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Abstract One important issue addressed by software companies is to determine which

features should be included in the next release of their products, in such a way that the

highest possible number of customers get satisfied while entailing the minimum cost

for the company. This problem is known as the Next Release Problem (NRP). Since

minimizing the total cost of including new features into a software package and maxi-

mizing the total satisfaction of customers are contradictory objectives, the problem has

a multi-objective nature. In this work, we apply three state-of-the-art multi-objective

metaheuristics (two genetic algorithms, NSGA-II and MOCell, and one evolutionary

strategy, PAES) for solving NRP. Our goal is twofold: on the one hand, we are interested

in analyzing the results obtained by these metaheuristics over a benchmark composed

of six academic problems plus a real world data set provided by Motorola; on the other

hand, we want to provide insight about the solution to the problem. The obtained

results show three different kinds of conclusions: NSGA-II is the technique computing

the highest number of optimal solutions, MOCell provides the decision maker with the

widest range of different solutions, and PAES is the fastest technique (but with the least

accurate results). Furthermore, we have observed that the best solutions found so far

are composed of a high percentage of low-cost requirements and of those requirements

that produce the largest satisfaction on the customers as well.
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1 Introduction

Traditionally, Search Based Software Engineering (SBSE) has been widely used in Soft-

ware Testing [Afzal et al., 2009,Harman et al., 2009,Harman, 2007,McMinn, 2004] and

comparatively less so in other fields of Software Engineering. However, there is evidence

that SBSE techniques are starting to find their way into all aspects of software engi-

neering activity from the earliest phases of the software development lifecycle concerned

with requirements, management and planning right through to the post delivery phases

of maintenance and re-engieeering [Harman et al., 2009]. This paper focuses on one of

these early lifecycle problems, centred on requirements analysis.

In more traditionally considered areas of SBSE, the goal has tended to be one

of finding the optimal or near optimal solution to the problem in hand, with re-

spect to a single objective. For example, the very first work on SBSE [Korel, 1990,

Miller and Spooner, 1976,Xanthakis et al., 1992] concerned itself with finding optimal

or near optimal test sets.

However, more recently it has been realized that SBSE can also be used as a

tool for decision support, using multi-objective approaches. In this mode, the search

based approach can be used to provide insight to the Software Engineer, allowing

him or her to explore the possible space of candidate solutions with certain proper-

ties, revealing structure in the solution space and potential points of attractive trade

off. For example, recent work has considered multi-objective formulations of problems

in testing [Del Grosso et al., 2005,Everson and Fieldsend, 2006,Lakhotia et al., 2007,

Walcott et al., 2006,Yoo and Harman, 2007], quality assurance [Khoshgoftaar et al., 2004],

refactoring [Harman and Tratt, 2007] and project management [Alba and Chicano, 2007]

as well as requirements engineering [Finkelstein et al., 2008,Saliu and Ruhe, 2007,

Zhang et al., 2007].

This focus on decision support has been technically underpinned by the re-formulation

of many problems in SBSE as multi-objective problems, to which a Pareto optimal ap-

proach can be readily applied. In Pareto optimal approaches, the outcome of the search

is not a single (optimal or near optimal solution). It is a set of candidate solutions, each

of which cannot be improved upon according to one of the multiple objectives to be

optimized without a negative impact on another. This set of solutions is called a ‘non–

dominated’ set of solutions, because each is incomparable; no one solution dominates

any other in terms of meeting the multiple objectives. In the Pareto optimal approach,

all objectives are considered incomparable, so that weighting the different objectives

in order to combine them into a single weighted sum objective, is impossible.

Any problem involving some form of cost–benefit analysis can be thought of as a

canonical instance of the general class of problems for which a Pareto optimal approach

is attractive. In any cost–benefit analysis, it will be hard to determine to what degree a

decision maker can yield up a perceived benefit in order to reduce cost. Likewise, such

a decision maker will not be able to readily decide, a priori, how much cost increase

they would be prepared to tolerate for a commensurate increase in benefit. Cost and

benefit simply are not like that; they require subjective human judgements to be made

and depend on circumstances.

In such a potentially vague scenario space, in which the exercise of human judge-

ment remains paramount, it may, at first, be difficult to see how one might successfully

apply a search based technique. However, the key lies in the manner in which a Pareto

approach presents a Pareto front of non–dominated solutions, each of which denotes

a cost–benefit pair for which no other pair can be found which improves upon both
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cost and benefit. The shape of this Pareto front gives insight to the decision maker.

Though he or she may not be able to determine, a priori, the trade off they are pre-

pared to accept between these two incompatible objectives, the shape of the front can,

a posteriori direct them to points at which the trade off is most attractive.

In this paper we focus on the problem of helping the decision maker who is con-

cerned with requirements analysis. Specifically, we seek to provide decision support for

what has been termed the Next Release Problem (NRP). The problem here is not to

tell the decision maker what requirement should be in the next release of the software;

no self-respecting software engineer would entirely trust and rely upon an automated

tool to make such a decision. Rather, the problem is to provide decision support, to

help the manager to identify those solutions that best balance the competing concerns

of cost and benefit. The approach we adopt is a Pareto optimal one, in which the deci-

sion maker supplies the tool with estimates of cost and assessments of benefit and the

automated part of the analysis uses SBSE to search for a good Pareto front. A ‘good’

Pareto front is one which provides accuracy and diversity, as will be explained more

formally later.

Furthermore, NRP has been shown to be an instance of the Knapsack problem,

which is NP-hard [Papadimitriou and Steiglitz, 1982], and, as a consequence, it cannot

be solved efficiently by using exact optimization methods for large problem instances

(e.g., artificial intelligence techniques such as A∗). This situation makes necessary

the application of techniques such as metaheuristics [Glover and Kochenberger, 2003],

commonly used in SBSE. Although these kinds of algorithms do not ensure to find op-

timal solutions, they are able to obtain near-optimal solutions in a reasonable amount

of time.

Metaheuristics can be integrated in automated tools for searching the enormous

space of possibilities in order to present the decision maker with a front of candidate

solutions that collectively denote the set of complementary best solutions that can

be found. After that, the software engineer makes the ultimate decision as to how to

proceed with and with which requirement set to proceed. Thus, this SBSE application

scenario aims to draw on the complementary abilities of automated search and human

domain knowledge.

This approach is not novel in requirements analysis, since multi-objective formula-

tions of requirements analysis problems have been proposed by Zhang et al. [Zhang et al., 2007]

and Saliu and Ruhe [Saliu and Ruhe, 2007]. However, there has been no previous in–

depth empirical analysis of different algorithms to determine which provides the best

results for this problem in terms of the efficiency (time to compute Pareto fronts)

and effectiveness (quality and diversity of fronts). Clearly the quality and diversity

of the Pareto front are vital to the approach if the decision maker is to be able to

rely on an accurate assessment of the trade offs inherent in their particular instance

of the problem. Furthermore, the performance of the algorithms will be important;

it should any prove to be too slow to produce fronts in a reasonable amount of time

and the decision maker will be unable to ask repeated ‘what if’ questions. This paper

aims to provide just such an empirical study that answers these questions of efficiency

and effectiveness for the Multi Objective Next Release Problem (MONRP). To come

with this issue, three different multi-objective algorithms have been evaluated thor-

ough this paper: NSGA-II [Deb et al., 2002] which is the reference algorithm in the

field of multi-objective optimization, MOCell [Nebro et al., 2006] which has outper-

formed to NSGA-II in several studies, and PAES [Angeline et al., 1999] which is one
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Fig. 1 Examples of dominated and non-dominated solutions.

of the simplest techniques in the field and does not require the adjustment of many

parameters.

The remainder of this work is structured as follows: The next section contains some

background about multi-objective optimization. Section 3 presents the Next Release

Problem formally. The algorithms used in this work are described in Section 4. Section

5 is devoted to experimentation. We describe the obtained results in section 6, and we

study the obtained solutions from the point of view of NRP in Section 7. In section 8,

we describe and analyze the results obtained using a real world instance of the problem.

Section 9 presents related work. Finally, Section 10 draws the main conclusions and

lines of future work.

2 Multi-Objective Background

In this section, we provide the definition of some concepts for a better understanding of

this work. In particular, we define the concept of multi-objective optimization problem

(MOP), Pareto dominance and Pareto front. In these definitions we are assuming,

without loss of generality, that minimization is the goal for all the objectives.

A general MOP can be formally defined as follows: find a vector x∗ =

[x∗1, x∗2, . . . , x∗n] which satisfies the m inequality constraints gi (x) ≥ 0, i = 1, 2, . . . , m,

the p equality constraints hi (x) = 0, i = 1, 2, . . . , p, and minimizes the vector function

f (x) = [f1(x), f2(x), . . . , fk(x)]T , where x = [x1, x2, . . . , xn]T is the vector of decision

variables.

The set of all values satisfying the constraints defines the feasible region Ω and any

point x ∈ Ω is a feasible solution.

Taking into account this definition of a MOP, a solution x1 = [x1
1, x1

2, ..., x1
n] is

said to dominate a solution x2 = [x2
1, x2

2, ..., x2
n] if and only if fi(x

1) <= fi(x
2) for

i = 1, 2, ..., m, and there exist at least one j (1 ≤ j ≤ m) such that fi(x
1) < fi(x

2).

Conversely, two points are said to be non-dominated whenever none of them dominates

the other. Fig. 1 depicts some examples of dominated and non-dominated solutions.

In this figure, A′ dominates to C′ because f1(A
′) < f1(C

′), and f2(A
′) < f2(C

′).

Meanwhile, A′ and B′ are non-dominated because A′ is better than B′ in the first

objective function (f1(A
′) < f1(B

′)), but B′ is better in the other objective function

(f2(A
′) > f2(B

′)).
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The solution of a given MOP is usually a set of solutions (referred as Pareto optimal

set) satisfying:

– Every two solutions into the set are non-dominated.

