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ABSTRACT

Despite the upsurge of interest in the Aspect-Oriented 1arog
ming (AOP) paradigm, there remain few results on test daterge
ation techniques for AOP. Furthermore, there is no work ance
based optimization for test data generation, an approaathhtis
been shown to be successful in other programming paradigms.

In this paper, we introduce a search-based optimizatioroagh
to automated test data generation for structural cover&ge©®
systems. We present the results of an empirical study thmbde
strates the effectiveness of the approach. We also inteoduto-
main reduction approach for AOP testing and show that this ap
proach not only reduces test effort, but also increasesefést-
tiveness. This finding is significant, because similar ssidor
non-AOP programming paradigms show no such improvement in
effectiveness, merely a reduction in effort. We also pretenre-
sults of an empirical study of the reduction in test effotiazed
by focusing specifically on branches inside aspects.

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing and Debugging

General Terms
Verification
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Test data generation, aspect-oriented software develupmelu-
tionary testing, search-based software engineering

1. INTRODUCTION

Testing remains an important activity within the overafteare
development process. In 2002, the US National Institutestan-
dards in Technology (NIST) estimated the cost of softwaitarkes
to the US economy at $60,000,000,000, being 0.6% of theeentir
GDP of the USA [30]. The same report found that more than one
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third of these costs attributed to software failures cowddebmi-
nated by improved testing. Testing remains one of the conynon
used practices in assuring high quality of aspect-oriestestiems
developed through the aspect-oriented software developarel
Aspect-Oriented Programming (AOP) paradigm [23, 27, 36].

One widely adopted approach to testing concentrates upon th
goal of coverage; the tester seeks to cover some set of pnegra
ming features. One of the most widely used forms of coverage i
branch coverage, atesting goal that forms the basis ofaléndus-
try standards [10, 33]. These standards are applied to falVa®
delivered, regardless of the programming paradigm adapiddso
these standards simply cannot be ignored by practicingvaodt
engineers.

Manual test data generation for achieving coverage is tsdio
error-prone and expensive. Therefore, for some time, aatiom
has been considered to be the key to effective and efficisndéga
generation [24]. Because of the widespread practitionagei®f
branch coverage, this testing goal has received a lot oftaite
from the software testing research community [14, 28]. &ear
based optimization techniques have been shown to be vesy-eff
tive at automating the test data generation process fochreover-
age [19,28,38,41]. However, search-based optimizatichmigues
have not, hitherto, been applied in the AOP paradigm.

In this paper, we address this important gap in the existieg |
ature. We introduce techniques for search-based test datray
tion [20, 28, 37] (e.g., evolutionary testing) and studyirtiedfect,
in a detailed empirical study of 14 AOP programs. The resarks
very encouraging. They indicate that the search-basedagpipiis
at least as well suited to the AOP paradigm as it is to moreeonv
tional paradigms. Indeed, the results provide evidenceiggest
that it may be even more effective and efficient.

Specifically, the new language constructs for AOP creaté bot
new challenges and optimization opportunities for sofeveast-
ing in general, and for automated software test data geopriat
particular. However, despite the recent upsurge in inténesOP,
there lacks sufficient work on testing of AOP, especiallyaudted
testing of AOP.

Xie et al. [43, 44] recently reduced the problem of automated
test data generation for AOP to the problem of automateditgat
generation for object-oriented (OO) programs. They predos
wrapper mechanism to address issues in leveraging an O@Qatest
generation tool. However, they did not investigate spetafit data
generation techniques for AOP, but simply relied on reusimn@O
test generation tool that adopts simplistic random tesegsion
techniques.

