 -5.93e-05 -4.00e+00 0.9322
Sp ∼ l + logm 1.11e-04 -5.49e-01 5.74e+00 0.6611
Sp ∼ log l + logm 1.08e+00 -5.50e-02 -3.72e+00 0.9313

GPU

Sp ∼ z 2.25e-06 - 4.13e+00 0.7261
Sp ∼ log z 3.45e+00 - -3.66e+01 0.7178
Sp ∼ l +m 3.62e-04 -1.63e-04 5.33e+00 0.4685
Sp ∼ log l +m 3.53e+00 7.79e-04 -1.66e+01 0.8219
Sp ∼ l + logm 3.62e-04 -1.34e-01 5.98e+00 0.4676
Sp ∼ log l + logm 3.85e+00 1.69e+00 -2.82e+01 0.8713

Table 10 Regression Analysis for SPEA2

Config Model α β γ R2

JOMP1

Sp ∼ z 1.60e-07 - 1.03e+00 0.5085
Sp ∼ log z 1.89e-01 - -1.16e+00 0.2988
Sp ∼ l +m 3.37e-05 -1.20e-04 1.21e+00 0.7443
Sp ∼ log l +m 2.58e-01 -6.08e-05 -3.57e-01 0.7987
Sp ∼ l + logm 3.23e-05 -1.79e-01 2.19e+00 0.7883
Sp ∼ log l + logm 2.50e-01 -7.97e-02 1.17e-01 0.7982

JOMP2

Sp ∼ z 3.67e-07 - 1.31e+00 0.6289
Sp ∼ log z 5.31e-01 - -4.94e+00 0.5567
Sp ∼ l +m 7.41e-05 -1.02e-04 1.53e+00 0.6867
Sp ∼ log l +m 6.14e-01 4.59e-05 -2.22e+00 0.8656
Sp ∼ l + logm 7.24e-05 -1.78e-01 2.52e+00 0.7031
Sp ∼ log l + logm 6.30e-01 9.28e-02 -2.85e+00 0.8700

JOMP4

Sp ∼ z 6.26e-07 - 1.78e+00 0.5504
Sp ∼ log z 7.86e-01 - -7.37e+00 0.3657
Sp ∼ l +m 1.23e-04 -2.40e-04 2.25e+00 0.5965
Sp ∼ log l +m 9.38e-01 -2.73e-05 -3.44e+00 0.6443
Sp ∼ l + logm 1.20e-04 -3.56e-01 4.19e+00 0.6081
Sp ∼ log l + logm 9.56e-01 3.15e-02 -3.78e+00 0.6442

GPU

Sp ∼ z 2.32e-06 - 2.25e+00 0.8777
Sp ∼ log z 3.12e+00 - -3.42e+01 0.6666
Sp ∼ l +m 3.82e-04 1.98e-04 3.06e+00 0.5713
Sp ∼ log l +m 3.01e+00 8.99e-04 -1.52e+01 0.6657
Sp ∼ l + logm 3.90e-04 5.17e-01 4.89e-02 0.5791
Sp ∼ log l + logm 3.38e+00 1.96e+00 -2.88e+01 0.7417

Table 11 Regression Analysis for Two Archive

Config Model α β γ R2

JOMP1

Sp ∼ z 7.34e-08 - 9.35e-01 0.1280
Sp ∼ log z 9.65e-02 - -1.92e-01 0.0931
Sp ∼ l +m 1.78e-05 -1.74e-04 1.14e+00 0.5412
Sp ∼ log l +m 1.94e-01 -1.20e-04 -7.59e-02 0.7637
Sp ∼ l + logm 1.54e-05 -2.79e-01 2.68e+00 0.7108
Sp ∼ log l + logm 1.64e-01 -2.01e-01 1.22e+00 0.8350

JOMP2

Sp ∼ z 1.60e-07 - 1.59e+00 0.1587
Sp ∼ log z 2.57e-01 - -1.45e+00 0.1731
Sp ∼ l +m 3.72e-05 -2.98e-04 1.95e+00 0.4942
Sp ∼ log l +m 4.31e-01 -1.73e-04 -7.67e-01 0.8095
Sp ∼ l + logm 3.27e-05 -4.94e-01 4.69e+00 0.6461
Sp ∼ log l + logm 3.84e-01 -3.04e-01 1.22e+00 0.8571

JOMP4

Sp ∼ z 3.12e-07 - 2.33e+00 0.1865
Sp ∼ log z 5.21e-01 - -3.84e+00 0.2196
Sp ∼ l +m 6.95e-05 -5.20e-04 2.97e+00 0.4990
Sp ∼ log l +m 8.17e-01 -2.82e-04 -2.18e+00 0.8556
Sp ∼ l + logm 6.17e-05 -8.50e-01 7.69e+00 0.6322
Sp ∼ log l + logm 7.46e-01 -4.77e-01 9.01e-01 0.8880

GPU

Sp ∼ z 1.64e-06 - 4.96e+00 0.5728
Sp ∼ log z 2.79e+00 - -2.82e+01 0.7056
Sp ∼ l +m 2.83e-04 -3.54e-04 6.02e+00 0.4516
Sp ∼ log l +m 3.05e+00 5.02e-04 -1.31e+01 0.9417
Sp ∼ l + logm 2.76e-04 -6.36e-01 9.59e+00 0.4620
Sp ∼ log l + logm 3.21e+00 9.47e-01 -1.94e+01 0.9603
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Table 12: Execution time of NSGA-II algotirhm