– Any other solution, y, is dominated by at least one solution in the set.

The representation of this set in the objective space is referred as Pareto front.

Generating Pareto front is the main goal of multi-objective optimization techniques.

In theory, a Pareto front could contain a large number (or even infinitely many)

points. In practice, a usable approximate solution will only contain a limited number of

them; thus, an important goal is that they should be as close as possible to the exact

Pareto front and uniformly spread, otherwise, they would not be very useful to the

decision maker. Closeness to the Pareto front ensures that we are dealing with optimal

solutions, while a uniform spread of the solutions means that we have made a good

exploration of the search space and no regions are left unexplored.

Fig. 2 depicts these issues of convergence and diversity. The uppermost front depicts

an example of good convergence and bad diversity: the approximation set contains

Pareto optimal solutions but there are some unexplored regions of the optimal front.

The approximation set depicted in the middle illustrates poor convergence but good

diversity: it has a diverse set of solutions but they are not Pareto optimal. Finally,

the lowermost front depicts an approximation front with both good convergence and

diversity.
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Fig. 2 Examples of Pareto fronts. From top to bottom, from left to right: (a) good convergence
and bad diversity, (b) bad convergence and good diversity, and (c) good convergence and
diversity.
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3 Problem Statement

This section formalizes MONRP.

Given a software package, there is a set, C, of m customers whose requirements

have to be considered in the development of the next release of this system. Each

customer has associated a value, ci, which reflects the customers’ degree of importance

to the software development company.

There is also a set, R, of n requirements to complete. In order to meet each require-

ment, resources must be spent, which can be transformed into an economical cost: the

cost of satisfying the requirement. We denote this as rj , (1 ≤ j ≤ n) the economical

cost of achieving the requirement j.

We also assume that more than one customer can be concerned with any require-

ment, and that all the requirements are not equally important for all the customers.

In this way, associated with each customer and each requirement, there is a value vij ,

which represents the importance of the requirement j for the customer i. All these

values can be represented by a matrix. Associated with the set R, there is a directed

acyclic graph G = (R, E), where (ri, rk) ∈ E if and only if ri ∈ R is a prerequisite of

rk ∈ R (i.e., it is mandatory to fulfill ri before to rk).

G is also transitive; then, if (rk, rj) ∈ E, and (rj , ri) ∈ E, the requirement rk must

be also fulfilled in order to afford ri. In the special case where no requirement has any

prerequisite, E = ∅, we say that the problem is basic.

The MONRP problem is to find a subset, R′, of requirements which minimizes the

cost and maximizes the total satisfaction of the customers with the finally included

requirements. Thus the multi-objective Next Release Problem can be formalized as

minimize f1 =
X

ri∈R′

ri (1)

maximize f2 =
n

X

i=1

ci

X

rj∈R′

vij . (2)

Since minimizing a given function f is the same as maximizing (−f), in this work

we have considered the maximization of (−f1) (i.e., the economical cost for companies),

and f2 (i.e, the customer satisfaction).

C
o
s
t

Customer Satisfaction 

Fig. 3 Examples of Pareto front for NRP.
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The advantages of considering NRP to be a multi-objective optimization problem,

instead of a weighted single objective one, can be drawn from Fig. 3, which shows

an example of front obtained for NRP. In this figure “Customer Satisfaction” means

the total satisfaction of the customers, and “Cost” represents the economical cost

of a requirement set. (Note that a negative cost means an investment made by the

company). The decision maker is provided with a set of non-dominated solutions (all

the solutions are equally important a priori) instead of a single solution.

This allows the decision maker to choose the best solution, depending on different

situations and taking into account factors about which only he or she may be aware.

For example, in difficult economic periods the decision maker would select solutions

involving a lower cost for the company (solutions in the left part of the front); on

the one hand, in times of high competition with other companies, the choice could be

to select a solution which provides a high degree of customer satisfaction (solutions

in the right part of the front). Meanwhile, in a single objective formulation of the

problem, dealing with changes on these external situations may require a redefiniton of

the considered weights, and to recompute the solution. Of course, these are relatively

over–simplified scenarios, intended merely for illustrative purposes.

Moreover, the shape of the Pareto front could help the decision maker in working

out relationships between the objectives. These relationships may yield insights into

the nature of the problem, and also it can give a number of choices to select the most

adequate solutions.

In practice, the decision maker will bring to the scenario a complex interwoven set of

managerial, technical, sociological, economic and political concerns, for which it would

be impractical to seek any machine–readable formulation. Nevertheless, the search

based approach can complement this rich human domain knowledge, by setting out the

best choices available, based solely on the cost–benefit analysis information provided. In

this way, the machine and human work hand–in–hand. The machine focuses on what

it does best (unbiased consideration of an enormous number of potential solutions,

guided by cost–benefit data supplied by the human). The human considers the range

of options selected in this purely mechanistic manner and uses the shape of the Pareto

front to locate interesting locations in the solution space to which to direct further

attention and consideration.

4 Solver Algorithms

In this section we describe the three algorithms which will be evaluated for solving

NRP.

NSGA-II, proposed by K. Deb et al. [Deb et al., 2002], is a genetic algorithm which

is the ‘reference algorithm’ in multi-objective optimization (with over 2,500 citations at

the time of writing1). Its pseudocode is presented as Algorithm 1. NSGA-II makes use

of a population (P) of candidate solutions (known as individuals). In each generation,

it works by creating new individuals after applying the genetic operators to P, in order

to create a new population, Q (lines 5 to 8). Then, both the current (P) and the

new population (Q) are joined; the resulting population, R, is ordered according to a

ranking procedure and a density estimator known as crowding distance (line 13) (for

further details, please see [Deb et al., 2002]). Finally, the population P is updated

1 Data from Google Scholar: 2,616 citations on 20th September 2009.
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Algorithm 1 Pseudocode of NSGA-II.

1: proc Steps Up(nsga-II) //Algorithm parameters in ‘nsga-II’
2: P ← Initialize Population() // P = population
3: Q ← ∅ // Q = auxiliar population
4: while not Termination Condition() do
5: for i ← 1 to (nsga-II.popSize / 2) do
6: parents←Selection(P);
7: offspring←Recombination(nsga-II.Pc,parents);
8: offspring←Mutation(nsga-II.Pm,offspring);
9: Evaluate Fitness(offspring);

10: Insert(offspring,Q);
11: end for
12: R ← P ∪ Q
13: Ranking And Crowding(nsga-II, R);
14: P ←Select Best Individuals(nsga-II, R)
15: end while
16: end proc Steps Up;

with the best individuals in R (line 14). These steps are repeated until a termination

condition is fulfilled.

MOCell (Multi-Objective Cellular Genetic Algorithm), introduced by Nebro et

al. [Nebro et al., 2009], is a cellular genetic algorithm (cGA) which has proven to out-

perform NSGA-II in some studies [Nebro et al., 2009] [Nebro et al., 2007]. In cGAs, the

concept of (small) neighborhood is paramount. This means that an individual may only

cooperate with its nearby neighbors in the breeding loop. Overlapped small neighbor-

hoods of cGAs help in exploring the search space because they induce a slow diffusion

of solutions through the population, providing a kind of exploration (diversification).

Exploitation (intensification) takes place inside each neighborhood by applying the

typical genetic operations (crossover, mutation, and replacement).

MOCell includes an external archive to store the non-dominated solutions found

as the algorithm progresses. This archive is limited in size and uses the crowd-

ing distance of NSGA-II to maintain diversity. The pseudocode of MOCell is pre-

sented as Algorithm 2, which corresponds with the version called aMOCell4, described

in [Nebro et al., 2007].

We can observe that, in this version, for each individual we select one parent from

its neighborhood and one from the archive, in order to guide the search towards the best

solutions found (lines 5 to 8). Then a new solution is created by applying the genetic

operators to these parents. The new solution is used to replace the current solution

(line 11), and it is considered for inclusion in the archive (line 12). This constitutes

a single iteration of the algorithm. The overall algorithm iterates until a termination

condition is fulfilled.

PAES is a metaheuristic proposed by Knowles and Corne [Angeline et al., 1999].

The algorithm is based on a simple (1+1) evolution strategy. To find diverse solutions in

the Pareto optimal set, PAES uses an external archive of nondominated solutions, which

is also used to make decisions about new candidate solutions [Angeline et al., 1999].

An adaptive grid is used as a density estimator in the archive. The most remarkable

characteristic of PAES is that it does not make use of any recombination operators

(crossover). New solutions are generated only by modifying the current solution. The

pseudocode of PAES is presented as Algorithm 3. It commences with a random solution

(line 3). In each iteration, a new solution is produced by modifying the current solution

(line 5). This new solution is included in the archive and it is considered as a potential
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Algorithm 2 Pseudocode of MOCell.

1: proc Steps Up(mocell) //Algorithm parameters in ‘mocell’
2: archive ← ∅ //Creates an empty archive
3: while not Termination Condition() do
4: for individual ← 1 to mocell.popSize do
5: n list←Get Neighborhood(mocell,position(individual));
6: parent1←Selection(n list);
7: parent2←Selection(archive);
8: offspring←Recombination(mocell.Pc,parent1, parent2);
9: offspring←Mutation(mocell.Pm,offspring);

10: Evaluate Fitness(offspring);
11: Replacement(position(individual),offspring,mocell);
12: Insert Pareto Front(offspring, archive);
13: end for
14: end while
15: end proc Steps Up;

Algorithm 3 Pseudocode of PAES.

