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ABSTRACT
Despite the upsurge of interest in the Aspect-Oriented Program-
ming (AOP) paradigm, there remain few results on test data gener-
ation techniques for AOP. Furthermore, there is no work on search-
based optimization for test data generation, an approach that has
been shown to be successful in other programming paradigms.

In this paper, we introduce a search-based optimization approach
to automated test data generation for structural coverage of AOP
systems. We present the results of an empirical study that demon-
strates the effectiveness of the approach. We also introduce a do-
main reduction approach for AOP testing and show that this ap-
proach not only reduces test effort, but also increases testeffec-
tiveness. This finding is significant, because similar studies for
non-AOP programming paradigms show no such improvement in
effectiveness, merely a reduction in effort. We also present the re-
sults of an empirical study of the reduction in test effort achieved
by focusing specifically on branches inside aspects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Test data generation, aspect-oriented software development, evolu-
tionary testing, search-based software engineering

1. INTRODUCTION
Testing remains an important activity within the overall software

development process. In 2002, the US National Institute forStan-
dards in Technology (NIST) estimated the cost of software failures
to the US economy at $60,000,000,000, being 0.6% of the entire
GDP of the USA [30]. The same report found that more than one
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third of these costs attributed to software failures could be elimi-
nated by improved testing. Testing remains one of the commonly
used practices in assuring high quality of aspect-orientedsystems
developed through the aspect-oriented software development and
Aspect-Oriented Programming (AOP) paradigm [23,27,36].

One widely adopted approach to testing concentrates upon the
goal of coverage; the tester seeks to cover some set of program-
ming features. One of the most widely used forms of coverage is
branch coverage, a testing goal that forms the basis of several indus-
try standards [10, 33]. These standards are applied to all software
delivered, regardless of the programming paradigm adoptedand so
these standards simply cannot be ignored by practicing software
engineers.

Manual test data generation for achieving coverage is tedious,
error-prone and expensive. Therefore, for some time, automation
has been considered to be the key to effective and efficient test data
generation [24]. Because of the widespread practitioner usage of
branch coverage, this testing goal has received a lot of attention
from the software testing research community [14, 28]. Search-
based optimization techniques have been shown to be very effec-
tive at automating the test data generation process for branch cover-
age [19,28,38,41]. However, search-based optimization techniques
have not, hitherto, been applied in the AOP paradigm.

In this paper, we address this important gap in the existing liter-
ature. We introduce techniques for search-based test data genera-
tion [20, 28, 37] (e.g., evolutionary testing) and study their effect,
in a detailed empirical study of 14 AOP programs. The resultsare
very encouraging. They indicate that the search-based approach is
at least as well suited to the AOP paradigm as it is to more conven-
tional paradigms. Indeed, the results provide evidence to suggest
that it may be even more effective and efficient.

Specifically, the new language constructs for AOP create both
new challenges and optimization opportunities for software test-
ing in general, and for automated software test data generation in
particular. However, despite the recent upsurge in interest in AOP,
there lacks sufficient work on testing of AOP, especially automated
testing of AOP.

Xie et al. [43, 44] recently reduced the problem of automated
test data generation for AOP to the problem of automated testdata
generation for object-oriented (OO) programs. They proposed a
wrapper mechanism to address issues in leveraging an OO testdata
generation tool. However, they did not investigate specifictest data
generation techniques for AOP, but simply relied on reusingan OO
test generation tool that adopts simplistic random test generation
techniques.

Recently, there has been much interest in more advanced au-
tomated test data generation techniques for procedural or object-



oriented programs, such as dynamic symbolic execution [14]and
search-based test data generation [20,28,37], but none of this work
has been applied to the AOP paradigm.

This lack of sufficient previous work leaves unanswered research
questions concerning how well these techniques can be applied to
AOP and what differences can be observed when automating test
data generation for AOP compared with other more conventional
programming paradigms. In this paper, we address these questions,
providing the first automated, optimizing approach to test data gen-
eration for AOP. The approach exploits AOP-adapted versions of
both search-based test data generation techniques and recent results
on domain reduction optimizations [17].

The paper makes the following main contributions:

• The paper presents a system for Automated Test Data Gener-
ation (ATDG) for AOP. It is the first ATDG system for AOP
(going beyond Xie et al.’s approach [43,44] of simply lever-
aging an existing random OO ATDG system) and represents
the first application of search-based testing techniques (e.g.,
evolutionary testing techniques) to the AOP paradigm.

• The paper presents the results of an empirical study that pro-
vides evidence to support the claim that search-based testing
for AOP is effective.

• The paper introduces AOP domain reduction techniques to
improve the performance of ATDG. The techniques use a
dependence analysis based on slicing [42] to identify irrel-
evant parts of the test input that cannot affect the outcome
of branch evaluation in aspects, presenting results on the ef-
fectiveness of these techniques. Specifically it presents the
following main findings:

– Domain reduction was applicable to many of the AOP
benchmark programs being studied.

– Test effort decreased when domains were reduced.

– The number of covered branches was increased by do-
main reduction. This interesting finding was a pleasant
surprise; no such increase in effectiveness was found
for the imperative programming paradigm [17]. A fur-
ther surprise was found in an effect that we call ‘co-
lateral coverage’: as might be expected, domain reduc-
tion improves coverage of target branches, but, more
interestingly, it also improves coverage of un-targeted
branches. This paper is the first to report on this ob-
served co-lateral coverage effect.

• The paper studies the efficiency gains obtained by focusing
test effort on aspectual branches (branches inside aspects),
rather than all branches. The results provide evidence that
test effort can be reduced while achieving equivalent or better
aspectual branch coverage.

Indeed, our approach can be generally applied to test object-
oriented programs [8] beyond aspect-oriented programs, byfocus-
ing on selective elements (e.g., not-covered branches) of code in
object-oriented programs. However, our approach is the first to
be applied to test aspect-oriented programs, where the units under
tests (aspects) cannot be directly invoked, posing stronger needs of
our proposed approach than traditional problems of testingobject-
oriented programs. In addition, focusing on aspectual branches in
a software system (which may include only a low percentage of
branches being aspectual branches) offers unique optimization op-
portunities, as exploited by our approach.

public class Account {
private float _balance;
private int _accountNumber;
private Customer _customer;
public Account(int accountNumber,

Customer customer) { ... }
public void debit(float amount) { ... }
...