Subject Config T̄total σTtotal
T̄init σTinit

T̄fitness σTfitness
T̄remaining σTremaining

printtokens-1 CPU 12265.23 133.47 0.00 0.00 8565.77 63.68 3699.47 104.78
printtokens-1 JOMP1 14869.77 379.38 5.83 0.45 11084.23 310.38 3779.70 119.98
printtokens-1 JOMP2 10112.50 146.97 5.70 0.46 5905.90 87.01 4200.90 107.54
printtokens-1 JOMP4 7950.77 165.02 5.67 0.47 3633.93 63.73 4311.17 127.42
printtokens-1 GPGPU 5739.60 145.89 469.33 3.64 1934.33 124.20 3335.93 100.65

printtokens-2 CPU 12518.40 146.89 0.00 0.00 8756.17 68.64 3762.23 109.13
printtokens-2 JOMP1 15029.73 383.27 5.77 0.62 11220.00 297.28 3803.97 120.04
printtokens-2 JOMP2 10162.13 140.35 5.73 0.44 5954.07 88.72 4202.33 102.93
printtokens-2 JOMP4 8036.67 131.23 5.80 0.40 3692.87 68.79 4338.00 103.05
printtokens-2 GPGPU 5685.50 146.80 468.90 2.20 1867.03 109.29 3349.57 95.57

printtokens-3 CPU 12335.80 131.26 0.00 0.00 8626.63 60.42 3709.17 102.36
printtokens-3 JOMP1 14965.80 416.84 5.80 0.48 11179.60 297.77 3780.40 156.59
printtokens-3 JOMP2 10185.57 128.75 5.53 0.50 5930.50 73.85 4249.53 102.33
printtokens-3 JOMP4 8086.13 167.18 5.77 0.42 3688.27 84.40 4392.10 112.38
printtokens-3 GPGPU 5784.47 157.36 468.33 4.78 1952.60 127.56 3363.53 82.57

printtokens-4 CPU 12360.47 115.52 0.00 0.00 8670.77 62.58 3689.70 81.87
printtokens-4 JOMP1 14690.43 337.86 5.73 0.44 11004.50 264.70 3680.20 141.57
printtokens-4 JOMP2 10140.37 115.35 5.70 0.46 5944.17 85.72 4190.50 104.89
printtokens-4 JOMP4 8010.47 199.55 5.63 0.48 3673.30 129.08 4331.53 129.24
printtokens-4 GPGPU 5642.50 157.42 467.80 2.91 1883.70 139.35 3291.00 90.03

schedule-1 CPU 7638.67 117.48 0.00 0.00 4439.20 70.69 3199.47 65.11
schedule-1 JOMP1 7871.10 107.36 3.40 0.49 4679.13 86.89 3188.57 82.29
schedule-1 JOMP2 6257.03 90.83 3.47 0.50 2630.67 54.54 3622.90 105.58
schedule-1 JOMP4 5450.87 97.13 3.57 0.50 1740.70 43.13 3706.60 84.68
schedule-1 GPGPU 4893.73 219.03 475.37 2.50 1631.47 213.80 2786.90 82.99

schedule-2 CPU 7745.30 104.94 0.00 0.00 4499.87 39.01 3245.43 80.30
schedule-2 JOMP1 8032.80 113.87 3.53 0.50 4793.07 75.86 3236.20 90.57
schedule-2 JOMP2 6341.13 111.05 3.60 0.49 2676.43 49.23 3661.10 97.28
schedule-2 JOMP4 5504.40 141.96 3.47 0.50 1760.17 57.80 3740.77 104.00
schedule-2 GPGPU 5304.50 112.85 474.90 2.17 2028.83 21.46 2800.77 93.53

schedule-3 CPU 7646.40 124.66 0.00 0.00 4461.60 53.81 3184.80 89.71
schedule-3 JOMP1 7941.90 129.85 3.47 0.50 4715.47 99.74 3222.97 92.20
schedule-3 JOMP2 6251.20 95.49 3.47 0.50 2632.60 39.48 3615.13 96.39
schedule-3 JOMP4 5509.93 125.49 3.60 0.49 1750.40 50.08 3755.93 92.32
schedule-3 GPGPU 5285.13 120.56 474.57 1.56 2026.90 19.19 2783.67 104.82

schedule-4 CPU 7611.70 92.16 0.00 0.00 4430.17 41.45 3181.53 69.16
schedule-4 JOMP1 8033.37 122.39 3.47 0.50 4792.00 92.38 3237.90 96.45
schedule-4 JOMP2 6359.90 85.07 3.63 0.48 2693.93 45.06 3662.33 84.43
schedule-4 JOMP4 5553.03 100.72 3.53 0.50 1771.70 38.32 3777.80 88.11
schedule-4 GPGPU 5307.77 112.28 474.83 1.85 2037.33 20.37 2795.60 96.75

printtokens CPU 201468.50 1017.39 0.00 0.00 168824.77 933.12 32643.73 217.17
printtokens JOMP1 264294.97 730.51 12.20 0.40 231541.57 668.03 32741.20 268.03
printtokens JOMP2 162367.67 368.62 12.47 0.50 124352.20 351.64 38003.00 298.90
printtokens JOMP4 140384.07 319.11 12.23 0.42 102300.67 184.97 38071.17 242.94
printtokens GPGPU 44592.67 234.10 470.10 1.35 12097.70 26.65 32024.87 234.80

schedule CPU 95693.77 607.90 0.00 0.00 74140.63 504.25 21553.13 175.79
schedule JOMP1 139348.20 609.53 16.73 0.51 117751.40 547.86 21580.07 310.49
schedule JOMP2 88385.17 383.10 16.53 0.50 63433.77 271.22 24934.87 304.31
schedule JOMP4 75779.67 584.89 16.63 0.55 50686.53 377.03 25076.50 480.73
schedule GPGPU 28351.07 324.36 464.73 1.59 6899.33 20.27 20987.00 328.10

printtokens2 CPU 200409.53 1007.63 0.00 0.00 167983.10 860.30 32426.43 256.84
printtokens2 JOMP1 278160.67 788.57 12.57 0.50 245605.30 794.70 32542.80 217.64
printtokens2 JOMP2 169781.93 604.65 12.33 0.54 132011.97 481.70 37757.63 340.18
printtokens2 JOMP4 146077.10 460.93 12.43 0.50 108003.00 325.04 38061.67 335.96
printtokens2 GPGPU 45705.40 221.84 470.67 1.30 13294.90 27.15 31939.83 219.62