1: proc Steps Up(paes) //Algorithm parameters in ‘paes’
2: archive ← ∅
3: currentSolution ← Create Solution(paes) // Creates an initial solution
4: while not Termination Condition() do
5: mutatedSolution←Mutation(currentSolution);
6: Evaluate Fitness(mutatedSolution);
7: if IsDominated(currentSolution, mutationSolution) then
8: currentSolution ← mutatedSolution
9: else

10: if Solutions Are Nondominated(currentSolution, mutationSolution) then
11: Insert(archive, mutatedSolution)
12: currentSolution ← Select(paes, archive)
13: end if
14: end if
15: end while
16: end proc Steps Up;

replacement for the current solution (lines 7 to 14). These steps are repeated until the

maximum number of evaluations is reached.

We have included PAES in our study because of its simplicity. PAES does not

use any recombination operator, and its only parameter is the number of partitions

of the adaptive grid of the archive. Its relative simplicity makes it attractive since

there are comparatively few parameters that require tuning in order to know that

the algorithm is being applied properly (e.g., population size, crossover probability,

mutation probability).

5 Experimental Method

This section is aimed at presenting the indicators used to measure the quality of the

obtained results and the benchmark problems we have used. It also describes how the

solutions of the problem have been encoded and the genetic operators employed, the

configuration of the algorithms, and the methodology we have followed.

5.1 Quality Indicators

Two different issues are normally taken into account for assessing the quality of the

results computed by a multi-objective optimization algorithm:
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1. To minimize the distance of the computed solution set by the proposed algorithm

to the optimal Pareto front (convergence towards the optimal Pareto front).

2. To maximize the spread of solutions found, so that we can have a distribution of

vectors as smooth and uniform as possible (diversity).

A number of quality indicators have been proposed in the literature. Among

them, we can distinguish between Pareto compliant and non Pareto compliant in-

dicators [Knowles et al., 2006]. Given two Pareto fronts, A and B, if A dominates B,

the value of a Pareto compliant quality indicator is higher for A than for B; mean-

while, this condition is not fulfilled by the non–compliant indicators. Thus, the use

of Pareto compliant indicators should be preferable; however, non Pareto compliant

indicators can also be used for measuring some particular features of a front. In this

work, we apply an indicator of each type: Hypervolume [Zitzler and Thiele, 1999]

(Pareto compliant), which takes into account the convergence as well as the diversity

of the solutions; and Spread [Deb, 2001] (non Pareto compliant), which measures the

distribution of solutions into a given front. Both indicators are defined as follows:

– Hypervolume (HV). This indicator calculates the volume (in the objective space)

covered by members of a non-dominated set of solutions Q (the region enclosed into

the discontinuous line in Figure 4, Q = {A, B, C}) for problems where all objectives

are to be minimized. Mathematically, for each solution i ∈ Q, a hypercube vi is

constructed with a reference point W and the solution i as the diagonal corners of

the hypercube. The reference point can simply be found by constructing a vector

of worst objective function values. Thereafter, a union of all hypercubes is found

and its hypervolume (HV) is calculated:

HV = volume

0

@

|Q|
[

i=1

vi

1

A . (3)

f1

f2

Pa r e to-o p tim a l front

W

A

B

C

1

0

Fig. 4 The hypervolume enclosed by the non-dominated solutions.

In this case, we also apply this metric after a normalization of the objective function

values to the range [0..1]. A Pareto front with a higher HV than another one could

be due to two things: some solutions in the better front dominate solutions in the

other, or, solutions in the better front are more widely distributed than in the other.

Since both properties are considered to be good, algorithms with larger values of

HV are considered to be desirable.
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– Spread or ∆. The Spread indicator is a diversity quality indicator that measures

the extent of spread by the set of computed solutions. ∆ is defined as:

∆ =
df + dl +

PN−1

i=1

˛

˛di − d̄
˛

˛

df + dl + (N − 1)d̄
, (4)

!"

!#

$%&'()

)*

)"

)+

),
)-

).

/01(23')4$5.612537

891&':'4$5.612537

/%12:(.4;(&'154!&531

f1

f0

Fig. 5 Distances from the extreme solutions.

where di is the Euclidean distance between consecutive solutions, d̄ is the mean of

these distances, and df and dl are the Euclidean distances to the extreme solutions

of the optimal Pareto front in the objective space (see Figure 5 for a pictorial

description). This metric takes a zero value for an ideal distribution, denoting a

perfect spread of the solutions in the Pareto front. We apply this metric after a

normalization of the objective function values to the range [0..1]. Pareto fronts with

a smaller ∆ value are considered more desirable:

To apply these quality indicators, it is usually necessary to know the optimal Pareto

front. Of course, typically, we do not know the location of the optimal front. Therefore,

we employ as a ‘reference Pareto optimal front’ the front composed of all the non-

dominated solutions out of all the executions carried out (i.e., the best front known

for these problems until now). We also consider the number of solutions that are non-

dominated with respect to all the solutions computed by all the algorithms.

5.2 Test Problems

In this section, we describe the test problems used to evaluate the performance of

NSGA-II, MOCell, and PAES.

The three algorithms were applied to a set composed of six test problems. These

problems have been aimed at covering both ‘typical’ and non ‘typical’ cases of NRP.

Thus, we have generated instances ranging from 2 to 100 customers, and from 20

to 200 requirements. All the values related to each instance have been generated by

sampling a random uniform distribution. We have not considered dependencies among

requirements.

All the instances have the nomenclature c r, where c is the number of customers,

and r the maximum number of requirements. Specifically, we have considered here

the same instances proposed by hang et al. [Zhang et al., 2007]: 15 40, 50 80, 2 200,

100 20, 100 25, and 100 40.
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5.3 Solution Encoding and Genetic Operators

As described in Section 3, a solution to the problem consists in selecting a subset of

requirements to be included in the next release of the software package. In this work,

each solution is encoded as a binary string, s, of length n (the maximum number of

requirements), where si = 1 means that the requirement i is included in the next

release of the software.

As to the genetic operators, we have used binary tournament as the selection

scheme. This operator works by randomly choosing two individuals from the population

and the one dominating the other is selected; if both solutions are non-dominated one

of them is selected randomly. We also use single point crossover as crossover operator.

It works by creating a new solution in which the binary string from the beginning of a

parent solution to a crossover point, randomly chosen, is copied from that parent while

the rest is copied from other parent. Finally, the mutation operator used is random

mutation using which some random bits of the string are flipped.

5.4 Configuration

All approaches were run for a maximum of 25,000 function evaluations, and the results

are analyzed when 5,000, 10,000, and 25,000 evaluations have been performed.

The initial population was set to 100 in NSGA-II and MOCell. In MOCell, the

archive size was also limited to 100 solutions. In both algorithms the probability of the

crossover operator was set to Pc = 0.9 and the probability of the mutation operator to

Pm = 1/n, being n the number or requirements. In PAES, the maximum size of the

archive was also set to 100, and the number of divisions of the adaptive grid to 5.

All the algorithms have been implemented using jMetal [Durillo et al., 2006], a Java

framework aimed at the development, experimentation, and study of metaheuristics for

solving multi-objective optimization problems.

5.5 Methodology

We have executed 100 independent runs for each algorithm and each problem instance.

Since we are dealing with stochastic algorithms, we need to perform a statistical anal-

ysis of the obtained results to compare them with a certain level of confidence. Next,

we describe the statistical test that we have carried out for assuring this. First, a

Kolmogorov-Smirnov test is performed in order to check whether the values of the

results follow a normal (Gaussian) distribution. If so, the Levene test checks for the

homogeneity of the variances. If samples have equal variance (positive Levene test), an

ANOVA test is performed; otherwise we perform a Welch test. For non-Gaussian distri-

butions, the non-parametric Kruskal-Wallis test is used to compare the medians of the

algorithms. All the tables include the mean and standard deviation of the evaluated

indicator.

We always consider in this work a confidence level of 95% (i.e., significance level of

5% or p-value under 0.05) in the statistical tests, which means that the differences are

unlikely to have occurred by chance with a probability of 95%. Those tests in which

the statistical confidence has been achieved are marked with “+” symbols in the last



13

row in the tables containing the results; conversely, “−” means that we cannot assure

anything about the statistical confidence of the results (p-value > 0.05).

For the sake of a better visual comprehension, the best result for each problem is

depicted with a grey background.

6 Experimental Analysis

In this section we present the obtained results by the three evaluated algorithms. We

start by describing the values of the HV and ∆, the two quality indicators used. Then

we consider how many of the computed solutions are among the best solutions found

so far. Finally, we have also included the running time of the algorithms.

6.1 Hypervolume Results

Tables 1, 2 and 3 contain the mean and standard deviation for the HV indicator when

5,000, 15,000, and 25,000 function evaluations have been performed, respectively. For

this indicator, the higher the value, the better the quality of the obtained results. Thus,

by looking at the tables, we can see that NSGA-II has been the algorithm computing

the best results regarding to this indicator when only 5,000 function evaluations have

been performed. However, when the number of evaluations increase, the differences

between it and MOCell reduce. After 25,000 evaluations, MOCell outperforms NSGA-

II for half of the problem instances. PAES is the worst algorithm according to this

comparison. In all cases, the difference in the performance of the best algorithm and

that of the others is statistically significant.