Recently, there has been much interest in more advanced au-
tomated test data generation techniques for procedurabjects



public class Account {

oriented programs, such as dynamic symbolic execution §hdl] private float _bal ance;
search-based test data generation [20, 28, 37], but nohésafiork private int _account Nunber;
has been applied to the AOP paradigm. private Customer _customer;
This lack of sufficient previous work leaves unansweredaeste o, Py'o L® Account () account fumber,
questions concerning how well these techniques can beeapiali public void debit(float anount) { ... }

AOP and what differences can be observed when automatihg tes

data generation for AOP compared with other more conveation

programming paradigms. In this paper, we address theséonugs public aspect ODRul eAspect

providing the first automated, optimizing approach to tesaden- poi ntcut debit Execution(Account account,

. . _ . float wi thdrawal Amount)
eration for AOP. The approach exploits AOP-adapted vessiin . executi on(voi d Account . debi t=(f1 oat)

both search-based test data generation techniques amdl reselts && this(account) && args(w t hdr awal Amount ) ;
on domain reduction optimizations [17]. )
The paper makes the following main contributions: bef or e( Account account, float withdrawal Amount)

. debi t Execution(account, wi thdrawal Anount) {

Cust omer custoner = account.get Custoner();
e The paper presents a system for Automated Test Data Gener~ it (custoner == null) return;

ation (ATDG) for AOP. It is the first ATDG system for AOP if (account.getAvail abl eBal ance() < wi t hdr awal Anount ) {
(going beyond Xie et al.'s approach [43, 44] of simply lever- float transferAmount Qfﬁgsgt = ‘é“tx}g: i”‘:‘g: ngi‘?nc;()-
aging an existing random OO ATDG system) and represents o 9 '
the first application of search-based testing techniques, (e } else Systemout.printin("l have enough noney!");
evolutionary testing techniques) to the AOP paradigm.

e The paper presents the results of an empirical study that pro !
vides evidence to support the claim that search-baseddgesti

for AOP is effective. Figure 1: Sample aspect for theAccount class

e The paper introduces AOP domain reduction techniques to
improve the performance of ATDG. The techniques use a
dependence analysis based on slicing [42] to identify-irrel
evant parts of the test input that cannot affect the outcome
of branch evaluation in aspects, presenting results onfthe e
fectiveness of these techniques. Specifically it preséms t
following main findings:

The rest of the paper is organized as follows. Section 2 uses
examples to illustrate our approach to ATDG for aspectrieie
programs. Sections 3 and 4 introduce the approach and hoasit w
implemented in order to produce the results reported ingagser.
Section 5 describes the experimental setup: the subjegtars
being studied as well as the research questions posed by-the r
— Domain reduction was applicable to many of the AOP search and addressed by the empiripgl studie.s. Sectionsudd B

benchmark programs being studied. _present the resglts of the three em_p|r|cal stgdle_s. These #tud-
ies are, respectively, concerned with (1) validating thatgearch-
based testing approach is superior to pure random test data-g

— The number of covered branches was increased by do- ation (a ‘sanity check’ to validate applicability), (2) shiag that
main reduction. This interesting finding was a pleasant domain reduction can improve search-based test data giemera
surprise; no such increase in effectiveness was found for AOP, and (3) reporting on the differential effort recadrto test
for the imperative programming paradigm [17]. A fur-  aspect-oriented features over-and-above non-aspestted fea-
ther surprise was found in an effect that we call ‘co- tures.
lateral coverage’: as might be expected, domain reduc-  The comparison with random test data generation is typicall
tion improves coverage of target branches, but, more regarded as a sanity check for search-based test data gemera
interestingly, it also improves coverage of un-targeted However, in the case of AOP test data generation, the ondy ati-
branches. This paper is the first to report on this ob- tomated test data generation approach [43, 44] is randdnadés
served co-lateral coverage effect. generation. Therefore, these results also concern theeedim-
provement over the current state-of-the-art, which theepapows
e The paper studies the efficiency gains obtained by focusing to be statistically significant. Section 9 discusses tisremvalidity

test effort on aspectual branches (branches inside apects of the presented empirical results. Section 10 preserserkivork
rather than all branches. The results provide evidence that and Section 11 concludes.

test effort can be reduced while achieving equivalent debet

— Test effort decreased when domains were reduced.