schedule2 CPU 88307.47 907.51 0.00 0.00 66683.77 728.58 21623.70 409.08
schedule2 JOMP1 124601.87 585.05 16.33 0.60 102931.23 557.67 21654.30 409.55
schedule2 JOMP2 80791.20 587.41 16.70 0.97 55709.73 231.85 25064.77 491.77
schedule2 JOMP4 69575.73 536.93 16.50 1.06 44214.20 299.20 25345.03 424.66
schedule2 GPGPU 28571.07 359.22 462.53 1.80 6794.00 21.28 21314.53 363.45

tcas CPU 33098.07 403.64 0.00 0.00 19479.47 335.46 13618.60 126.26
tcas JOMP1 39282.17 423.11 14.07 1.31 25542.43 408.53 13725.67 178.59
tcas JOMP2 30021.70 308.38 14.20 1.30 14239.20 215.67 15768.30 189.47
tcas JOMP4 25391.43 229.51 14.10 1.47 9460.17 189.81 15917.17 242.64
tcas GPGPU 17099.93 166.20 466.40 2.32 3476.97 22.49 13156.57 163.79

totinfo CPU 33547.10 414.49 0.00 0.00 23190.27 212.64 10356.83 236.96
totinfo JOMP1 37089.93 305.02 13.23 1.33 26853.87 285.81 10222.83 146.45
totinfo JOMP2 26280.27 277.43 13.43 1.17 14567.70 155.58 11699.13 196.05
totinfo JOMP4 20867.60 208.74 13.70 1.59 8988.33 76.84 11865.57 189.78
totinfo GPGPU 13409.37 131.48 465.00 3.04 3065.73 28.02 9878.63 132.19

flex CPU 68898.23 562.97 0.00 0.00 66074.40 554.00 2823.83 60.97
flex JOMP1 43761.27 1667.94 14.07 0.73 40925.87 1678.87 2821.33 74.69
flex JOMP2 24966.77 513.57 13.63 0.48 21769.90 509.27 3183.23 60.48
flex JOMP4 16441.23 232.20 13.90 0.54 13223.03 231.11 3204.30 71.58
flex GPGPU 10103.20 65.62 465.27 2.31 7225.33 10.47 2412.60 66.89

gzip CPU 73950.87 959.62 0.00 0.00 70627.90 946.41 3322.97 58.53
gzip JOMP1 62003.70 1154.83 12.77 0.76 58680.57 1157.14 3310.37 65.29
gzip JOMP2 34440.27 591.68 12.40 0.55 30655.77 582.96 3772.10 87.57
gzip JOMP4 22367.40 539.74 12.57 0.80 18535.70 545.24 3819.13 82.22
gzip GPGPU 9240.03 69.80 463.90 1.70 5831.23 9.23 2944.90 69.46

sed CPU 124817.33 1976.92 0.00 0.00 120265.57 1930.36 4551.77 72.83
sed JOMP1 122040.30 1435.61 11.73 0.57 117454.93 1441.36 4573.63 68.62
sed JOMP2 66612.53 649.39 11.53 0.56 61453.23 645.79 5147.77 82.37
sed JOMP4 41056.63 385.78 11.47 0.56 35821.10 398.33 5224.07 81.48
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sed GPGPU 12147.77 75.00 467.27 2.14 7498.07 11.22 4182.43 77.26

space-1 CPU 128911.03 3000.98 0.00 0.00 125323.07 2979.24 3587.97 62.34
space-1 JOMP1 72884.27 1545.06 13.27 0.81 69262.87 1538.28 3608.13 74.12
space-1 JOMP2 39989.00 878.97 13.13 0.43 35861.10 859.12 4114.77 89.34
space-1 JOMP4 25293.07 395.23 13.20 0.40 21164.57 392.79 4115.30 86.67
space-1 GPGPU 12270.57 61.69 466.80 1.80 8622.20 10.40 3181.57 64.01

space-2 CPU 126462.67 2652.95 0.00 0.00 122919.20 2592.98 3543.47 87.69
space-2 JOMP1 68066.23 1147.03 13.07 0.44 64527.43 1164.34 3525.73 78.28
space-2 JOMP2 37911.63 594.27 13.17 0.37 33840.57 583.31 4057.90 71.06
space-2 JOMP4 24380.70 555.05 13.00 0.26 20286.67 553.22 4081.03 69.44
space-2 GPGPU 11625.40 68.16 465.10 1.62 8021.33 9.84 3138.97 68.86

space-3 CPU 130576.67 2677.40 0.00 0.00 126974.30 2640.58 3602.37 73.72
space-3 JOMP1 72470.93 1543.13 13.03 0.31 68864.00 1531.11 3593.90 75.07
space-3 JOMP2 39988.90 784.99 13.10 0.54 35870.73 777.28 4105.07 78.43
space-3 JOMP4 25302.80 447.97 13.20 0.40 21153.63 433.21 4135.97 74.92
space-3 GPGPU 12279.10 84.11 466.67 1.94 8622.53 8.05 3189.90 86.12

space-4 CPU 128981.73 3442.49 0.00 0.00 125395.00 3394.39 3586.73 78.57
space-4 JOMP1 73208.10 2310.12 13.10 0.30 69642.43 2325.78 3552.57 61.09
space-4 JOMP2 39689.37 800.83 13.13 0.34 35634.33 818.95 4041.90 91.29
space-4 JOMP4 25216.80 351.18 13.07 0.36 21115.67 332.19 4088.07 82.16
space-4 GPGPU 12233.17 81.10 466.30 1.73 8622.07 10.74 3144.80 80.37