Table 1 Mean (x̄) and standard deviation (σ) of the results of the HV quality indicator after
5,000 evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 6.55e − 013.8e−03 6.54e − 013.3e−03 6.33e − 011.5e−02 +
50 80 5.62e − 017.1e−03 5.59e − 016.5e−03 5.24e − 011.4e−02 +
2 200 4.61e − 011.0e−02 4.58e − 011.0e−02 4.17e − 011.6e−02 +
100 20 6.12e − 019.9e−04 6.12e − 015.7e−04 6.04e − 016.6e−03 +
100 25 6.31e − 012.4e−03 6.30e − 011.8e−03 6.13e − 011.1e−02 +
100 140 5.01e − 019.2e−03 4.96e − 017.7e−03 4.46e − 011.8e−02 +

Table 2 Mean (x̄) and stantard deviation (σ) of the results of the HV quality indicator after
10,000 evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 6.63e − 011.6e−03 6.63e − 011.1e−03 6.45e − 011.6e−02 +
50 80 5.88e − 014.9e−03 5.87e − 014.1e−03 5.40e − 011.5e−02 +
2 200 5.22e − 017.6e−03 5.13e − 016.8e−03 4.50e − 011.0e−02 +
100 20 6.13e − 012.3e−04 6.13e − 013.1e−04 6.05e − 016.8e−03 +
100 25 6.35e − 017.6e−04 6.35e − 014.5e−04 6.18e − 011.1e−02 +
100 140 5.41e − 017.1e−03 5.34e − 015.2e−03 4.69e − 011.4e−02 +
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Table 3 Mean (x̄) and standard deviation (σ) of the results of the HV quality indicator after
25,000 evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 6.65e − 014.4e−04 6.66e − 011.6e−04 6.51e − 011.7e−02 +
50 80 6.04e − 011.4e−03 6.04e − 011.2e−03 5.60e − 011.0e−02 +
2 200 5.78e − 013.3e−03 5.68e − 013.8e−03 4.83e − 011.2e−02 +
100 20 6.13e − 014.6e−05 6.13e − 015.8e−05 6.08e − 015.6e−03 +
100 25 6.36e − 011.5e−04 6.36e − 019.1e−05 6.23e − 011.1e−02 +
100 140 5.73e − 013.2e−03 5.68e − 013.1e−03 4.95e − 011.3e−02 +

As described in Section 5.1, the HV indicator measures the non-dominated area

covered by a front; thus, the higher the HV value, the larger this area, and, hence,

the number of solutions dominated by it. Obviously, the optimal Pareto front has the

highest HV value, and the fronts computed by an algorithm should converge towards

that value. If we analyze the HV obtained by NSGA-II and MOCell when 10,000 and

25,000 evaluations have been performed, we observe that the differences of the HV value

are smaller in the instances with 40 or fewer requirements than in the instances with

more requirements. This means that in the first group of instances both algorithms have

converged towards an optimal (local or global) Pareto front of the problem. Meanwhile,

in the second group, it is still possible to improve the computed fronts.

Fig. 6 clarifies this point. It shows the evolution of the HV of the approximated

fronts computed by NSGA-II over the number of evaluations carried out in the instances

100 20 and 2 200. In this figure, we can observe that, in the instance with only 20 re-

quirements, the HV indicator has converged towards a fixed value when approximately

4,500 evaluations have been carried out. On the other hand, in the 2 200 instance, the

HV indicator increases with the number of evaluations and has not converged towards

a fixed value in 25,000 function evaluations; therefore it is possible to compute better

fronts by performing a higher number of evaluations. This observation suggests that

the instances with more requirements need a higher number of evaluations than the

smaller instances, in order to converge towards the optimal Pareto front.

Thus, in summarizing all these results, some conclusions regarding the HV indicator

emerge:

– NSGA-II has been the overall best algorithm.

– NSGA-II has been the fastest algorithm in obtaining an accurate set of solutions (it

has obtained the best values taking into account only 5,000 function evaluations).

– When the number of solutions increases, the differences between NSGA-II and

MOCell reduce, and MOCell matches the effectiveness of NSGA-II.

– PAES has computed the least accurate results in this comparison.

– The higher the number of requirements, the harder the problem, with some evidence

that the number of requirements has more bearing on problem difficulty than the

number of customers.

6.2 ∆ Results

We focus now in analyzing the ∆ quality indicator, whose values when 5,000, 10,000,

and 25,000 evaluations have been performed are included in Tables 4, 5 and 6, re-

spectively. In this indicator, lower values denote better results. The tables show that
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Fig. 6 Evolution of the HV indicator over the number of evaluations in instances 100 20 (top)
and 2 200 (bottom).

Table 4 Mean (x̄) and standard deviation (σ) of the results of the ∆ quality indicator after
5,000 evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 6.28e − 013.4e−02 5.11e − 014.0e−02 9.50e − 016.0e−02 +
50 80 5.91e − 014.0e−02 5.68e − 015.1e−02 9.35e − 013.7e−02 +
2 200 7.69e − 014.9e−02 7.24e − 013.7e−02 9.60e − 013.3e−02 +
100 20 8.23e − 012.2e−02 6.25e − 011.5e−02 1.09e + 005.0e−02 +
100 25 6.60e − 013.1e−02 6.39e − 012.4e−02 9.66e − 015.9e−02 +
100 140 6.67e − 015.2e−02 6.49e − 014.6e−02 9.48e − 013.9e−02 +

Table 5 Mean (x̄) and standard deviation (σ) of the results of the ∆ quality indicator after
10,000 evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 5.04e − 013.6e−02 3.84e − 013.5e−02 8.98e − 016.0e−02 +
50 80 4.90e − 013.8e−02 4.04e − 013.1e−02 8.84e − 014.6e−02 +
2 200 6.09e − 013.3e−02 5.67e − 013.8e−02 9.16e − 013.1e−02 +
100 20 7.99e − 011.1e−02 6.15e − 015.4e−03 1.05e + 004.8e−02 +
100 25 5.85e − 012.6e−02 5.38e − 011.9e−02 9.31e − 016.7e−02 +
100 140 5.54e − 013.5e−02 4.74e − 013.5e−02 9.07e − 013.6e−02 +

MOCell is the algorithm obtaining the best results in all the cases. After MOCell,

NSGA-II is second best. All result comparisons are statistically significant.

In summary, some observations about the results emerge:

– MOCell was the algorithm computing the fronts with the best distribution of so-

lutions in all the cases.
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Table 6 Mean (x̄) and standard deviation (σ) of the results of the ∆ quality indicator after
25,000 evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 4.67e − 013.8e−02 2.49e − 012.2e−02 8.40e − 018.1e−02 +
50 80 4.07e − 013.5e−02 2.33e − 012.7e−02 8.37e − 014.4e−02 +
2 200 4.74e − 013.3e−02 3.28e − 013.3e−02 8.84e − 012.7e−02 +
100 20 7.93e − 015.5e−03 6.15e − 017.0e−04 1.02e + 003.7e−02 +
100 25 5.35e − 011.6e−02 4.96e − 011.1e−02 8.84e − 016.7e−02 +
100 140 4.34e − 013.8e−02 2.93e − 012.8e−02 8.72e − 013.9e−02 +

Table 7 Mean (x̄) and standard deviation (σ) of the number of non dominated solutions
found after 5,000 function evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 1.85e + 015.8e+00 1.25e + 015.5e+00 3.03e + 002.4e+00 +
50 80 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 -
2 200 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 -
100 20 6.54e + 012.5e+00 6.39e + 013.0e+00 3.33e + 016.8e+00 +
100 25 4.39e + 015.6e+00 4.09e + 017.4e+00 1.15e + 015.0e+00 +
100 140 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 -

– PAES has been again the algorithm obtaining the poorest results in accuracy.

An example of the computed fronts for the instances 15 40 and 2 200 by the differ-

ent algorithms is depicted in Fig. 7. In the instance with 40 requirements (Fig. 7 (top)),

we see that the solutions computed by PAES are close to the ones computed by the

other techniques; however, NSGA-II and MOCell cover a large number of configura-

tions. In the instance 2 200 (Fig. 7 (bottom)), we observe that the fronts computed by

NSGA-II and MOCell dominate the one provided by PAES; furthermore, in this case

we can observe the advantages of a front with a good diversity: MOCell has produced

a better spread of solutions over the entirety of the Pareto front, while also covering a

higher range of different configurations.

Looking again to those figures, we can see that MOCell has been able of computing

non-dominatd solutions in areas where NSGA-II and PAES have not found any of them

(solutions in the extremes of the Pareto front). This is related to a better exploration

of the search space by MOCell. In fact, this is one of the properties of the cellular

GA model, in which MOCell is based in, that has been reported in many studies on

single-objective optimization (see [Alba and Dorronsoro, 2008]).

6.3 Number of Non Dominated Solutions Found

The instances used in this work have been hand-generated, and the optimal solutions to

them are, a priori, unknown. Thus, we cannot be certain that the solutions computed

by the algorithms evaluated in this work are optimal; hereinafter we refer to the set of

all the non dominated solutions found ‘so far’ as final solutions.

Tables 7, 8 and 9 contain the number of final solutions computed by each algorithm

for different degrees of effort (measured in terms of number of fitness evaluations ‘so

far’). Starting with Table 7, which shows that information when only 5,000 function
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Fig. 7 Examples of the obtained front of solutions in instances 15 40 (15 customers and 40
requirements) and 2 200 (2 customers and 200 requirements).

Table 8 Mean (x̄) and standard deviation (σ) of the number of non dominated solutions
found after 10,000 function evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 4.38e + 015.5e+00 3.65e + 016.9e+00 7.98e + 003.8e+00 +
50 80 2.20e − 016.3e−01 0.00e + 000.0e+00 0.00e + 000.0e+00 +
2 200 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 -
100 20 6.80e + 011.7e+00 7.26e + 011.7e+00 3.99e + 016.1e+00 +
100 25 6.22e + 014.8e+00 6.59e + 014.7e+00 1.84e + 015.3e+00 +
100 140 0.00e + 000.0e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 -

Table 9 Mean (x̄) and standard deviation (σ) of the number of non dominated solutions
found after 25,000 function evaluations.