}

public aspect ODRuleAspect
pointcut debitExecution(Account account,

float withdrawalAmount)
: execution(void Account.debit*(float)
&& this(account) && args(withdrawalAmount);

before(Account account, float withdrawalAmount)
: debitExecution(account, withdrawalAmount) {
Customer customer = account.getCustomer();

* if (customer == null) return;
if (account.getAvailableBalance()< withdrawalAmount){
float transferAmountNeeded = withdrawalAmount -

account.getAvailableBalance();
...

} else System.out.println("I have enough money!");
}
...

}

Figure 1: Sample aspect for theAccount class

The rest of the paper is organized as follows. Section 2 uses
examples to illustrate our approach to ATDG for aspect-oriented
programs. Sections 3 and 4 introduce the approach and how it was
implemented in order to produce the results reported in thispaper.
Section 5 describes the experimental setup: the subject programs
being studied as well as the research questions posed by the re-
search and addressed by the empirical studies. Sections 6, 7, and 8
present the results of the three empirical studies. These three stud-
ies are, respectively, concerned with (1) validating that the search-
based testing approach is superior to pure random test data gener-
ation (a ‘sanity check’ to validate applicability), (2) showing that
domain reduction can improve search-based test data generation
for AOP, and (3) reporting on the differential effort required to test
aspect-oriented features over-and-above non-aspect-oriented fea-
tures.

The comparison with random test data generation is typically
regarded as a sanity check for search-based test data generation.
However, in the case of AOP test data generation, the only prior au-
tomated test data generation approach [43, 44] is random test data
generation. Therefore, these results also concern the degree of im-
provement over the current state-of-the-art, which the paper shows
to be statistically significant. Section 9 discusses threats to validity
of the presented empirical results. Section 10 presents related work
and Section 11 concludes.

2. EXAMPLE
We next introduce the background of AspectJ [22] programs and

the overview of our approach through an example adapted from
AspectJ examples by Laddad [26]. Figure 1 shows a sample as-
pectODRuleAspect (for defining overdraft rules) for theAccount
class. In an AspectJ program,pointcutsspecify where the crosscut-
ting behavior applies within the program. For example,ODRuleAspect
defines one pointcutdebitExecution, which specifies the execu-
tion of Account.debit*(float). The specific execution points
that match a pointcut are known asjoinpoints.

For example, the execution ofAccount.debit(float) is such
a joinpoint for the pointcut. Anadvicecontains a set of instructions



that specifies when it is invoked and what behavior it implements.
There are three types of advices in AspectJ: before, around,and
after. A beforeadvice is executed before the joinpoint execution,
an around advice is executed in place of the joinpoint execution,
and anafter advice is executed after the joinpoint execution. For
example, inODRuleAspect, one before advice is defined. The
advice specifies that the behavior implemented in the beforeadvice
is to be executed before the execution of thedebit method in the
Account class.

After we use an AspectJ compiler to weave AspectJ code (de-
fined inODRuleAspect) with the Java code (defined inAccount)
to Java bytecode, our approach identifies all aspectual branches
(i.e., branches within the advice inODRuleAspect at the source
code level) in the Java bytecode. Let us assume that our cover-
age target is the false branch of the predicate “if (customer ==
null) return” (highlighted with “*” in Figure 1) inODRuleAspect.

Note that to cover this aspectual branch, we can treat the af-
fected methoddebit(float) of Account as the method under
test named as the target method, which eventually invokes thebefore
advice defined inODRuleAspectbefore the execution of the method
debit(float). Given the target method, our evolutionary tester
generates various test data for the parameters; without losing gen-
erality, we consider the receiver object (theAccount object) as
one parameter. The evolutionary tester uses an approach of search-
based test data generation [20, 28, 37] (e.g., evolutionarytesting)
based on the theory of evolution (more details are describedin Sec-
tion 3.2).

It is quite costly for the evolutionary tester to try variouscombi-
nations of the data for the parameters. We can observe that, in order
to cover an aspectual branch, often only a subset of parameters are
relevant, which are required to hold certain data values. Our test
data generation should explore the domain for these relevant pa-
rameters instead of investing time on all parameters.

Therefore, to reduce the test-generation cost, we use a domain
reduction technique to excludeirrelevant parametersin the search
space of test data. In particular, we perform backward slicing [42]
(more details are described in Section 3.1). The slice criterion is the
predicate that is involved with the target aspectual branch. Recall
that our target aspectual branch is the false branch of the predi-
cate “if (customer == null) return” (highlighted with “*”
in Figure 1) inODRuleAspect. The resulting program slice con-
tains only statements that can influence the coverage of our target
branch. For example, the resulting slice of our target branch is
shown below:

Customer customer=account.getCustomer();
if(customer == null) return;

We next identify which parameters in the target method are not
relevant to our target branch by looking for the name and typeof
each parameter in the resulting slice. As the program slice con-
tains all statements that can be executed within the target method
to influence the target branch, any parameter that is not contained
within the slice is considered to be irrelevant. In our example, the
parameter “account” (receiver object) of the “debit” method oc-
curs within the slice but the parameter “amount” of the “float”
type does not. Therefore, the float parameter is considered to be
irrelevant for the target branch.

After all irrelevant parameters have been identified, we instruct
the evolutionary testers not to try various data for these irrelevant
parameters. By excluding the irrelevant parameters, we essentially
reduce the search space for testing the target branch.

Note that our proposed approach has been applied to aspects in-
volving static advice as shown in the experiments describedin Sec-
tion 5. But our approach is not limited to static advice and would

Figure 2: Overview of our approach

be expected to work well with dynamic advice since our approach
does not rely on specific characteristics of static advice. We plan to
empirically validate our such hypothesis in future work.