replace CPU 325246.37 1698.49 0.00 0.00 281927.93 1405.19 43318.43 848.20
replace JOMP1 445375.07 1524.35 13.30 0.46 402127.67 1236.82 43234.10 835.37
replace JOMP2 265138.93 1078.85 13.20 0.48 214949.63 672.27 50176.10 848.70
replace JOMP4 225739.00 892.89 13.20 0.48 175134.70 253.04 50591.10 888.86
replace GPGPU 61807.93 519.29 472.07 3.92 18291.03 31.20 43044.83 523.68

bash CPU 2071836.07 29845.30 0.00 0.00 2051591.57 29674.30 20244.50 206.06
bash JOMP1 1346585.83 16962.75 53.30 1.39 1326396.90 16966.54 20135.63 159.67
bash JOMP2 715605.03 11951.22 53.37 1.25 693778.67 11979.47 21773.00 150.21
bash JOMP4 425783.60 5673.48 54.07 1.73 403970.63 5677.03 21758.90 209.60
bash GPGPU 82574.53 194.61 517.07 2.35 62371.57 13.89 19685.90 189.82

ibm CPU 4347517.13 462072.40 0.00 0.00 4178547.93 831883.88 168969.20 709728.80
ibm JOMP1 1445294.57 38625.23 136.07 3.59 1406525.60 39448.65 38632.90 5916.45
ibm JOMP2 783762.87 20494.64 136.13 3.48 745728.40 20522.99 37898.33 3591.78
ibm JOMP4 481433.27 11823.74 135.63 3.77 444301.60 11749.65 36996.03 784.43
ibm GPGPU 174990.80 5095.10 613.67 61.27 136661.40 849.63 37715.73 4931.15
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Table 13: Execution time of SPEA2 algotirhm

Subject Config T̄total σTtotal
T̄init σTinit

T̄fitness σTfitness
T̄remaining σTremaining

printtokens-1 CPU 54737.30 7183.20 0.00 0.00 8562.97 75.10 46174.33 7167.90
printtokens-1 JOMP1 60409.20 7729.38 5.73 0.44 10825.50 121.39 49577.97 7709.26
printtokens-1 JOMP2 59056.57 7209.10 5.73 0.44 5840.13 69.33 53210.70 7212.29
printtokens-1 JOMP4 52838.37 15410.19 5.77 0.42 3571.33 39.62 49261.27 15434.46
printtokens-1 GPGPU 55810.83 7876.04 471.83 14.16 3535.63 35.46 51803.37 7864.52

printtokens-2 CPU 61021.80 9959.34 0.00 0.00 8769.17 68.85 52252.63 9922.10
printtokens-2 JOMP1 61762.40 7379.62 5.80 0.40 11007.90 168.96 50748.70 7391.38
printtokens-2 JOMP2 67094.07 12558.61 5.77 0.42 5971.47 76.16 61116.83 12560.31
printtokens-2 JOMP4 54581.23 15862.40 5.90 0.30 3634.47 68.27 50940.87 15904.60
printtokens-2 GPGPU 56347.47 8010.39 468.90 2.36 3521.87 30.39 52356.70 8007.62

printtokens-3 CPU 55246.60 8305.32 0.00 0.00 8658.43 66.02 46588.17 8299.09
printtokens-3 JOMP1 57619.10 6555.12 5.83 0.37 10936.97 133.77 46676.30 6526.33
printtokens-3 JOMP2 60952.13 11448.43 5.63 0.48 5931.23 59.59 55015.27 11439.49
printtokens-3 JOMP4 57878.43 19310.31 5.67 0.47 3601.83 44.26 54270.93 19337.38
printtokens-3 GPGPU 54563.63 7163.49 467.97 1.83 3530.53 22.73 50565.13 7159.91

printtokens-4 CPU 59433.97 7999.19 0.00 0.00 8692.00 70.85 50741.97 7986.66
printtokens-4 JOMP1 59541.43 6497.08 5.67 0.47 10950.07 156.36 48585.70 6514.42
printtokens-4 JOMP2 64436.50 8461.38 5.77 0.42 5915.53 64.97 58515.20 8458.26
printtokens-4 JOMP4 56524.23 20522.42 5.67 0.47 3590.87 51.32 52927.70 20535.99
printtokens-4 GPGPU 58235.23 5732.37 467.17 2.38 3101.50 570.40 54666.57 5759.73

schedule-1 CPU 103525.27 10751.91 0.00 0.00 4445.07 31.51 99080.20 10752.81
schedule-1 JOMP1 104730.07 13222.87 3.70 0.46 4700.47 109.48 100025.90 13203.26
schedule-1 JOMP2 115522.53 9903.85 3.63 0.48 2618.30 49.96 112900.60 9911.08
schedule-1 JOMP4 100832.93 35751.09 3.77 0.42 1669.10 31.57 99160.07 35770.11
schedule-1 GPGPU 108538.97 13846.59 475.30 1.66 2570.70 165.46 105492.97 13856.20

schedule-2 CPU 111070.57 8120.00 0.00 0.00 4522.30 32.82 106548.27 8118.41
schedule-2 JOMP1 107589.33 8283.42 3.70 0.46 4799.63 61.40 102786.00 8297.07
schedule-2 JOMP2 117569.23 9742.41 3.57 0.50 2684.60 48.63 114881.07 9751.08
schedule-2 JOMP4 106101.20 37473.79 3.40 0.49 1694.33 39.42 104403.47 37495.24
schedule-2 GPGPU 110804.83 9195.29 476.23 2.68 2616.37 10.64 107712.23 9196.71

schedule-3 CPU 67744.33 8141.45 0.00 0.00 4479.80 34.50 63264.53 8158.15
schedule-3 JOMP1 71534.80 8905.75 3.67 0.47 4676.60 68.23 66854.53 8912.32
schedule-3 JOMP2 77546.20 9676.54 3.47 0.50 2624.80 59.67 74917.93 9667.77
schedule-3 JOMP4 67597.97 24248.38 3.60 0.49 1665.37 35.18 65929.00 24263.71
schedule-3 GPGPU 71874.93 8807.73 474.87 1.48 2621.33 8.62 68778.73 8808.51