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 4.83e + 014.6e+00 5.98e + 014.7e+00 1.53e + 014.4e+00 +
50 80 1.91e + 003.4e+00 8.30e − 011.1e+00 0.00e + 000.0e+00 +
2 200 1.02e + 008.9e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 +
100 20 6.83e + 011.5e+00 7.49e + 012.6e−01 4.45e + 014.3e+00 +
100 25 7.28e + 013.3e+00 8.27e + 013.9e+00 2.72e + 016.1e+00 +
100 140 1.02e + 003.2e+00 0.00e + 000.0e+00 0.00e + 000.0e+00 +
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evaluations have been carried out, we observe that none of the algorithms has computed

final solutions. It is also worth noting that the number of computed final solutions

diminish when the number of requirements increases. Among the three algorithms,

NSGA-II has been the one computing a higher number, followed by MOCell. The same

comments are applicable when 10,000 function evaluations have been carried out (Table

8). However, in this case some final solutions have been computed by NSGA-II in the

instance with 80 requirements. Statistical confidence has been found in all the cases

where final solutions are obtained.

Finally, consider Table 9, where the number of final solutions found after 25,000

evaluations is included. In this table, we observe that NSGA-II was the only algorithm

computing final solutions to the instances with more than 80 requirements. Meanwhile,

in the instances with 40 or fewer requirements, MOCell has outperformed NSGA-II for

the first time taking into account this indicator.

6.4 Running Time

We have also analyzed the running time required by the algorithms. All the time

values are included in Tables 10, 11, and 12, which show the time in milliseconds to

perform 5,000, 10,000, and 25,000 function evaluations, respectively. These values refer

to execution on an Intel iQ7 processor at 2.8 GHz, with 6 GB RAM memory, running

linux (kernel version 2.6.28-15) and the Java Virtual Machine provided by Sun (jdk

version 1.6.0 14).

Considering the values shown in these tables, we observe that PAES was the fastest

algorithm in our comparison in practically all the instances; only in the instance with

140 requirements and 100 customers the running times of PAES and NSGA-II are

comparable. Notwithstanding this, it is important to notice that, in each case, all

values are under one second. Looking at the time in each instance, we observe that the

higher the number of requirements and customers, the higher the required time. The

last column shows that the differences between the results are statistically significant.

Table 10 Mean (x̄) and standard deviation (σ) of the running time after 5,000 function
evaluations (ms).

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 4.57e + 023.3e+01 5.01e + 022.6e+01 2.36e + 021.9e+01 +
50 80 6.17e + 022.7e+01 7.84e + 023.3e+01 4.70e + 021.9e+01 +
2 200 1.16e + 032.8e+01 1.40e + 034.3e+01 1.01e + 032.1e+01 +
100 20 4.72e + 023.7e+01 5.07e + 021.6e+01 2.44e + 021.8e+01 +
100 25 5.10e + 023.7e+01 5.92e + 023.4e+01 2.99e + 022.7e+01 +
100 140 1.25e + 035.9e+01 1.41e + 034.5e+01 1.16e + 034.6e+01 +

7 Studying the Computed Solutions

In the previous section, we have analyzed the quality of the solutions obtained when

three different multi-objective optimizers are applied for solving NRP; in this section,
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Table 11 Mean (x̄) and standard deviation (σ) of the running time after 10,000 function
evaluations (ms).

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 6.21e + 022.6e+01 7.54e + 023.0e+01 3.43e + 022.0e+01 +
50 80 1.01e + 034.5e+01 1.23e + 034.4e+01 8.22e + 024.1e+01 +
2 200 2.20e + 034.8e+01 2.58e + 035.3e+01 2.01e + 033.2e+01 +
100 20 6.49e + 023.2e+01 6.90e + 023.5e+01 3.80e + 023.5e+01 +
100 25 7.36e + 024.2e+01 8.63e + 023.8e+01 4.82e + 024.0e+01 +
100 140 2.22e + 037.2e+01 2.57e + 037.0e+01 2.23e + 031.3e+02 +

Table 12 Mean (x̄) and standard deviation (σ) of the running time after 25,000 function
evaluations (ms).

NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

15 40 1.00e + 033.3e+01 1.16e + 032.6e+01 6.19e + 023.4e+01 +
50 80 2.06e + 038.0e+01 2.38e + 037.7e+01 1.82e + 038.1e+01 +
2 200 5.18e + 035.7e+01 5.87e + 037.2e+01 4.92e + 034.8e+01 +
100 20 1.10e + 035.4e+01 1.11e + 034.4e+01 7.59e + 025.7e+01 +
100 25 1.31e + 035.6e+01 1.46e + 036.2e+01 9.74e + 027.7e+01 +
100 140 5.16e + 031.7e+02 6.01e + 032.1e+02 5.16e + 032.6e+02 +

we are interested in analyzing which requirements are included in the best solutions

found by these algorithms.

Let us suppose that a software engineer has to select a subset of requirements to be

included in the next release of a software package and only wants to optimize the cost

of fulfilling these requirements. In this situation, it is clear that the software engineer

should include, in this set, those requirements that are cheaper. Something similar

happens if the interest is only to maximize the satisfaction of the users of that system.

Those requirements which satisfy the customer the most should be selected. But which

requirements should be considered if the goal is to optimize both objectives? Intuitively,

in this case, the optimal Pareto front should be composed of a set of solutions with

different numbers of requirements, where those requirements offering a higher ratio of

satisfaction per unit cost are more likely to be the candidate solutions found on the

final Pareto front.

To analyze which requirements are included in the best solutions found by each

algorithm, we have proceeded as follows. First, we sorted all the requirements by the

ratio of satisfaction per unit cost (i.e., the satisfaction that each requirement provides

to the customers divided by the cost of implementing it). Then, for each requirement

we computed the mean of the times that it is included by each algorithm in each

solution. Finally, we plotted this information in Fig. 8. The horizontal axis represents,

in descending order, the requirements sorted by means of the ratio satisfaction by

unit cost. The vertical axis represents the percentage of solutions which implement the

requirement represented by the horizontal axis.

Let us start by analyzing the instance with the lowest number of requirements, i.e.,

that one known as 100 20. Fig. 8 -(d) shows the information related to this instance.

Although there are some exceptions, there is also a clear tendency to include those

requirements with a higher ratio of satisfaction per unit cost with more probability.

Considering the differences between the algorithms, we make two further observations.

On the one hand, NSGA-II and MOCell appear to have adopted consistently different
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(a) 15 customers; 40 requirements (d) 100 customers; 20 requirements

(b) 50 customers; 80 requirements (e) 100 customers; 25 requirements

(c) 2 customers; 200 requirements (f) 100 customers; 140 requirements

Fig. 8 Percentage of solutions which include each requirement (horizontal axis). Requirements
are sorted by means of the ratio satisfaction provided by unit cost. In these graphics, the x-
axis represents the requirements order by mean of ratio of provided customer satisfaction per
unit cost; meanwhile, the y-axis represent the percentage of use of each requirements in the
computed solutions.

design strategies. That is, each requirement appears in a higher number of configu-

rations in NSGA-II than in MOCell. However, considering the results of the previous

section, both have obtained very accurate results. On the other hand, NSGA-II and

PAES have included each requirement the same number of times but, as Section 5

showed, NSGA-II has obtained fronts of better quality than PAES.

Figures 8 -(e), -(a), and, -(b) present the information belonging to the instances

100 25, 5 40, and 50 80, respectively. The requirements offering a higher ratio of satis-

faction by unit cost are included in a higher number of solutions. Furthermore, NSGA-II

and MOCell include each of these requirements as part of a solution more times than

PAES. The requirements with the highest ratio have been used more by MOCell than

by the other two algorithms, and the requirements with the smallest ratios were more

used by NSGA-II.
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Finally, the results for instances 100 140, and 2 200 are depicted in figures 8-(f), and

-(c), respectively. We observe that there is also a tendency to use those requirements

with a better ratio of satisfaction/cost in a higher number of solutions. However, we

also see that these figures present many oscillations. These oscillations could potentially

indicate that the algorithms have yet to fully converge, as we stated in Section 5.

Thus, in all the instances, the best solutions found so far by each algorithm

are composed by those requirements which more satisfy the customers by unit cost.

This fact corroborates the observations we made in the conference version of this pa-

per [Durillo et al., 2009], where we stated that the better solutions found were com-

posed of a high percentage of the cheapest requirements, and those which more satisfy

the customers are generally those providing the higher ratio satisfaction per unit cost.

8 A Case Study: the Motorola Data Set

This section is aimed at solving a real world instance of NRP problem provided by

a large international company, Motorola. We start by presenting the problem. After

that, we analyze the obtained results in terms of the quality of the computed fronts,

and also in terms of the composition of the solutions. Finally, we deep in the analysis

of the obtained results.

8.1 Obtained Results

The Motorola data set concerns a set of 35 requirements for hand held communication

devices. The stakeholders are four mobile telephony service providers, each of which

has a different set of priorities with respect to the features that they believe ought

to be included in each handset. Motorola also maintain cost data in the form of the

estimated cost of implementation of each requirement. Each of these stakeholders is

equally important for the company (i.e., the value ci is the same for i = 1..4). There

exists a main difference between this problem and the test instances studied in this

work; each requirement is only desired by one customer.

Table 13 Mean (x̄) and standard deviation (σ) of the results of the HV quality indicator in
the problem provided by Motorola.

Number of Evaluations NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

5,000 7.78e − 012.1e−03 7.77e − 012.6e−03 7.45e − 013.5e−02 +
10,000 7.83e − 015.6e−04 7.82e − 016.6e−04 7.52e − 013.5e−02 +
25,000 7.84e − 011.3e−04 7.84e − 011.5e−04 7.62e − 012.2e−02 +

Table 13 includes the results of the HV, when 5,000, 10,000, and 25,000 function

evaluations have been performed. As happened with the test problems, NSGA-II and

MOCell computed the best fronts regarding this indicator. Actually, although the re-

sults are quite similar, when 25000 evaluations have been performed MOCell has been

able to compute better fronts than NSGA-II. In fact, if we show the boxplot distribu-

tion of the HV values obtained for both algorithms (see Fig. 9), we can see that the

values obtained by MOCell have been higher (then better) than the ones obtained by
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Table 14 Mean (x̄) and standard deviation (σ) of the results of the ∆ quality indicator in
the problem provided by Motorola.