3. APPROACH
We develop an approach for automated test data generation (ATDG)

for aspect-oriented programs. Its test objective is to generate test
data to cover aspectual branches (i.e., achieving aspectual branch
coverage [43]). The input to the framework includes aspectswrit-
ten in AspectJ as well as the Java classes (being named asbase
classes) where the aspects are woven. Following Aspectra [43], for
the given aspects under test, our approach generates test data for the
base classes and these test data indirectly exercise or cover the as-
pects. We can view these base classes as providing the scaffolding
necessary to drive the aspects.

The generated test data is a type of unit tests for the base classes
but with respect to aspect code, the generated test data can be also
viewed as a type of integration tests, testing the interactions be-
tween the aspects and the base classes. To measure coverage of as-
pectual behavior, our approach uses the metric ofaspectual branch
coverage, which measures the branch coverage within aspect code.

An overview of our approach is presented in Figure 2. It consists
of four major components:

Aspectual-branch identifier. Given the AspectJ source code
(including both aspects and base classes), the component ofas-
pectual branch identifier identifies branches inside aspects, which
are the coverage targets of our approach. Aspectual branches in-
clude both branches from predicates in aspects and methods in as-
pects, where the entry of a method in aspects is counted as one
branch to accommodate covering a method without any branching
points [43]. The identified aspectual branches are to be specified as
test goals to the component of the evolutionary tester.

Relevant-parameter identifier. Because not all parameters of
the methods of the base classes would be relevant to coveringa tar-
get aspectual branch, the component of relevant-parameteridenti-
fier identifies only those relevant method parameters. This compo-
nent implements a type of domain reduction in test data generation.

Evolutionary tester. Given the relevant parameters produced
by the relevant-parameter identifier, the component of evolutionary
tester conducts evolutionary testing on the relevant parameters.

Aspectual-branch-coverage measurer.After the tests are gen-
erated by the evolutionary tester, the component of aspectual-branch-



coverage measurer measures the coverage of aspectual branches
and selects test data that can cover a new aspectual branch that is
not covered by earlier selected test data.

We next present more details on two key techniques in our ap-
proach: input-domain reduction and evolutionary testing,conducted
by the components of the relevant-parameter identifier and the evo-
lutionary tester, respectively.

3.1 Input-Domain Reduction
The input-domain reduction technique [17, 18] was introduced

for constraint-based testing. It typically involves simplifying con-
straints using various techniques and generating random inputs for
the variables with the smallest domain. The process is repeated
until the target structural entity such as a branch has been covered.

Input domain. The input domain in program testing is gener-
ally considered as global variables and the set of input parameters
of a method (named as a target method) that contains the target
branch or whose callees contain the target branch (in testing object-
oriented programs, we can view the receiver object of the method
under test as an input parameter). In our problem context, the input
domain is the set of input parameters of a method (named as a tar-
get method) in a base class that invokes the aspect containing the
target aspectual branch.

In existing approaches such as Aspectra [43], this target method
is directly fed as the method under test to an existing ATDG tool for
object-oriented programs, and consequently the tool wouldgener-
ate various data values for all the parameters of the target method.
As we can see, the number of parameters where various data val-
ues shall be tried determine the size of the search space of test data.
Usually this test data generation process (i.e., search process) is
quite expensive, inducing high cost.

However, in testing aspectual behavior such as generating test
data to cover aspectual branches, we can observe two main oppor-
tunities for reducing this cost. First, not all parameters of the target
method would affect whether the advice containing the target as-
pectual branch would be invoked. Second, not all parametersof
the target method would affect whether the target aspectualbranch
would be covered. Based on this observation, our approach uses
the input-domain reduction technique to reduce the input domain
by identifying irrelevant parameters and excluding them from the
scope of testing in order to reduce test effort. However, it should be
noted that even when all parameters are irrelevant, it does not mean
no test effort, since there may be other factors such as statevari-
ables and infeasible paths that effect the attempts to coverbranches.

Program slicing. To identify such irrelevant parameters, we use
program slicing [42]. Program slicing is a static analysis technique
that helps to create a reduced version of a program by placingat-
tention on selected areas of semantics. The process removesany
part of the program that cannot influence the semantics of interest
in any way. The reduced version of the program is named as a slice
and the semantics of interest is known as slice criterion.

Based on the slice criterion, it is possible to produce backward or
forward slices. A backward slice consists of the set of statements
that can influence the slice criterion based on data or control flow. A
forward slice contains the set of statements that are control or data
dependent on the slice criterion. That is, a forward slice includes
any statement that can be affected by the slice criterion.

Search space reduction by program slicing has been used as the
technique for identifying irrelevant parameters for each aspectual
branch. After aspects have been woven to base classes and as-
pectual branches have been identified, the line of the conditional
statement associated with the target aspectual branch is used as the
slicing criterion for backward slicing. Then we check whether a

parameter of the target method is within the slice to determine its
relevancy. If a parameter does not appear within the slice, then it is
considered as an irrelevant parameter.

3.2 Evolutionary Testing
Evolutionary Testing (ET) [28] is a search-based software testing

approach based on the theory of evolution. It formulates thetask to
generate relevant test data (relevant in terms of the testing objective
at hand, such as maximizing structural coverage) as one or several
search problems. Each search problem consists of the definition of
the search space based on the input domain of the target program
(e.g., its relevant parameters), and a fitness function thatET con-
structs. In the case of structural testing, such a search problem aims
at finding a test data leading to the coverage of a particular branch.
Each search problem is tried to be solved using an evolutionary al-
gorithm: a pool of candidate test data, the so-called individuals,
is iteratively manipulated by applying fitness evaluation,selection,
mutation, and crossover in order to eventually obtain a relevant test
data. Such an iteration is named as a generation. For fitness eval-
uation, the candidate test data is executed. Better fitness values
are assigned to individuals that are better able to solve thesearch
problem at hand, e.g., coming closer to covering the target branch
during execution. ET has been found to achieve better performance
than random testing as it concentrates the search toward finding test
data with high fitness values [41].