schedule-4 CPU 83107.30 9619.47 0.00 0.00 4449.13 40.74 78658.17 9599.56
schedule-4 JOMP1 83825.20 11900.34 3.67 0.47 4780.03 83.15 79041.50 11903.98
schedule-4 JOMP2 93997.57 13035.56 3.57 0.50 2658.10 56.89 91335.90 13040.25
schedule-4 JOMP4 83453.57 30179.48 3.73 0.44 1682.83 32.68 81767.00 30193.44

schedule-4 GPGPU 88935.70 9241.76 474.93 2.06 2622.30 10.36 85838.47 9240.44
printtokens CPU 218854.33 1726.93 0.00 0.00 168196.60 1514.85 50657.73 327.32
printtokens JOMP1 287307.47 1127.93 12.37 0.55 236604.07 929.05 50691.03 355.26
printtokens JOMP2 186358.63 576.28 12.47 0.85 127034.93 346.14 59311.23 386.97
printtokens JOMP4 164231.80 2976.55 12.20 0.40 103544.77 472.16 60674.83 2558.07

printtokens GPGPU 62718.07 617.76 470.47 1.50 12305.87 27.83 49941.73 617.07
schedule CPU 108266.97 707.22 0.00 0.00 73895.10 578.85 34371.87 213.91
schedule JOMP1 152762.60 743.22 16.60 0.49 118391.37 599.61 34354.63 549.03
schedule JOMP2 104064.37 734.29 16.43 0.50 63909.73 307.38 40138.20 679.72
schedule JOMP4 91078.00 2702.94 16.57 0.50 50229.77 412.43 40831.67 2467.27
schedule GPGPU 41389.13 616.10 464.77 1.12 7065.23 24.31 33859.13 621.14

printtokens2 CPU 218065.40 885.64 0.00 0.00 167678.67 670.63 50386.73 385.17
printtokens2 JOMP1 298648.77 940.76 12.43 0.62 248103.87 788.46 50532.47 367.08
printtokens2 JOMP2 192170.00 478.57 12.47 0.50 132948.23 405.78 59209.30 293.85
printtokens2 JOMP4 168897.87 2981.31 12.17 0.37 108599.40 488.40 60286.30 2579.16

printtokens2 GPGPU 63975.20 273.85 485.47 79.59 13622.70 27.21 49867.03 313.69
schedule2 CPU 101383.53 1208.80 0.00 0.00 67082.43 1167.92 34301.10 624.25
schedule2 JOMP1 138615.47 2661.56 16.73 1.09 103845.77 1939.76 34752.97 918.69
schedule2 JOMP2 95390.57 928.84 16.67 1.11 55567.10 200.16 39806.80 881.44
schedule2 JOMP4 85278.97 2484.97 16.37 0.60 44539.50 439.27 40723.10 2316.45
schedule2 GPGPU 41635.23 648.52 462.50 1.41 6981.63 23.46 34191.10 641.56

tcas CPU 41985.83 338.61 0.00 0.00 19457.23 195.99 22528.60 207.74
tcas JOMP1 48657.30 796.67 14.10 1.37 25970.57 431.74 22672.63 412.30
tcas JOMP2 40586.10 295.08 13.70 1.16 14255.30 214.12 26317.10 227.65
tcas JOMP4 37024.63 2397.64 14.30 1.00 9625.57 222.57 27384.77 2238.37
tcas GPGPU 26093.17 226.88 465.57 2.73 3544.30 63.69 22083.30 188.19

totinfo CPU 40370.83 424.62 0.00 0.00 23053.97 205.96 17316.87 250.47
totinfo JOMP1 44349.27 366.13 13.47 1.33 27013.60 233.96 17322.20 259.02
totinfo JOMP2 34824.07 391.81 13.10 1.11 14644.00 189.26 20166.97 285.14
totinfo JOMP4 29982.03 1869.13 13.63 1.76 8985.83 155.63 20982.57 1745.97
totinfo GPGPU 20475.40 242.92 464.03 1.96 3071.80 56.35 16939.57 222.17

flex CPU 85954.07 1862.67 0.00 0.00 67851.50 638.68 18102.57 1641.89
flex JOMP1 57963.13 1777.55 13.83 0.64 40302.90 1188.90 17646.40 1186.56
flex JOMP2 41961.70 1604.81 13.90 0.83 21351.73 522.14 20596.07 1538.22
flex JOMP4 32708.03 4129.65 14.30 0.59 12716.27 304.51 19977.47 4062.74
flex GPGPU 26750.37 1510.63 465.13 1.96 7324.43 28.65 18960.80 1490.76

gzip CPU 90650.70 1740.26 0.00 0.00 73402.77 908.02 17247.93 1519.11
gzip JOMP1 78942.40 2740.94 13.37 2.85 60347.33 1754.09 18581.70 1995.90
gzip JOMP2 51022.47 1655.06 12.67 0.54 30961.97 595.97 20047.83 1539.96
gzip JOMP4 38451.73 4173.62 12.40 0.49 18194.50 454.46 20244.83 4111.11

gzip GPGPU 25936.73 1699.42 464.23 2.03 5960.30 22.46 19512.20 1683.50
sed CPU 136519.00 1517.32 0.00 0.00 123618.43 1653.37 12900.57 1057.79
sed JOMP1 129451.17 1686.10 11.53 0.62 116950.97 1566.68 12488.67 902.30
sed JOMP2 75734.37 1315.20 11.73 0.44 61552.53 469.44 14170.10 1074.68
sed JOMP4 50505.77 1092.84 11.73 0.44 35754.93 437.79 14739.10 1097.59