Number of Evaluations NSGA-II MOCell PAES
x̄σ x̄σ x̄σ

5,000 9.10e − 014.3e−02 5.46e − 013.1e−02 1.10e + 006.2e−02 +
10,000 8.42e − 013.3e−02 5.02e − 012.3e−02 1.07e + 006.3e−02 +
25,000 8.12e − 012.4e−02 4.73e − 016.7e−03 1.05e + 006.4e−02 +

NSGA-II. Furthermore, the non-overlapped notches in each box means that there is

statistical significance between the obtained HV by both algorithms. Additionally, as

the last column in the table indicates, the differences in the distributions of results

have been statistically significant in all the cases.
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Fig. 9 Distribution of the HV value of the fronts computed by NSGA-II and MOCell.

We now consider the ∆ values, presented in Tables 14. We observe that MOCell

is the algorithm computing the fronts with the best value for this indicator; NSGA-II

has obtained the second best values.

Thus, the values obtained by the algorithms in both indicators lead us to conclude

that MOCell has been the most remarkable technique for solving this problem.

Fig. 10 shows examples of fronts computed by NSGA-II and MOCell after 25,000

evaluations. As we can observe, both algorithms have converged towards the same front.

However, it is possible to see at a glance that MOCell has obtained a better distribution

of solutions. These observations verify the results obtained by the quality indicators:

both algorithms have obtained similar values of HV, but MOCell has outperformed to

NSGA-II in the ∆ indicator.
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Fig. 10 Examples of fronts computed by NSGA-II (top) and MOCell (bottom) in the problem
provided by Motorola.

Considering the shape of the fronts depicted in that figure, some conclusions can

be drawn. On the one hand, we observe that by increasing the investment from 5 to

1000 cost units (vertical axis) it is possible to obtain a customer satisfaction between

0 and 50 satisfaction units. On the other hand, there is a section of the front along

which an increase in customer satisfaction would require a much larger investment by

the company. For example, increasing the customer satisfaction from 50 to 80 units

requires an increase in investment of 700%.

With regard to the number of final solutions found by the algorithms, Table 15

summarizes the number of them found after performing 5,000, 10,000, and 25,000

evaluations. Also in this indicator, the algorithms behave in a similar manner to that

in which they did for the test instances: when less than 10.000 function evaluations

have been carried out, NSGA-II is the algorithm which finds the highest number of

final solutions; however, when the number of evaluations increases MOCell outperforms

to NSGA-II.

Table 15 Mean (x̄) and standard deviation (σ) of the number of non dominated solutions
found in the problem provided by Motorola.

Number of Evaluations NSGA-II MOCell PAES
5,000 2.56e + 014.8e+00 2.02e + 015.5e+00 9.25e + 004.1e+00 +
10,000 4.26e + 013.2e+00 3.75e + 014.4e+00 1.59e + 015.1e+00 +
25,000 4.88e + 012.8e+00 5.39e + 013.0e+00 2.44e + 017.2e+00 +



24

The running times of the algorithms are presented in Table 16. In all the cases, the

time required by PAES is less than half the time required by the other two algorithms.

However, as we can see, all the times are under one second.

Table 16 Mean (x̄) and standard deviation (σ) of the running time in the problem provided
by Motorola (time is given in ms).

Number of Evaluations NSGA-II MOCell PAES
5,000 3.53e + 021.5e+01 3.71e + 025.9e+00 1.68e + 028.1e+00 +
10,000 4.81e + 026.3e+00 4.96e + 026.3e+00 2.42e + 029.4e+00 +
25,000 8.00e + 025.7e+00 8.01e + 021.6e+01 4.37e + 021.4e+01 +

Fig. 11 Distribution of the use of requirements in the Motorola problem. Again, in this
graphic, the x-axis represents the requirements order by mean of ratio of provided customer
satisfaction per unit cost, and the y-axis represent the percentage of use of each requirements
in the computed solutions.

Considering the composition of the computed solutions, Fig. 11 shows the distribu-

tion of the requirements used by each algorithm. We can see that those requirements

with the better ratio satisfaction by unit cost are included in a higher number of

solutions. This replicates the results observed for the test instances of the MONRP

presented earlier.

Thus, the obtained results in this instance confirm the algorithm behavior observed

in the previous test instances in terms of the quality of the solutions found, diversity

of solutions and the composition of those solutions.

8.2 Post-Analysis of the Motorola Problem Results

In the last section, we focused on computing the Pareto front of solutions for the

Motorola Problem and on analyzing the composition (in terms of the implemented

requirements) of that front. In this section, we go an step forward on the analysis of

the solutions computed by the most outstanding algorithm for that instance: MOCell.

In particular, we want to analyze two different issues: on the one hand, we want to

figure out if is there any relationship between a requirement and the cost and provided

satisfaction of a solution which implements it; and, on the other hand, we are also
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interested in the fairness (i.e., to what extent can a solution be shown to be a fair

allocation of resources) of each solution into the computed Pareto front. We make use

of the best front found so far by MOCell as the reference Pareto front.

The fairness of an allocation of resources has been previously studied in the SBSE

field. Concretely, in [Finkelstein et al., 2008], a multi-objective algorithm has been used

for computing solutions which maximizes the final satisfaction of customers, minimizes

the cost, while maximizing the mean of fulfilled requirement for each customer, i.e., a

new objective function is considered for measuring the fairness. The approach followed

here is different: we compute the Pareto front of solutions only in terms of cost and

satisfaction of the customers, and once it has been computed, we analyze how fair are

those solutions.

Thus, summarizing, this section is aimed at answering to the next two questions,

respectively:

– Does a requirement determine the place into the Pareto front where a solution

implementing it is located?

– Can a given solution into the Pareto front benefiting a customer while damaging

other ones?

For answering the first of the above suggested questions, we need to study if the

implementation of a requirement and the objective functions (cost and provided cus-

tomer satisfaction) are correlated. To come with this issue, we have made use of the

Spearman’s correlation coefficient.

The Spearman Rank Correlation [Kendall and Gibbons, 1990] statistical analysis

test assess whether two measurement variables are correlated. The test consist in cal-

culating the, so called, correlation coefficient, rs , which can take value between −1

and +1. A coefficient rs = −1 means two variables have a perfect negative correlation

(as one increases, the other decreases). Accordingly, rs = +1 means two variables have

a perfect positive correlation (as one increases, so does the other); rs = 0 means two

variables are entirely independent; there is no correlation between them.

In our problem, a requirement can only have two states: it is implemented or not.

As a consequence, to determine the correlation between each requirement and the

objectives functions may have not sense. Thus, in order to study this issue we have

group the requirements attending to the ratio of provided satisfaction by unit cost, and

after that what we have done is to study the correlation between each group and the

objective functions. This way, we can obtain insight knowledge about the relationship

between each requirement and the objectives functions by means of its ratio.

Thus, taking into account the above, we have proceed as follows. First, we have

sorted all the requirement by means of the ratio satisfaction per unit cost, and we have

normalized the ratio to the interval [0, 1]; then, we have classify all the requirements

in four different groups attending to the value of its ratio; this classification is based

on the information provided by the instance and can be done before computing the

optimal solutions. In particular, for this instance, we have computed the following

groups: the first group, that we have called very good, consist of requirements having a

ratio between 0.5 and 1; the second group, good, consist of requirements having a ratio

between 0.1 and 0.5. The third group (poor) consist of those requirements whose ratio

is lower than 0.1, and finally, the last group, that we have called very poor, consist of

those requirements with a very small ratio.
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Table 17 Spearman’s Rank Correlation Between Requirements and Cost of Implementing

Group correlation coefficient with cost correlation coefficient with customer satisfaction
very good 0.19 0.4
good 0.53 0.83
poor 0.86 0.94
very poor 0.92 0.66

Once the groups have been determined, we have computed the correlation coeffi-

cient between each group and the solutions obtained. The obtained results are sum-

marized in Table 17.

Attending to that table, we can observe that for the requirements classified as very

good, the correlation coefficient with the cost and provided satisfaction are 0.19 and

0.4, respectively. This means that the use of requirements belonging to this group are

very weakly correlated with cost and provided satisfaction, and hence, they can be part

of whatever solution regardless of them. In that table, it is also possible to observe that

the correlation coefficient increases when the ratio value of a group is decreased. This

indicates that the lowest the ratio, the stronger the correlation. As a consequence, a

requirement with a small ratio of satisfaction by unit cost will be rarely present on

solutions of low cost; meanwhile, they will be found more often in those solutions of

higher cost and provided satisfaction.

Accordingly, the answer to the first question is that, for requirements with a high

ratio it is not possible to determine a priori the cost and customer satisfaction of a

solution implementing it; meanwhile, for requirements with a small ratio it is possible

to estimate them. This result was somehow expected because, from the last section,

we have that requirements with higher ratio than others are implemented in a higher

number of solutions. Furthermore, it is reasonable that a good requirement (in terms

of its ratio) should be taken in many different configurations, while a bad one (also

in terms of its ratio) should be implemented in those solutions which maximize the

provided satisfaction (regardless of the cost).

We turn now to analyze the fairness of the computed solutions. The idea here is to

determine the correlation between the satisfaction achieved for the different customers.

Thus, if the satisfaction of two customers, A and B, are correlated, we can argue that

whenever A gets satisfied, B also achieves a high grade of satisfaction.

For computing the correlation coefficient between the different customers we have

proceed as follows. First, for each solution into the Pareto front, we have computed

the number of implemented requirements targeted by each customer. Then, we have

normalized those values to the [0, 1] interval. These values give us a measure of how

many requirements have been implemented satisfying each customer in each solution.