Structural testing. For structural testing, such as branch testing,
the fitness value is usually determined based on how close thecan-
didate test data comes to cover the target branch during execution.
The closeness is typically expressed as the sum of the two met-
rics approximation leveland local distance. Approximation level
is defined in terms of the control flow graph of the target program
and criticality of branching nodes. A branching node is critical
if no path exists from one of its outgoing branches to the target.
Approximation level is measured as the number of critical branch-
ing nodes between the path taken during execution and the target
branch. Local distance is defined in terms of the condition ofthat
critical branching node at which execution diverged away from the
target branch. Its values are within[0, 1]. To determine the local
distance, a condition-specific distance function is constructed by
composing operator-specific atomic distance functions. For each
relational operator of the programming language, an atomicdis-
tance function exists [6]. The lower its value, the closer the condi-
tion is to being evaluated in favor of the non-critical branch. Since
both metrics are non-negative and 0 in the case of an optimal test
data, the evolutionary searches aim at minimizing the fitness values
of the candidate test data.

Class testing. In class testing (i.e., testing a class), evolution-
ary testing [40] transforms the task of creating test or method se-
quences that lead to high structural coverage of the code under test
to a set of optimization problems that a genetic programmingalgo-
rithm then tries to solve.

Each not-covered structural entity, such as a branch when per-
forming branch testing, becomes an individual test goal forwhich
an evolutionary search will be carried out. A tree-based represen-
tation of test sequences is used to account for the call dependencies
that exist among the methods of the classes that participatein the
test sequences. This representation combats the occurrence of non-
executable test sequences. Method call trees are evolved via sub
tree crossover, demotion, promotion, and the mutation of the prim-
itive arguments.

Our approach conducts evolutionary testing for structuraltesting
and class testing on the target method of the base class for a target
aspectual branch. Our approach specially narrows down the search



Program Whole Test # Aspectual # Aspectual branches Brief description
program LoC driver LoC branches from predicates

Figure 147 147 1 0 Drawing program handling GUI updates using aspects
PushCount 119 119 1 0 Stack program counting the number of push operations using aspects
Instrumentation 96 96 2 0 Stack program counting number of stack operations using aspects
Hello 33 33 3 0 Introductory AspectJ program demonstrating use of advicesin aspects
QuickSort 127 127 4 0 QuickSort program counting partitions and swaps using aspects
NonNegative 94 94 6 4 Stack program enforcing pushing only nonnegative values using aspects
NullCheck 3115 140 6 4 Stack program detecting null values during pop operations using aspects
NullChecker 70 70 7 6 Stack program finding null values in stack cells using aspects
Telecom 696 696 8 0 Telephone call management program maintaining billing using aspects
SavingsAccount 215 215 15 12 Bank account program enforcing policies using aspects
QueueState 545 545 15 12 Queue program maintaining various states of queues using aspects
ProdLine 1317 1317 25 8 Product lines with features enforced by aspects
DCM 3406 446 103 82 Program computing dynamic coupling metrics using aspects
Law of Demeter 3063 185 356 306 Policy enforcer program for the Law of Demeter using aspects

Figure 3: Subject programs being studied

space for evolutionary testing by instructing the evolutionary tester
not to explore those identified irrelevant parameters.

4. IMPLEMENTATION
We have implemented the proposed approach for ATDG of aspect-

oriented programs in a prototype tool named as EvolutionaryAspectTester
(EAT). We next describe the implementation details of each tool
component.

Aspectual-branch identifier. To identify aspectual branches
and measure the coverage of aspectual branches, we modified the
aspectual branch coverage measurement tool named as Jusc from
the Aspectra approach [43]. In particular, based on Jusc, weiden-
tify branches from aspects by scanning and matching method names
in the bytecode (produced by an AspectJ compiler) against pre-
defined patterns related to aspects.

Relevant-parameter identifier.We used the Indus Java slicer [34]
to produce backward slices from Java code. Because an AspectJ
compiler by default produces bytecode instead of source code af-
ter weaving, we convert AspectJ woven bytecode to Java source
code by using the ajc AspectJ Compiler 1.0.6; it offers an option
of producing an equivalent Java version of the AspectJ code.We
modified the Indus API to store the information of original source
line numbers in Jimple [39] code, the format of slices generated by
Indus. After slicing, line numbers of the slices are extracted from
the Jimple output. Corresponding statements from those lines were
used to construct slices in the source code. Once a target method
is sliced for an aspectual branch and the method’s parameters are
identified as relevant or not, our tool produces a new versionof Java
code for each branch, with the irrelevant parameters removed and
declared as local variables within the method. This new version of
Java code is fed to the evolutionary tester as input.

Evolutionary tester. In our implementation, we used EvoUnit [40]
from Daimler Chrysler to implement the evolutionary testing tech-
nique as well as the random testing technique, which is used as the
comparison base in our experiments being described in the rest of
the paper. We also extended EvoUnit to implement the conceptof
reducing the input domain for evolutionary testing. EvoUnit gener-
ated JUnit test suites where each test case covers at least one new
target branch.

Aspectual-branch-coverage measurer.We used Jusc [43] to
measure the aspectual branch coverage achieved by the JUnittest
suite generated by EvoUnit. For each covered branch, our tool also
produces the name of the first-encountered JUnit test case that cov-
ers that branch.

5. EXPERIMENTAL SETUP
We next describe the experiment setup, including the programs

used for the empirical study and the research questions to bean-
swered. The paper provides empirical results as evidence tosupport
the claims made in answering the questions.

In the empirical studies, we applied the proposed approach to a
suite of 14 aspect-oriented programs written in AspectJ [22]. Fig-
ure 3 shows the details of these programs with Columns 1-6, show-
ing the program name, the lines of code (LoC) of the whole pro-
gram, the LoC of the test driver (the base classes used to drive the
aspects under test) together with the aspects, the number ofaspec-
tual branches (including both branches from predicates in aspects
and methods in aspects, where the entry of a method in aspectsis
counted as one branch to accommodate covering a method without
any branching points [43]), the number of aspectual branches from
predicates in aspects, and a brief description, respectively. Note
that only the aspectual branches from predicates are used tocon-
duct domain reduction in the empirical studies. These subject pro-
grams were previously used in the literature in testing and analyz-
ing aspect-oriented programs [12,35,43].