aspectual branch coverage. 2 EXAMPLE
Indeed, our approach can be generally applied to test ebject We nextintroduce the background of AspectJ [22] progrands an
oriented programs [8] beyond aspect-oriented programduys- the overview of our approach through an example adapted from
ing on selective elements (e.g., not-covered branchespad m Aspect] examples by Laddad [26]. Figure 1 shows a sample as-

object-oriented programs. However, our approach is the tfirs pectODRul eAspect (for defining overdraft rules) for theccount
be applied to test aspect-oriented programs, where the uniter class. In an AspectJ prograppintcutsspecify where the crosscut-
tests (aspects) cannot be directly invoked, posing stramggeds of ting behavior applies within the program. For exampigRul eAspect

our proposed approach than traditional problems of testiject- defines one pointcutebi t Execut i on, which specifies the execu-
oriented programs. In addition, focusing on aspectualdires in tion of Account . debi t *(f1 oat) . The specific execution points
a software system (which may include only a low percentage of that match a pointcut are known @énpoints

branches being aspectual branches) offers unique optionzap- For example, the execution aécount . debi t (f1 oat) is such

portunities, as exploited by our approach. a joinpoint for the pointcut. Aladvicecontains a set of instructions



that specifies when it is invoked and what behavior it impletae
There are three types of advices in AspectJ: before, arcamd,
after. Abeforeadvice is executed before the joinpoint execution,
an around advice is executed in place of the joinpoint execution,
and anafter advice is executed after the joinpoint execution. For
example, inODRul eAspect, one before advice is defined. The
advice specifies that the behavior implemented in the befdvece

is to be executed before the execution of dleéi t method in the
Account class.

After we use an AspectJ compiler to weave AspectJ code (de-
fined in ODRul eAspect ) with the Java code (defined stzcount )
to Java bytecode, our approach identifies all aspectualchesn
(i.e., branches within the advice DRul eAspect at the source
code level) in the Java bytecode. Let us assume that our-cover
age target is the false branch of the predicate { cust omer ==
nul 1) return”(highlighted with “*” in Figure 1) inODRul eAspect .

Note that to cover this aspectual branch, we can treat the af-
fected methodiebi t (f1 oat) of Account as the method under
test named as the target method, which eventually involedsttor e
advice defined i0DRul eAspect before the execution of the method
debi t (f1 oat). Given the target method, our evolutionary tester
generates various test data for the parameters; withouglagn-
erality, we consider the receiver object (thecount object) as
one parameter. The evolutionary tester uses an approaelarais
based test data generation [20, 28, 37] (e.g., evolutiotestyng)
based on the theory of evolution (more details are descitb8éc-
tion 3.2).

It is quite costly for the evolutionary tester to try varicz@mbi-
nations of the data for the parameters. We can observettatér
to cover an aspectual branch, often only a subset of paresrete
relevant, which are required to hold certain data valuesr t€st
data generation should explore the domain for these retigan
rameters instead of investing time on all parameters.

Therefore, to reduce the test-generation cost, we use aidoma
reduction technique to excludieelevant parameterin the search
space of test data. In particular, we perform backwardrgli¢42]
(more details are described in Section 3.1). The sliceraités the
predicate that is involved with the target aspectual brafécall
that our target aspectual branch is the false branch of theipr
cate 1f (customer nul 1) return” (highlighted with “*”
in Figure 1) inODRul eAspect . The resulting program slice con-
tains only statements that can influence the coverage ofaogett
branch. For example, the resulting slice of our target Hrasc
shown below:

Cust omer cust onmer =account . get Cust oner () ;
if(customer == null) return;

We next identify which parameters in the target method ate no
relevant to our target branch by looking for the name and tfpe
each parameter in the resulting slice. As the program slice ¢
tains all statements that can be executed within the targétod
to influence the target branch, any parameter that is notowd
within the slice is considered to be irrelevant. In our exiEmnhe
parameter dccount ” (receiver object) of thedebi t " method oc-
curs within the slice but the parametembunt ” of the “f | oat”
type does not. Therefore, the float parameter is considerbe t
irrelevant for the target branch.

After all irrelevant parameters have been identified, wérircs
the evolutionary testers not to try various data for thessldévant
parameters. By excluding the irrelevant parameters, wenéadly
reduce the search space for testing the target branch.

Note that our proposed approach has been applied to aspects i
volving static advice as shown in the experiments desciilb&ec-
tion 5. But our approach is not limited to static advice andildo
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Figure 2: Overview of our approach

be expected to work well with dynamic advice since our apghioa
does not rely on specific characteristics of static advice pl&n to
empirically validate our such hypothesis in future work.