After that, we have computed the correlation coefficient between each pair of customers.

Table 18 summarizes the computed values for the correlation coefficient.

Looking at this table, we see that the coefficient correlation is higher than 0.84 in

practically all the cases. Actually, the values under 0.91 involves a comparison with

customer 4, which is the most difficult to satisfy due to it is only interested in one

out of the 35 requirements. This means that there is a strong correlation between the

satisfaction achieved for each pair of customers. As a consequence, the interpretation

of those results is that each solution into the Pareto front try to satisfy the customers

the same.

Consequently, the answer to the second proposed question is that the solutions

computed by MOCell are not only good solutions in terms of the objective functions,



27

Table 18 Spearman’s Rank Correlation Between the Satisfaction of Different Customers

Customer 2 Customer 3 Customer 4
Customer 1 0.95 0.95 0.85
Customer 2 0.91 0.84
Customer 3 0.85

but in addition they seem to be fair in terms of the satisfaction provided to each

customer. This is desirable but unexpected result due to neither of the three algorithms

employed in this work makes use of any information about the fairness of a solution.

9 Related Work

From the industry point of view, many companies feel that they cannot control the

release planning challenge, because many of them may only rely on the product or

project manager to investigate the implicit characteristics of requirements and study

the competing interests of the stakeholders.

In the literature, Yeh and Ng [Yeh and Ng, 1990] argued that a target sys-

tem benefited directly from ranking and prioritising requirements in 1990. Karls-

son [Karlsson, 1996] adopted two types of techniques for selecting and prioritising soft-

ware requirements: Quality Function Deployment (QFD) [Sullivan, 1986] and Analyti-

cal Hierarchy Process (AHP) [Saaty, 1980] in 1996. In QFD the stakeholders prioritize

the requirements on an ordinal scale (using a numerical assignment). The drawback of

this is that there is no clear and obvious definition of the distinction among the absolute

number assigned to each requirement. Moreover, relationships between requirements

are not supported by QFD. The most serious drawback is that QFD cannot manage

functional requirements, because there is no degree of fulfilment for functional require-

ments.

In 1997, Karlsson and Ryan [Karlsson and Ryan, 1997] proposed a cost-value ap-

proach, using AHP, applying it to compare all the candidate requirements in order

to determine which of the two is of higher priority and to what extent its priority is

higher. Moreover, in 1998, they evaluated six different methods for selecting and priori-

tising requirements [Karlsson et al., 1998] and found that AHP is the most promising

method. However, the disadvantage of using a pairwise comparison technique is the

huge number of required pairwise comparisons. The method becomes laborious and

inefficient as the scale of the project increases. In addition, this prioritizing process has

a lack of support for requirement interdependencies.

AHP caters for human judgements that may be both partial and inconsistent in

order to arrive at a robust requirement prioritization. The prioritization problem is

clearly related to the Next Release Problem (NRP), because one could select a subset

simply as a prefix of the prioritized sequence. However, such a subset selection cannot,

by definition, be better than that which can be located by selection of requirements

within the same budget and is less amenable to multi-objective generalization.

This is a motivation for the consideration of the separate, but related problem

of requirements selection. Compared with priority-based methods, we can provide

more than one (usually many) optimal alternative solutions within a certain crite-

rion (such as under specific project budget). As such, the requirements engineer has

the opportunity to observe the impact of including or excluding certain requirements,
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and can use this to choose the best from the different alternatives, without affect-

ing the quality of solutions. An analogous choice between prioritization and selection

formulations can be found in SBSE approaches to regression test case selection and

prioritization [Harman et al., 2009].

The work of Karlsson et al. has had an enormous impact in the field of requirements

engineering and is now the underpinning of the popular tool FocalPoint, marketed by

TeleLogic, which is now subsidiary of IBM.

Aiming to reduce the complexity of applying AHP, in 1998, Jung [Jung, 1998]

adopted linear programming techniques as a two-step process: firstly, maximizing the

sum of the requirements’ values within cost budgets; secondly, determining which re-

quirements can be fulfilled to minimize the sum of the costs within maintaining the

maximum value of the first step. The process was based on single objective formu-

lation with a cost factor as constraint. In 1999, Wiegers [Wiegers, 1999] presented a

semi-quantitative approach for requirements prioritization, which combined value, cost

and risk criteria using weighting factors to evaluate requirements. This approach was

limited by the ability to attach the weights for each objective. Robertson and Robertson

[Robertson and Robertson, 2000,Robertson and Robertson, 2006] presented the Vol-

ere Requirements Specification Template (http://www.volere.co.uk/template.htm)

for assessing requirements. The template provided the simple and effective starting

point for quantifying requirements, but it did not refer to the requirements selection

issue.

Within the SBSE community, a recent trend has emerged in which search-based

optimization techniques have been used to solve requirements selection and optimiza-

tion problems. This would seem to be a natural and realistic extension of the initial

work on SBSE.

The NRP was first formulated as a single-objective SBSE problem by Bagnall et al.

in 2001 [Bagnall et al., 2001]. The paper described various metaheuristic optimization

algorithms, including greedy algorithms, branch and bound, simulated annealing and

hill climbing. The authors did not give any value property to each requirement. They

only used an associated cost. The task of the work was to find a subset of stakeholders,

whose requirements are to be satisfied. The objective was to maximize the cumulative

measure of the stakeholder’s importance to the company under resource constraints.

Feather and Menzies [Feather and Menzies, 2002] built an iterative model to seek

the near-optimal attainment of requirements. The authors proposed a Defect Detection

and Prevention (DDP) process based on a real-world instance: a NASA pilot study.

The DDP combined the requirements interaction model with the summarization tool

to provide and navigate the near-optimal solutions in the risk mitigation/cost trade-off

space. The paper was one of the first to use Pareto optimality in SBSE for requirements,

though, unlike the work in our paper, the Pareto fronts were not produced using multi-

objective optimization techniques (as with more recent work), but were produced using

the iterative application of a weighting based single objective formulation by applying

simulated annealing.

Ruhe et al. [Greer and Ruhe, 2004] [Ruhe and Greer, 2003]

[Ruhe and Ngo-The, 2004] proposed the genetic algorithm based approaches known as

the EVOLVE family which aimed to maximize the benefits of delivering requirements

in an incremental software release planning process. Their approaches balance the

required and available resources; assessing and optimizing the extent to which the

ordering conflicts with stakeholder priorities. They also took requirement changes

and two types of requirements interaction relationship into account and provided
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candidate solutions for the next release in an iterative manner. As with previous work,

this piece of work still adopted a single objective formulation, taking the resource

budget as a constraint. Jalali et al. [Jalali et al., 2008] also considered the problem of

optimizing requirements. They used a Greedy Algorithm to explore optimal solutions

that take account of risk in the requirements analysis process.

Moreover, Carlshamre [Carlshamre, 2002] take requirements interdependen-

cies into consideration by using Linear Programming techniques. Ruhe and

Saliu [Ruhe and Saliu, 2005] also presented an Integer Linear Programming (ILP)

based method which combined computational intelligence and human negotia-

tion to resolve their conflicting objectives. Van den Akker et al. [Li et al., 2007,

van den Akker et al., 2004,van den Akker et al., 2005,van den Akker et al., 2008] fur-

ther extended the technique and developed an optimization tool based on integer lin-

ear programming, integrating the requirements selection and scheduling for the release

planning to find the optimal set of requirements with the maximum revenue against

budgetary constraints.

Using search-based techniques in order to choose components to include in

different releases of a system was studied by Harman et al. [Baker et al., 2006,

Harman et al., 2006]. The work considered requirements problems as feature (com-

ponent) subset selection problems, like Feather et al., presenting results for a single

objective formulation applied to a real world data set: the Motorola Data Set. The

work of AlBourae et al. [AlBourae et al., 2006] was focused more on the requirements

change handling. That is, re-planning of the product release. A greedy replan algorithm

was adopted to reduce risks and increase the number of requirements achieved in the

search space under change.

In addition, Cortellessa et al. [Cortellessa et al., 2008a,Cortellessa et al., 2006,

Cortellessa et al., 2008b] described an optimization framework to provide decision sup-

port for COTS and in-house components selection. The Integer Linear Programming

(LINGO model solver) based optimization models (CODER, DEER) were proposed to

automatically satisfy the requirements while minimizing the cost.

The aforementioned work on this problem has tended to treat the requirements

selection and optimization as a single objective problem formulation, in which the

various constraints and objectives that characterize the requirements analysis problem

are combined into a single objective fitness function. Single objective formulations have

the drawback that the maximization of one concern may be achieved at the expense

of the potential maximization of another resulting in a bias guiding the search to a

certain part of the solution space.

More recently, there has been work on multi-objective formulations of the problem.

Zhang et al. [Zhang et al., 2007] proposed a multi-objective formulation of the next re-

lease problem (NRP) to optimise value and cost, upon which we base the formulation

in the present paper. This was the first paper to use a Pareto optimal, multi-objective

approach to the NRP, migrating it from NRP to MONRP. Independently, at the same

time, Saliu and Ruhe [Saliu and Ruhe, 2007] also adopted a Pareto optimal multi-

objective approach to the related problem of balancing implementation objectives and

requirements objectives. This was the first work to establish and study the link between

requirements optimization and the corresponding tension with the implementation. All

previous work had considered requirements in isolation, independent from the archi-

tectural constraints that choices of requirements impose upon the implementation of

the chosen requirement set.
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Finkelstein et al. [Finkelstein et al., 2008,Finkelstein et al., 2009] considered the

problem of fairness analysis in requirements optimization. This was the first paper

to introduce techniques for analysis of the trade-offs between different stakeholders’

notions of fairness in requirements allocation, where there are multiple stakeholders

with potentially conflicting requirement priorities and also possibly different views of

what would constitute fair and equitable solution.