Most of these programs were used by Xie and Zhao in evaluat-
ing Aspectra [43]. These programs include most of the programs
used by Rinard et al. [35] to evaluate their classification system for
aspect-oriented programs. The programs also include most of the
programs1 used by Dufour et al. [12] in measuring performance
behavior of AspectJ programs. These programs also include one
aspect-oriented design pattern implementation2 by Hannemann and
Kiczales [16].

Although the programs are relatively small, they representa range
of different popular uses of aspect code including instrumentation,
monitoring, contract enforcement, exception handling, logging, up-
dating, and filtering. There are a total of 658 different branches
considered, each of which represents a different search problem.
The involved search space is large in many cases, leading to non-
trivial search problems for search-based test data generation.

In the empirical studies, we compare evolutionary testing with
random testing for testing aspect-oriented programs with two con-
siderations. First, random testing is the test data generation tech-
nique used by existing test data generation approaches [43,44] for
aspect-oriented programs. Second, random testing is a popularly
used testing approach [15] in practice.

1The AspectJ programs used by Dufour et al. [12] can be obtained
from http://www.sable.mcgill.ca/benchmarks/.
2Hannemann and Kiczales’s design pattern implementations can be
obtained fromhttp://www.cs.ubc.ca/~jan/AODPs/.



To overcome the inherent random effects present in both the evo-
lutionary algorithm and the random search, the empirical results are
averages of 30 trials, each of which applies the random and evolu-
tionary testing techniques. On coverage improvement, we compare
the average coverage achieved by the 30 trials for each optimization
problem.

The effort calculations for the testing process are produced based
on the used testing technique; these effort statistics are used in the
experiments. For evolutionary testing, effort is calculated in terms
of the number of evaluations. For random testing, it is calculated
using the number of generations for random testing. As the effort
for evolutionary and random testing is calculated using thesame
way, the results are directly comparable.

The research questions addressed in the three empirical studies
are described as follows:
Assessment of evolutionary testing

• RQ 1.1. Can evolutionary testing outperform random testing
for testing aspect-oriented programs?

Impact of domain reduction

• RQ 2.1. What is the number of branches in each program
that have irrelevant parameters and how high percentage of
parameters are irrelevant for each of these branches?

• RQ 2.2. What is the computational effort reduction for each
branch that has irrelevant parameters removed and for how
many of these branches is the improvement statistically sig-
nificant?

• RQ 2.3. For each program that contains branches that have ir-
relevant parameters, what is the overall improvement in com-
putational effort for test data generation?

• RQ 2.4. When generating test data for a particular target
branch, what is the co-lateral effect on the level of coverage
achieved for not-targeted branches?

Impact of focusing on testing aspectual behavior

• RQ 3.1. What is the computational effort reduction for test
data generation for each program if aspectual behavior in-
stead of all behavior is focused on?

Metrics. We useaspectual branch coverage(the number of
covered aspectual branches divided by the total number of aspec-
tual branches) to measure how well the advices in aspect-oriented
programs have been tested. This metric was used in existing test
data generation techniques [43] for aspect-oriented programs; it is
stronger (arguably better) than aspectual statement coverage, whose
counterpart in traditional program testing is statement coverage,
one of the most popularly used code coverage metrics in practice.

As is standard in experiments on evolutionary and search-based
computation algorithms, we measure the effort (i.e., the computa-
tional cost) in terms of the number of fitness evaluations used by
each algorithm to find a test data that covers the target branch. This
measurement avoids implementation bias and the difficulties asso-
ciated with reliable, robust, and replicatable assessmentof com-
putation effort; the evaluation of fitness is the core atomicunit of
computational effort for search-based approaches.

In theory, if running forever, then random will eventually achieve
coverage. In practice, testing researchers tend to give an upper

bound. We set this bound at 10,000 runs. Effort is only measured
for successful coverage. Fitness is evaluated in several places in the
evolutionary algorithm. On each call, a static counter is increased
to reflect the exact number of times the algorithm assesses fitness.

For the random test data generator, the ‘algorithm’ simply gen-
erates random test sequences and evaluates their fitness until either
the target branch is covered (purely at random) or the 10,000limit
is reached without the target branch having been covered. Inthe
case of random search, the number of fitness evaluations is there-
fore identical to the number of random test data generated.

To cater for the inherently stochastic nature of the search-based
algorithms, each algorithm was executed 30 times on each subject
program, facilitating the assessment of the statistical significance
of the results. For each branch to be covered, thet-test was used
to assess the significance in the difference of means over these 30
runs, at the 95% confidence level.

The analysis cost of slicing and domain reduction is dwarfedby
the cost of evolutionary testing; even in the best case, it takes two
orders of magnitude more time to conduct evolutionary testing than
it does to compute the reduced domain information. Therefore, the
analysis time of slicing and domain reduction can be considered
to be inconsequential in this study; the focus of the experiment is
thus the difference in performance of the two test data generation
problems (with and without domain reduction).

6. EMPIRICAL STUDY: ASSESSING EVO-
LUTIONARY TESTING

RQ 1.1. Can evolutionary testing outperform random
testing for testing aspect-oriented programs?.

We applied evolutionary testing and random testing on the 14
programs and compared their results in terms of the achievedcode
coverage and effort taken for testing. Figure 4 shows the improve-
ment in coverage achieved by evolutionary testing over random
testing. The x axis represents each program and the y axis rep-
resents the improvement in aspectual branch coverage3 as a result
of using evolutionary testing. We observed that we achievedthe
same branch coverage on 9 out of 14 programs with evolutionary
and random testing.

We achieved better branch coverage on the remaining 5 programs
with evolutionary testing. The maximum improvement of 42.67%
in branch coverage is observed on the programSavingsAccount.

Figure 5 shows the effort reduction per program for evolutionary
testing over random testing. The x axis shows the 14 programsand
the y axis shows the percentage reduction in effort with evolution-
ary testing. We observed that 5 out of 14 programs had no differ-
ence in effort for evolutionary testing and random testing,and the
remaining 9 programs had a reduction in effort for using evolution-
ary testing. The maximum reduction of 61.28% is achieved by the
programQueue. Overall we can deduce that evolutionary testing
takes the same or less effort for testing the same programs when
compared to random testing.