sed GPGPU 20424.73 1333.13 467.80 2.20 7508.57 16.12 12448.37 1322.58
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space-1 CPU 144209.27 2733.97 0.00 0.00 130875.73 2677.66 13333.53 327.63
space-1 JOMP1 80985.53 1312.87 13.13 0.34 67619.57 1327.43 13352.83 244.88
space-1 JOMP2 51000.47 761.16 13.07 0.25 35512.43 712.74 15474.97 274.02
space-1 JOMP4 36331.47 1763.56 13.17 0.37 21285.83 526.62 15032.47 1454.21

space-1 GPGPU 22959.10 424.20 467.00 4.86 8677.07 8.74 13815.03 424.17
space-2 CPU 140650.20 2961.17 0.00 0.00 127750.53 2992.23 12899.67 275.49
space-2 JOMP1 77375.50 1296.40 12.97 0.18 64315.27 1264.78 13047.27 253.93
space-2 JOMP2 48832.40 578.12 13.13 0.34 33724.50 528.94 15094.77 294.24
space-2 JOMP4 34990.77 1657.58 13.00 0.58 20272.27 444.72 14705.50 1387.08

space-2 GPGPU 21956.33 388.68 466.50 1.86 8069.80 11.64 13420.03 390.20
space-3 CPU 146322.57 2154.38 0.00 0.00 133057.60 2094.56 13264.97 232.56
space-3 JOMP1 81090.77 1440.19 13.13 0.43 67842.80 1410.05 13234.83 252.39
space-3 JOMP2 51179.13 956.43 13.10 0.40 35734.40 895.88 15431.63 274.58
space-3 JOMP4 36106.43 1604.97 13.13 0.50 21230.63 421.11 14862.67 1428.65

space-3 GPGPU 22679.07 279.30 466.53 2.01 8672.27 8.97 13540.27 277.75
space-4 CPU 143502.33 3316.32 0.00 0.00 129979.30 3294.07 13523.03 307.61
space-4 JOMP1 81009.73 1379.42 13.07 0.25 67473.00 1373.53 13523.67 273.02
space-4 JOMP2 50280.77 1640.55 13.13 0.34 35278.87 550.71 14988.77 1489.76
space-4 JOMP4 36162.23 1593.24 12.93 0.25 20978.10 366.36 15171.20 1510.98

space-4 GPGPU 23215.27 480.33 465.63 1.52 8675.47 8.98 14074.17 479.95
replace CPU 348104.93 2187.83 0.00 0.00 281450.50 1536.71 66654.43 1342.59
replace JOMP1 469796.70 1506.10 13.40 0.55 403195.30 980.27 66588.00 1178.14
replace JOMP2 292941.60 3840.15 13.17 0.37 215710.27 774.62 77218.17 3352.11
replace JOMP4 254205.57 3788.56 13.13 0.34 175560.03 745.43 78632.40 3260.21

replace GPGPU 85664.63 735.20 471.57 2.19 18829.70 31.29 66363.37 736.89
bash CPU 2130058.33 26423.09 0.00 0.00 2099565.87 26226.12 30492.47 296.06
bash JOMP1 1363130.33 25211.50 53.93 1.57 1332820.57 25252.03 30255.83 282.71
bash JOMP2 727041.77 9231.70 53.60 1.54 692904.27 9237.17 34083.90 1158.28
bash JOMP4 436764.23 6370.28 54.33 1.19 402476.50 6614.83 34233.40 1205.63
bash GPGPU 92768.33 298.38 516.80 1.74 62381.57 12.13 29869.97 294.00

ibm CPU 4605875.50 460148.49 0.00 0.00 4558144.60 456561.49 47730.90 3707.93
ibm JOMP1 1472382.37 43731.58 137.50 3.70 1423957.80 43151.02 48287.07 4840.65
ibm JOMP2 805397.90 19822.93 136.53 3.79 755478.63 19194.49 49782.73 5430.14
ibm JOMP4 496257.47 15594.50 135.97 2.96 447501.90 14863.69 48619.60 1572.93
ibm GPGPU 187426.13 6736.59 645.33 157.36 136904.93 1187.38 49875.87 6015.35
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Table 14: Execution time of Two Archive algotirhm

Subject Config T̄total σTtotal
T̄init σTinit

T̄fitness σTfitness
T̄remaining σTremaining

printtokens-1 CPU 9126.60 126.85 0.00 0.00 7742.80 102.28 1383.80 45.34
printtokens-1 JOMP1 12467.17 88.56 5.67 0.47 11116.57 184.10 1344.93 132.62
printtokens-1 JOMP2 7658.47 132.18 5.43 0.50 6122.23 50.27 1530.80 155.90
printtokens-1 JOMP4 5439.40 158.63 5.83 0.37 3862.43 36.76 1571.13 163.76
printtokens-1 GPGPU 3514.80 115.19 471.27 16.17 2121.33 101.65 922.20 33.19

printtokens-2 CPU 9397.17 116.54 0.00 0.00 7966.17 97.71 1431.00 31.85
printtokens-2 JOMP1 12594.73 166.41 5.60 0.49 11217.67 103.84 1371.47 131.01
printtokens-2 JOMP2 7799.87 155.56 5.70 0.46 6231.20 46.99 1562.97 157.90
printtokens-2 JOMP4 5536.53 142.51 5.80 0.40 3914.27 36.16 1616.47 156.45
printtokens-2 GPGPU 3619.00 132.69 468.73 2.61 2173.53 112.02 976.73 32.15

printtokens-3 CPU 9070.03 107.27 0.00 0.00 7711.27 100.75 1358.77 19.02
printtokens-3 JOMP1 12474.47 147.29 5.70 0.46 11166.27 108.31 1302.50 126.92
printtokens-3 JOMP2 7678.93 128.32 5.67 0.60 6174.80 36.77 1498.47 138.76
printtokens-3 JOMP4 5454.77 158.54 5.33 0.47 3895.80 31.81 1553.63 147.48
printtokens-3 GPGPU 3480.23 91.11 469.60 6.18 2110.93 78.05 899.70 22.23