In this work, like others on multi-objective solutions, each of the objectives to be

optimized is treated as a separate goal in its own right; multiple objectives are not

combined into a single (weighted) objective function. This allows the optimization

algorithm to explore the Pareto front of non-dominated solutions. Each of these non-

dominated solutions denotes a possible assignment of requirements that maximizes all

objectives without compromising on the maximization of the others. Using Pareto op-

timal search it becomes possible to explore precisely the extent to which it is possible

to satisfy “all of the people all of the time”. Of course, this is unlikely to be completely

achievable. However, the algorithm attempts to produce a set of non-dominated so-

lutions that are as close as the stakeholders’ prioritizations will allow to this ideal

situation.

As can be seen, the field of multi-objective requirements analysis is growing and

developing into a well-defined subfield of activity within the overall areas of SBSE. A

position paper on recent trends in requirements analysis optimization can be found in

the work of Zhang et al. [Zhang et al., 2008].

Much of the previous work has been concerned with development of new models,

formulations and frameworks for search based requirements. This previous work sug-

gests that requirement analysis can be transformed from a purely qualitative process

of human value judgement to a decision support environment in which human judge-

ment is informed by quantitative assessments of choices, optimized using metaheuristic

techniques. This growing interest in SBSE for requirement necessitates a more detailed

empirical analysis of the algorithmic choices available to engineers seeking to use SBSE

techniques in requirements analysis.

The present paper seeks to take a step toward the provision of this detailed empirical

analysis. In the conference version of this paper [Durillo et al., 2009], we provided an

initial set of empirical results to investigate the effectiveness of NSGA-II and MOCell

for the MONRP. In the present journal version of the paper, we extend these previous

results in the following ways:-

– We broaden the scope to include another multi-objective optimizer,

PAES [Angeline et al., 1999].

– We analyze the development of Pareto fronts as the algorithms progress. Since

all the algorithms are essentially ‘anytime’ algorithms, this analysis explores how

quickly the algorithms converge to a final Pareto front and the increase in Pareto

front quality as the algorithms progress.

– We extend the study to consider the efficiency (run time performance) of each of

the algorithms studied.

– We consider, additionally, a real world case study of the MONRP, to see whether

the empirical results suggested by the detailed study of different problem instances

are borne out in practice.

– We further analyze the obtained fronts, not only in terms of the composition of

each solution but also considering the fairness of each point into the Pareto front.
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10 Conclusions and Future Work

In this paper we have studied the Next Release Problem, with the intention of analyzing

the performance of three different multi-objective algorithms, and the solutions they

have provided over both test cases and a real instance of the problem.

To come with those issues, we have evaluated three state-of-the-art multi-objective

optimization algorithms: NSGA-II, MOCell, and PAES. This comparison has been

done on the basis of two quality indicators, HV and ∆, the number of non-dominated

solutions obtained by those algorithms, and running time.

In terms of convergence towards the optimal Pareto front, NSGA-II and MOCell

have been the best solvers in our comparison. The former algorithm has obtained the

best results, performing a lower number of evaluations. Furthermore, it has obtained the

best fronts in the two instances with the highest number of requirements. Regarding the

distribution of solutions contained in the fronts computed by the algorithms, MOCell

has been the most outstanding algorithm in our comparison.

As to the number of obtained solutions, NSGA-II is also the algorithm which has

shown the best performance; it is the technique computing the best non-dominated

solutions found so far in the two biggest instances. If we attend to the composition of

those solutions, we have observe that they are composed in a high percentage of those

requirements offering the highest ratio of customer satisfaction by unit cost.

The simplest algorithm in our comparison, PAES, has been the fastest algorithm

in our comparison. However, it has obtained the least accurate results according to all

the indicators. This highlights the importance of both a population and the use of a

recombination operator in order to better explore the search space of MONRP.

The best solutions found so far by the algorithms are composed by those require-

ments which more satisfy the customers by unit cost. Furthermore, we have observed

that algorithms using the same number of times the same requirements can provide

the software engineer with solutions of different quality.

Additionally, we have also made use of the computed front as a tool for analyzing

the fairness of the obtained solutions. Specifically, we have analyzed the satisfaction

of customers provided by each solution into the Pareto fronts computed by MOCell,

the best algorithm for that instance. The results have shown that solutions into those

fronts try to satisfy the customers the same.

Thus, by considering a multi-objective approach, it is possible to allow the soft-

ware engineers to use Pareto front evaluation as a comparative tool for a number of

objectives. First of all, the analyst can pick up the best solutions on the Pareto front in

different circumstances based on their priorities. For example, at a specific budget level

for a project, one or more optimal solutions might be found when moving along the

Pareto front. Meanwhile, the stakeholders’ satisfaction can also be concerned. Each sat-

isfaction level has its own corresponding cost (resource allocation, spending) according

to the Pareto front. This can help the analyst make rough estimates and adjustments

for a project budget.

Moreover, the Pareto front not only gives solutions themselves, but also may yield

interesting insights into the nature of the problem. The shape of the Pareto front

(concave, convex, discontinuous, knee point, nadir point, etc.) reflects the structure of

data in an intuitive way, and provides the analyst with very valuable information about

the trade-off among the different objectives and helps fully understand the problem and

reach practical solutions. Particularly, in the real instance we have identified areas of
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the fronts where a small increment in customers satisfaction demanded a huge one in

the investment.

Future work will verify these findings by applying search techniques to a larger

number of real word problems. This will provide valuable feedback to researchers and

practitioners in search techniques and in software engineering communities. Other for-

mulations of the problem considering different sets of objectives and constraints and

the design of techniques which assist software engineers in the decision making are also

issues to study. This, in turn, may give rise to the need for the development of more

efficient solution techniques. It is also interesting to investigate how these techniques

scale when the number of requirements and/or customer increases. In order to reach

this goal, a procedure will be needed which allows the systematic creation of instances

with the desired features; in this sense, we plan to design a problem generator for

MONRP instances.
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DIRICOM project (http://diricom.lcc.uma.es), and the Spanish Ministry of Science and
Innovation and FEDER under contract TIN2008-06491-C04-01 (the M* project). J. J. Durillo
is also supported by grant AP-2006-03349 from the Spanish Ministry of Education and Sci-
ence. Mark Harman is partly supported by EPSRC grants EP/G060525 (CREST: Centre for
Research on Evolution, Search and Testing, Platform Grant), and EP/D050863 (SEBASE:
Software Engineering By Automated SEarch), which also fully supports Yuanyuan Zhang.

References

[Afzal et al., 2009] Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic review of search-
based testing for non-functional system properties. Information and Software Technology,
51(6):957 – 976.

[Alba and Chicano, 2007] Alba, E. and Chicano, J. F. (2007). Software project management
with gas. Information Sciences, 177(11):2380 – 2401.

[Alba and Dorronsoro, 2008] Alba, E. and Dorronsoro, B. (2008). Cellular Genetic Algo-
rithms, volume 42 of Operations Research/Computer Science Interfaces. Springer-Verlag
Heidelberg.

[AlBourae et al., 2006] AlBourae, T., Ruhe, G., and Moussavi, M. (2006). Lightweight Re-
planning of Software Product Releases. In Proceedings of the 1st International Workshop on
Software Product Management (IWSPM ’06), pages 27–34, Minneapolis, MN, USA. IEEE
Computer Society.

[Angeline et al., 1999] Angeline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X., and Zalzala,
A., editors (1999). The Pareto Archived Evolution Strategy: A New Baseline Algorithm for
Pareto Multiobjective Optimisation, volume 1, Mayflower Hotel, Washington D.C., USA.
IEEE Press.

[Bagnall et al., 2001] Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. M. (2001). The
next release problem. Information and Software Technology, 43(14):883 – 890.

[Baker et al., 2006] Baker, P., Harman, M., Steinhofel, K., and Skaliotis, A. (2006). Search
based approaches to component selection and prioritization for the next release problem.
In ICSM ’06: Proceedings of the 22nd IEEE International Conference on Software Mainte-
nance, pages 176–185, Washington, DC, USA. IEEE Computer Society.

[Carlshamre, 2002] Carlshamre, P. (2002). Release Planning in Market-Driven Software Prod-
uct Development: Provoking an Understanding. Requirements Engineering, 7(3):139–151.

[Cortellessa et al., 2008a] Cortellessa, V., Crnkovic, I., Marinelli, F., and Potena, P. (2008a).
Experimenting the Automated Selection of COTS Components Based on Cost and System
Requirements. Journal of Universal Computer Science, 14(8):1228–1255.

[Cortellessa et al., 2006] Cortellessa, V., Marinelli, F., and Potena, P. (2006). Automated
Selection of Software Components Based on Cost/Reliability Tradeoff. In Proceedings of
the 3rd European Workshop on Software Architecture (EWSA ’06), volume 4344 of LNCS,
pages 66–81, Nantes, France. Springer.



33

[Cortellessa et al., 2008b] Cortellessa, V., Marinelli, F., and Potena, P. (2008b). An Opti-
mization Framework for “Build-or-Buy” Decisions in Software Architecture. Computers &
Operations Research, 35(10):3090–3106.

[Deb, 2001] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley, 1 edition.

[Deb et al., 2002] Deb, K. D., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm : Nsga-ii. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197.

[Del Grosso et al., 2005] Del Grosso, C., Antoniol, G., Di Penta, M., Galinier, P., and Merlo, E.
(2005). Improving network applications security: a new heuristic to generate stress testing
data. In GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary
computation, pages 1037–1043, New York, NY, USA. ACM.

[Durillo et al., 2006] Durillo, J. J., Nebro, A. J., Luna, F., Dorronsoro, B., and Alba, E. (2006).
jMetal: A Java Framework for Developing Multi-Objective Optimization Metaheuristics.
Technical Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, E.T.S.I. Informática, Campus de Teatinos.
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