An interesting observation is that, when the results of branch
coverage improvement and effort reduction are compared, all 5
programs that had an improvement in branch coverage also had
a reduction in effort for evolutionary testing. In summary,evolu-
tionary testing does not only achieve better branch coverage than
random testing, it also does it with less effort. This study provides
evidence that evolutionary testing is a better technique for testing
aspect-oriented programs in comparison to random testing.

3Aspectual branch coverage is measured as the percentage of cov-
ered aspectual branches among all the aspectual branches.



Figure 4: Coverage improvement of evolutionary testing over
random testing

Figure 5: Effort reduction of evolutionary testing over random
testing

7. EMPIRICAL STUDY: IMPACT OF DO-
MAIN REDUCTION

We applied evolutionary testing without and with domain reduc-
tion on the 14 programs to investigate research questions RQs 2.1,
2.2, 2.3, and 2.4.

Research Question RQ 2.1. What is the number of
branches in each program that have irrelevant param-
eters and how high percentage of parameters are irrel-
evant for each of these branches?.

Figure 6 shows the results of applying domain reduction to 14
subject programs under study (the first 5 subject programs and the
Telecom program have 0 values in Columns 2-5, not being shown
in the figure for simplicity). Column 2 shows the total numberof
aspectual branches from predicates in each program. Column3
shows the number of aspectual branches with irrelevant parame-
ters among the branches listed in Column 2. Column 4 shows the
number of aspectual branches with irrelevant parameters that were
possible to be covered with the implemented testing tool. Column 5
shows the number of aspectual branches that were always covered
during all 30 runs in testing. In other words, the aspectual branches
counted in Column 5 do not include any aspectual branch that was
not covered in some run during testing, even if they usually were
covered.

We observed that for 6 of the programs there were no aspec-
tual branches from predicates so that these programs are notqual-

Program # Aspectual # Aspectual # Aspectual # Testable
branches branches branches aspectual

from with with branches
predicates irrelevant testable covered

parameters irrelevant in all
parameters 30 runs

NonNegative 4 0 0 0
NullCheck 4 4 4 3
NullChecker 6 0 0 0
SavingsAccount 12 2 2 2
Queue 12 12 12 12
ProdLine 8 2 2 0
DCM 82 46 42 30
Law of Demeter 306 24 4 1
Total 434 90 66 48

Figure 6: Domain reduction to remove irrelevant branches

ified for domain reduction because we conduct domain reduction
on only aspectual branches from predicates, although all aspectual
branches have been used to guide the search. Indeed, we can simi-
larly consider the entry of a method in aspects as the slicingcrite-
rion for conducting domain reduction, but in this empiricalstudy,
we focus on those branches from predicates in aspects.

For only 2 of the remaining 8 programs (2 smaller programs:
NonNegative and NullChecker), there were no branches that
had irrelevant parameters; all parameters potentially affected the
outcomes of all predicates for these 2 programs according tothe
Java slicing tool, Indus, used in the implementation. Of there-
maining 6 programs with branches that have irrelevant parameters,
there were a total of 90 branches with irrelevant parametersand
which could, therefore, potentially benefit from the exploitation of
domain reduction. Of these 90 branches, 66 were testable (i.e., cov-
erable) using the evolutionary tester. Untestable branches include
those that make reference to interfaces, abstract classes and those
that contain static global variables of primitive type. Of these 66
testable branches, it was possible to generate test data reliably (on
all of the 30 runs of the test data generation system) for covering
48 branches.

Figure 7 shows the reduction in parameters achieved for each
of the 48 branches for which some non-zero reduction was possi-
ble. The size of reduction is represented using the percentage of
irrelevant parameters. The x axis shows all 48 branches using their
branch identifiers and the y axis shows the percentage of irrelevant
parameters. Overall, a considerable amount of domain reduction
was possible for all 48 branches.

We observed that for several branches we have achieved 100%
domain reduction (i.e., the set of relevant parameters is empty).
This complete reduction is possible because only the searchspace
related to input parameters is represented here. 100% domain re-
duction implies that the methods that contain these branches do not
have any parameters that can help to cover these branches. How-
ever, a class may define public fields whose values can affect the
coverage of these branches and the search space for these public
fields is not considered as part of the search space related toinput
parameters in our measurement. In summary, when the set of rel-
evant parameters is empty, evolutionary testing can be still applied
for searching relevant public fields.

Research Question RQ 2.2. What is the computational
effort reduction for each branch that has irrelevant pa-
rameters and for how many of these branches is the
improvement statistically significant?.

Figure 8 shows the effect of domain reduction in test data gen-
eration effort for each branch with non-zero irrelevant parameters.
Recall that the number of fitness evaluations required during evolu-
tionary testing has been used as the measure of effort. In thefigure,
the x axis shows each branch with non-zero irrelevant parameters



Figure 7: Input domain reduction for branches where some non-zero reduction was possible

Figure 8: Effort reduction per branch of using domain reduction.

and the y axis shows the percentage reduction in effort afterinput
domain reduction.

Branches covered by 15 evaluations or fewer have been consid-
ered to be trivial branches. 17 out of 33 branches fall into this
‘trivial’ category out of which, one is statistically significant. The
majority of the branches (9 out of 11) with statistically significant
changes in effort provides evidence that effort is reduced when do-
main reduction is applied.

We observed that 25% (12 of 48) of the branches had an in-
crease in effort, 6.25% (3 of 48) of the branches had no change,
and 68.75% (33 of 48) of the branches had a reduction in effort
due to input domain reduction. The maximum reduction achieved
is 93.67% by a branch inNullCheck and the minimum reduction
achieved is -87.98% by a branch inQueue. Although the maximum
and minimum reduction values are far apart, we observed thatthe
majority of the branches respond positively to input domainreduc-
tion.

The results indicate that input domain reduction can also cause
increased effort of up to 87.98%. Further investigation revealed that

11 out of 12 branches with an increase in effort are trivial branches
whose average effort size is so small that random effects predomi-
nate.