printtokens-4 CPU 9266.03 103.05 0.00 0.00 7881.93 89.80 1384.10 29.26
printtokens-4 JOMP1 12518.37 159.55 5.70 0.46 11195.47 83.36 1317.20 147.05
printtokens-4 JOMP2 7689.80 146.34 5.53 0.50 6165.00 48.71 1519.27 170.63
printtokens-4 JOMP4 5458.00 161.15 5.57 0.50 3874.77 35.22 1577.67 162.46
printtokens-4 GPGPU 3523.97 131.34 470.67 8.37 2123.60 119.18 929.70 30.61

schedule-1 CPU 6075.77 84.26 0.00 0.00 4843.37 63.16 1232.40 42.59
schedule-1 JOMP1 5998.63 174.12 3.50 0.50 4818.23 56.72 1176.90 162.28
schedule-1 JOMP2 4110.47 228.08 3.27 0.44 2776.67 54.51 1330.53 186.69
schedule-1 JOMP4 3240.50 239.13 3.53 0.50 1865.17 49.68 1371.80 196.83
schedule-1 GPGPU 2794.13 38.75 475.10 2.68 1574.63 14.94 744.40 37.45

schedule-2 CPU 6127.60 64.40 0.00 0.00 4890.77 53.02 1236.83 21.30
schedule-2 JOMP1 6126.73 167.85 3.37 0.48 4944.30 46.59 1179.07 163.06
schedule-2 JOMP2 4184.70 212.05 3.53 0.50 2824.23 37.85 1356.93 195.68
schedule-2 JOMP4 3282.10 239.99 3.57 0.62 1883.30 50.56 1395.23 195.09
schedule-2 GPGPU 2794.80 17.58 475.23 4.42 1569.53 13.10 750.03 15.16

schedule-3 CPU 5937.73 86.90 0.00 0.00 4756.67 61.36 1181.07 32.17
schedule-3 JOMP1 5985.37 180.29 3.33 0.47 4842.53 67.39 1139.50 150.55
schedule-3 JOMP2 4080.90 210.65 3.40 0.49 2781.77 42.53 1295.73 177.25
schedule-3 JOMP4 3182.80 231.91 3.40 0.49 1859.47 57.61 1319.93 179.05
schedule-3 GPGPU 2750.83 34.19 475.00 4.06 1587.83 16.11 688.00 38.95

schedule-4 CPU 6041.80 170.24 0.00 0.00 4818.93 130.01 1222.87 45.36
schedule-4 JOMP1 6078.70 177.02 3.50 0.50 4912.13 59.95 1163.07 164.25
schedule-4 JOMP2 4156.27 222.57 3.57 0.50 2801.57 59.08 1351.13 197.12
schedule-4 JOMP4 3247.27 232.23 3.20 0.40 1881.07 47.90 1363.00 192.78
schedule-4 GPGPU 2807.13 37.09 474.17 1.37 1590.10 23.66 742.87 49.50

printtokens CPU 116826.10 624.55 0.00 0.00 106223.67 599.05 10602.43 71.58
printtokens JOMP1 249776.57 1050.07 12.03 0.18 239145.43 1066.37 10619.10 95.66
printtokens JOMP2 142503.97 679.32 12.13 0.34 130157.10 739.65 12334.73 193.63
printtokens JOMP4 118927.97 554.48 12.07 0.25 106493.77 563.52 12422.13 160.67
printtokens GPGPU 25521.53 142.94 471.53 2.93 14880.73 113.84 10169.27 60.71

schedule CPU 62042.50 865.19 0.00 0.00 55003.57 828.49 7038.93 47.23
schedule JOMP1 126570.23 554.57 14.63 0.80 119589.93 564.16 6965.67 120.73
schedule JOMP2 73743.40 367.67 14.73 1.00 65575.97 380.06 8152.70 142.48
schedule JOMP4 60463.40 441.32 14.67 0.65 52194.73 499.49 8254.00 210.47
schedule GPGPU 15748.17 124.66 466.57 6.87 8648.73 81.42 6632.87 68.09

printtokens2 CPU 123929.63 1103.11 0.00 0.00 113296.40 1078.22 10633.23 35.64
printtokens2 JOMP1 261326.87 910.11 12.13 0.34 250733.73 981.87 10581.00 198.33
printtokens2 JOMP2 148466.10 470.87 12.00 0.00 136103.07 525.71 12351.03 168.36
printtokens2 JOMP4 123841.30 433.05 12.07 0.25 111424.20 436.40 12405.03 241.67
printtokens2 GPGPU 26748.17 133.66 471.20 2.01 16101.30 109.75 10175.67 53.47

schedule2 CPU 55375.07 707.72 0.00 0.00 48138.83 681.86 7236.23 67.16
schedule2 JOMP1 111285.10 737.20 14.33 0.47 104218.50 346.99 7052.27 618.16
schedule2 JOMP2 65829.53 287.60 14.90 1.11 57524.27 354.33 8290.37 201.67
schedule2 JOMP4 54595.20 419.74 14.87 1.45 46196.63 466.64 8383.70 246.43
schedule2 GPGPU 15855.27 70.13 464.43 2.63 8644.97 73.30 6745.87 41.31

tcas CPU 20871.43 90.69 0.00 0.00 16171.60 71.28 4699.83 38.20
tcas JOMP1 31284.30 245.13 13.93 1.48 26661.40 308.60 4608.97 213.03
tcas JOMP2 20876.13 183.96 13.37 1.25 15493.03 253.82 5369.73 223.50
tcas JOMP4 16128.80 224.15 13.27 0.81 10689.37 139.32 5426.17 289.61
tcas GPGPU 9308.23 166.32 472.33 25.73 4563.17 142.94 4272.73 90.77