We also performed at-test to identify the percentage of branches
where a change in effort (before and after input domain reduction)
is statistically significant. The results of thet-test show that there
are 11 out of 48 branches where the change in effort after input
domain reduction is statistically significant at the 95% level. The
change in effort for the remaining 37 branches was found to be
statistically insignificant.

Research Question RQ 2.3. For each program that con-
tains branches that have irrelevant parameters, what is
the overall improvement in computational effort for test
data generation?.

Figure 9 shows the effect of domain reduction (shown on the y
axis) on each program (shown on the x axis) that contains branches
with irrelevant parameters. Note that for some (comparatively triv-
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Figure 9: Effort reduction per program of using domain reduc-
tion.

ial) branches presented earlier in Figure 8, there was an increase in
effort. But this effect does not translate into an increase in effort
to test the program. In all cases, the overall effort to test the pro-
gram is reduced by 17.34% to 99.74%. This finding answers RQ
2.3 and suggests that domain reduction may be a useful technique
for improving test data generation for aspect-oriented programs.

In summary, for the programs that contained branches with ir-
relevant parameters that were testable (i.e., coverable),the overall
impact of domain reduction on the effort required to test thepro-
gram was positive. Note that these results are not purely a reflection
of the number of branches to be covered, indicating that the com-
plexity of the testing problem of covering the branch is the issue
rather than the sheer number of branches to be covered. For in-
stance, the programNullCheck has only four branches (three of
which are testable, being considered in domain reduction),and yet
enjoys a 92.86% reduction in test effort through domain reduction.

Research Question RQ 2.4. When generating test data
for a particular target branch, what is the co-lateral
effect on the level of coverage achieved for not-targeted
branches?.

RQ 2.4 addresses the issue of co-lateral coverage, which we ex-
plain next. In testing a program, each branch is targeted in turn
and an attempt is made to cover the branch. However, in common
with other work on search-based test data generation [7,25,29,32,
40, 41], it is common for non-target branches to be covered asa
byproduct of test data generation.

This non-target coverage typically results from situations where
the target branch is hard to cover and requires a certain number of
intermediate branches to be covered before the target branch can
be reached. This non-target coverage also results from the natural
stochastic nature of the test data generation process usingsearch-
based optimization; there always remains the possibility for some
run of the algorithm to coverany branch. This stochastic nature
is the reason for the careful control denoted by the repeatedexe-
cution of the algorithm (30 times) and the application of statistical
techniques to investigate significance of results.

In RQ 2.4, the question is whether the reduction of a domain
for a target branch can help generate test data for other non-target
branches. In the study, this effect was indeed found to happen,
though not always. The results are presented in Figure 10 where the
x axis shows the branches and the y axis shows the branch coverage
improvement.

We observed that there is often a ‘positive effect’ of domain
reduction on other branch objectives; co-lateral coverageis more
likely to increase with domain reduction. That is, a t-test revealed
that the change in co-lateral coverage on 9 branches was statisti-
cally significant at the 95% level. Of these 9, only 2 brancheshad a
reduction in coverage, whereas 7 branches had an increase incov-
erage. As Figure 10 shows, most branches experience an increase
in co-lateral coverage, though this effect is not universal. More re-
search is required in order to explore this co-lateral coverage effect
in more detail.

This interesting finding suggests possible further research. It is
possible that the target branches are on a path that containsother
controlling predicates that share similar sub-domains of the input
with the target branch. In this situation, it could be expected that
attaching the target branch with test data generation wouldalso hit
the non-target branches on paths to the target. However, more re-
search is needed to explore these possibilities.

In summary, test data generation aimed at covering a chosen tar-
get branch can result in other non-target branches being covered.
Interestingly, by reducing the domain for the target branch, there is
a tendency to improve this ‘co-lateral coverage’. The figureshows
the improvement in co-lateral coverage ordered by the strength of
improvement. For only a few branches does the co-lateral coverage
decrease, whereas for the majority, it increases.

8. EMPIRICAL STUDY: IMPACT OF FOCUS-
ING ON ASPECTUAL BEHAVIOR

Research Question RQ 3.1. What is the computational
effort reduction for test data generation for each pro-
gram if aspectual behavior instead of all behavior is
focused on?.

We compared the results of (1) our evolutionary testing approach
(without domain reduction) that focuses on aspectual branches only
and (2) the same approach that focuses on all branches in boththe
aspects and base classes. Figure 11 shows the impact of testing
aspectual behavior in terms of effort per tested program. The x
axis shows the tested programs and the y axis shows the percentage
reduction in effort for these programs. As shown by the results,
in all 14 programs, a reduction in effort has been achieved asa
result of testing aspectual branches as opposed to testing the full
program. The maximum overall reduction of 99.99% was possible
in theQuickSort program. The minimum reduction of 3.02% was
observed in theNullCheck program.

Figure 12 shows the improvement in aspectual branch coverage
for all 14 programs as a result of testing aspectual branchesas op-
posed to testing all branches in the program. We observed that the
improvement in aspectual branch coverage is quite small. The min-
imum improvement is 0% for 8 out of 14 programs, indicating that
there was no change in aspectual branch coverage. The maximum
improvement is on theQueue program where the improvement was
62.20%. However, aspectual coverage improvement in the 4 pro-
grams was statistically significant at the 95% level.

Further investigation revealed that the improvement in coverage
caused by the random behavior of evolutionary testing as some
branches in theQueue program were not covered while testing all
branches in the program. However, while testing aspectual branches
only, some of these branches were randomly covered more often
resulting in the spike in branch coverage. The improvement was
random and not caused by a better technique; otherwise, similar
results would have been observed in other programs.
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Figure 10: Co-lateral coverage improvement effect of domain reduction.

We performed at-test independently on all 65 classes under test4

(included in the 14 programs) by taking the effort data collected
from all 30 runs as input for the statistical test. The results of t-
test show that there are 47 classes where the reduction in effort is
statistically significant. There were 13 classes for which pvalues
could not be calculated as the formula calculation encounters di-
vision by zero in those cases. 5 out of 65 classes were found to
be statistically insignificant. This analysis indicates that the reduc-
tions in effort for majority of the classes (and the programs) are
statistically significant. Therefore, it can be concluded that testing
only aspectual branches results in effort reduction and at the same
time achieves same or better aspectual branch coverage.

9. THREATS TO VALIDITY
The threats to external validity primarily include the degree to

which the subject programs and testing techniques under study are
representative of true practice. We collected AspectJ benchmarks
from the web and reused benchmarks used in the literature in test-
ing and analyzing aspect-oriented programs. Despite beingof small
size, the subject programs under study do represent types ofas-
pects commonly used in practice. The small size of these aspects
does not devalue the importance of testing these aspects because
these aspects are woven into many locations of the base classes and
once there are defects in these aspects, the impact would often be
substantial.

We studied the application of evolutionary testing and random
testing in testing aspect-oriented programs, because theyare com-
mon testing techniques used in practice, being able to be widely
used in various types of programs without being constrainedby the
characteristics of the programs under test, unlike some other testing
techniques such as those based on symbolic execution [11,21,24].
These threats to external validity could be reduced by more experi-
ments on wider types of subject programs and testing techniques in
future work.

The threats to internal validity are instrumentation effects that
can bias our results. Faults in our own prototype, its underlying

4We move down the abstraction chain to focus on an analysis
‘per class’ rather than ‘per program’ since the latter is toocoarse-
grained to provide an answer to the investigated question.

adapted Jusc coverage measurer [43], the underlying adapted Indus
Java slicer [34], and the underlying adapted EvoUnit [40] might
cause such effects. To reduce these threats, we manually inspected
the intermediate results of each component for selected program
subjects to confirm that these results are expected.

10. RELATED WORK
To support adequate testing of aspect-oriented programs, sev-

eral approaches have been proposed recently, including fault mod-
els and coverage criteria [3, 5, 49], test selection [45, 48], model-
based test data generation [46,47], and white-box test datagenera-
tion [43].

There exist neither previous approaches to optimization oftest
data generation nor empirical results on advanced test datagener-
ation (beyond random testing) for AOP. This current lack of AOP
test automation progress and the associated empirical paucity poses
barriers to increased uptake and practical application of AOP tech-
niques [9]. This paper is the first to present evolutionary algorithms
for AOP test data generation and the first to provide detailedempir-
ical results concerning automated AOP test data generation. The re-
mainder of this section surveys related work on proposals for AOP
testing approaches and OO test data generation.

Xu et al. [46,47] presented specification-based testing approaches
for aspect-oriented programs. The approaches create aspectual state
models and then include two techniques for generating test data
from the model. Their approaches require models to be specified
whereas our approach does not. In addition, their approaches do not
provide automation, implementation, or empirical resultswhereas
our approach does.

Zhao [49] proposed a data-flow-based unit testing approach for
aspect-oriented programs. For each aspect or class, the approach
performs three levels of testing: intra-module, inter-module, and
intra-aspect or intra-class testing. His approach focuseson data-
flow coverage criteria and test selection without providingany sup-
port to automated test data generation, which is focused by our
approach. In addition, this work does not provide any automation,
implementation, or empirical results.

One of the few tools available that is applicable to aspect-oriented
program test data generation is Aspectra [43]. It provides awrapper



Figure 11: Effort reduction of focusing on aspectual behavior
over all behavior
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Figure 12: Coverage improvement of focusing on aspectual be-
havior over all behavior

mechanism to leverage the existing object-oriented test data gener-
ation tool Parasoft Jtest [31]. Parasoft Jtest generates default val-
ues for primitive-type arguments and generates random method se-
quences. However, the approach supports only the generation of
default or random data. This testing strategy is known to be highly
sub-optimal for testing non-aspect oriented programs [7,25,29,32,
41], and there is no reason to believe that it will be any better, sim-
ply because of the presence of aspects. Indeed, this paper presents
results that support the claim that it is not.

Other related work on the general area of testing aspect-oriented
programs includes fault models for aspect-oriented programs [3–5,
13], which could potentially be used to help assess the quality of
the test data generated by our approach in addition to the aspec-
tual branch coverage being used currently. Test selection for result
inspection [45] can be applied on the test data generated by our ap-
proach when specifications are not available for asserting program
behavior. Test selection for regression testing [48] can bealso ap-
plied on the test data generated by our approach in the regression
testing context. Our approach complements these other approaches
on testing aspect-oriented programs.

11. CONCLUSION
In this paper, we have introduced a novel approach to automated

test data generation for AOP. The approach is based on evolution-

ary testing, which uses search-based optimization to target hard-to-
cover branches. The results of empirical studies on severalhundred
search problems drawn from 14 AOP benchmark programs show
that the evolutionary approach is capable of producing significantly
better results than the current state of the art.

The results reported here are the first detailed empirical study
of AOP testing. We have also adapted recent results on domainre-
duction, introducing an optimized tool to reduce the test data search
space. The results provide evidence that this optimizationincreases
both effectiveness and efficiency, an improvement over previous
work [17], which was able to demonstrate efficiency improvement,
but not effectiveness improvement. Finally, the paper presents the
results of a study into the differential effects of AOP testing com-
pared to traditional testing. The results quantify the improvement
in efficiency that can be gained by focusing solely on aspectual be-
havior.

In future work, we plan to develop other more advanced test data
generation techniques such as Dynamic Symbolic Execution [14]
for AOP. We plan to evaluate various techniques on larger AOPsys-
tems such as AOP code in the AspectOptima framework [2] and the
AOP demonstrators released by the AOSD-Europe project [1].We
also plan to conduct more experiments on comparing the faultde-
tection capability of the test suites generated by various techniques,
going beyond the structural coverage achieved by the test suites.
Towards this aim, we plan to use mutation testing by seeding faults
in aspects [13] or in pointcuts [4,13]. Our current approachfocuses
on generating test data for achieving high aspectual branchcover-
age. In future work, we plan to extend the approach to generate test
data for achieving other types of coverage in AOP systems such
as data flow coverage [49] between aspect and base code, helping
expose faults related to interactions of aspect and base code.
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