totinfo CPU 20730.80 484.32 0.00 0.00 17584.63 476.84 3146.17 28.83
totinfo JOMP1 30592.67 208.11 12.93 0.85 27496.30 182.47 3083.43 129.72
totinfo JOMP2 18946.33 155.43 13.40 1.69 15360.80 170.58 3572.13 170.04
totinfo JOMP4 13462.13 275.21 12.67 0.54 9813.60 203.27 3635.87 171.23
totinfo GPGPU 6940.73 38.39 465.30 2.15 3762.67 33.53 2712.77 28.69

flex CPU 71001.13 549.11 0.00 0.00 70153.80 541.84 847.33 30.53
flex JOMP1 41637.27 1145.73 13.30 0.46 40827.47 1149.14 796.50 133.08
flex JOMP2 22405.10 745.27 13.20 0.40 21483.07 739.98 908.83 158.59
flex JOMP4 13882.63 412.73 13.30 0.46 12958.20 344.10 911.13 159.68
flex GPGPU 8171.10 24.95 464.70 1.62 7274.80 8.56 431.60 25.19

gzip CPU 57868.43 684.16 0.00 0.00 56558.87 678.22 1309.57 29.27
gzip JOMP1 59787.40 858.20 12.97 0.75 58544.00 859.46 1230.43 151.80
gzip JOMP2 32495.43 697.43 12.83 0.37 31049.13 669.21 1433.47 160.91
gzip JOMP4 19922.97 283.05 12.70 0.46 18453.80 232.66 1456.47 172.53
gzip GPGPU 7342.70 23.51 465.40 1.99 6017.30 16.96 860.00 20.26

sed CPU 101820.83 2056.00 0.00 0.00 100210.43 2055.16 1610.40 34.95
sed JOMP1 119835.67 1005.12 11.27 0.44 118254.57 1027.73 1569.83 121.53
sed JOMP2 63544.80 665.11 11.23 0.42 61734.17 690.43 1799.40 115.92
sed JOMP4 38235.60 431.45 11.17 0.37 36391.20 376.47 1833.23 124.44
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sed GPGPU 9386.03 28.80 467.40 1.17 7753.57 11.73 1165.07 26.66

space-1 CPU 124296.60 1476.27 0.00 0.00 122756.60 1459.08 1540.00 24.09
space-1 JOMP1 69564.13 1057.82 13.30 0.46 68097.53 989.21 1453.30 166.96
space-1 JOMP2 37794.93 631.99 13.70 0.46 36065.37 571.77 1715.87 133.71
space-1 JOMP4 23342.97 498.70 13.50 0.50 21573.17 465.26 1756.30 121.08
space-1 GPGPU 10346.67 35.57 467.60 3.10 8763.73 10.90 1115.33 39.34

space-2 CPU 121329.57 1983.92 0.00 0.00 119826.43 1967.27 1503.13 25.03
space-2 JOMP1 66364.53 1008.83 13.70 0.46 64902.90 923.76 1447.93 160.68
space-2 JOMP2 35846.80 494.02 13.40 0.49 34136.60 466.86 1696.80 154.29
space-2 JOMP4 21940.43 360.38 13.37 0.48 20221.23 257.62 1705.83 199.13
space-2 GPGPU 9700.07 25.03 466.83 1.55 8147.17 9.38 1086.07 27.75

space-3 CPU 126114.77 2653.15 0.00 0.00 124586.27 2628.86 1528.50 34.71
space-3 JOMP1 70485.43 912.41 13.63 0.48 69016.53 918.78 1455.27 153.50
space-3 JOMP2 37861.03 440.74 13.47 0.50 36182.00 490.41 1665.57 185.65
space-3 JOMP4 22984.63 462.90 13.63 0.48 21253.93 419.50 1717.07 208.97
space-3 GPGPU 10327.40 29.02 467.47 1.89 8763.63 13.79 1096.30 29.10

space-4 CPU 123416.00 1596.55 0.00 0.00 121890.70 1580.69 1525.30 25.12
space-4 JOMP1 69634.33 1280.05 13.50 0.50 68162.20 1222.59 1458.63 124.06
space-4 JOMP2 37268.80 670.57 13.67 0.47 35554.63 620.05 1700.50 143.71
space-4 JOMP4 22738.10 273.34 13.40 0.49 21004.40 227.08 1720.30 183.28
space-4 GPGPU 10341.97 31.83 467.63 3.31 8765.67 9.73 1108.67 33.49

replace CPU 197579.20 4653.83 0.00 0.00 183648.37 4512.88 13930.83 175.74
replace JOMP1 420619.97 906.13 13.27 0.44 406724.80 864.00 13881.90 276.66
replace JOMP2 236038.03 814.39 13.40 0.49 219521.77 557.41 16502.87 632.13
replace JOMP4 195827.97 468.77 13.33 0.60 179560.27 376.03 16254.37 300.60
replace GPGPU 36315.70 322.90 473.40 2.50 22125.53 179.07 13716.77 256.86

bash CPU 1193310.07 18851.34 0.00 0.00 1188921.17 18790.88 4388.90 69.23
bash JOMP1 1354828.80 20224.41 53.00 0.97 1350286.23 20221.98 4489.57 414.13
bash JOMP2 705998.83 7061.49 53.57 0.92 700673.77 7103.10 5271.50 741.65
bash JOMP4 413619.80 6377.16 54.10 1.64 408339.13 6412.11 5226.57 471.50
bash GPGPU 67379.67 81.06 518.43 9.40 63013.40 26.44 3847.83 71.51

ibm CPU 2916323.63 46962.47 0.00 0.00 2914980.77 46967.53 1342.87 35.61
ibm JOMP1 1414298.60 50912.92 136.37 3.06 1413007.20 50902.83 1155.03 156.13
ibm JOMP2 754894.63 20118.08 135.70 2.90 753402.47 20084.07 1356.47 147.91
ibm JOMP4 446434.20 13787.74 133.87 3.02 444931.47 13775.29 1368.87 171.03
ibm GPGPU 139075.90 84.86 622.10 65.31 137737.47 84.69 716.33 74.27