3. APPROACH

We develop an approach for automated test data generafl@Gn
for aspect-oriented programs. Its test objective is to gereest
data to cover aspectual branches (i.e., achieving aspdwarzch
coverage [43]). The input to the framework includes asperciis
ten in Aspectd as well as the Java classes (being nambdsas
classejwhere the aspects are woven. Following Aspectra [43], for
the given aspects under test, our approach generatestz&bidhe
base classes and these test data indirectly exercise artbevas-
pects. We can view these base classes as providing theldoaifo
necessary to drive the aspects.

The generated test data is a type of unit tests for the bassesla
but with respect to aspect code, the generated test dateecasd
viewed as a type of integration tests, testing the intesastibe-
tween the aspects and the base classes. To measure coviesage o
pectual behavigrour approach uses the metricaspectual branch
coverage which measures the branch coverage within aspect code.

An overview of our approach is presented in Figure 2. It csissi
of four major components:

Aspectual-branch identifier. Given the AspectJ source code
(including both aspects and base classes), the componea- of
pectual branch identifier identifies branches inside aspedtich
are the coverage targets of our approach. Aspectual brariche
clude both branches from predicates in aspects and methads i
pects, where the entry of a method in aspects is counted as one
branch to accommodate covering a method without any bragchi
points [43]. The identified aspectual branches are to bafsmtas
test goals to the component of the evolutionary tester.

Relevant-parameter identifier. Because not all parameters of
the methods of the base classes would be relevant to coetarg
get aspectual branch, the component of relevant-pararideteti-
fier identifies only those relevant method parameters. Tdrispo-
nent implements a type of domain reduction in test data geioer

Evolutionary tester. Given the relevant parameters produced
by the relevant-parameter identifier, the component ofigianary
tester conducts evolutionary testing on the relevant perars.

Aspectual-branch-coverage measurerAfter the tests are gen-
erated by the evolutionary tester, the component of aspkebtanch-



coverage measurer measures the coverage of aspectuahdsanc
and selects test data that can cover a new aspectual braatak th
not covered by earlier selected test data.

We next present more details on two key techniques in our ap-
proach: input-domain reduction and evolutionary testogducted
by the components of the relevant-parameter identifier a@@vo-
lutionary tester, respectively.

3.1 Input-Domain Reduction

The input-domain reduction technique [17, 18] was intraalic
for constraint-based testing. It typically involves siifyphg con-
straints using various techniques and generating randpuaisrior
the variables with the smallest domain. The process is tegea
until the target structural entity such as a branch has beegred.

Input domain. The input domain in program testing is gener-
ally considered as global variables and the set of inputrpeters

parameter of the target method is within the slice to deteenitis
relevancy. If a parameter does not appear within the shem it is
considered as an irrelevant parameter.

3.2 Evolutionary Testing

Evolutionary Testing (ET) [28] is a search-based softweséng
approach based on the theory of evolution. It formulatesableto
generate relevant test data (relevant in terms of the tesbjective
at hand, such as maximizing structural coverage) as oneverae
search problems. Each search problem consists of the d&fioft
the search space based on the input domain of the targetapmogr
(e.g., its relevant parameters), and a fitness functionBEfaton-
structs. In the case of structural testing, such a seardiggroaims
at finding a test data leading to the coverage of a particutardh.
Each search problem is tried to be solved using an evolutjcala
gorithm: a pool of candidate test data, the so-called iddizis,

of a method (named as a target method) that contains thet targeis iteratively manipulated by applying fithess evaluatieelgction,

branch or whose callees contain the target branch (in tesbject-
oriented programs, we can view the receiver object of thehatet
under test as an input parameter). In our problem contexinfiut
domain is the set of input parameters of a method (named as a ta
get method) in a base class that invokes the aspect corgaimn
target aspectual branch.

In existing approaches such as Aspectra [43], this targétode
is directly fed as the method under test to an existing AT Ddb far
object-oriented programs, and consequently the tool wgatter-
ate various data values for all the parameters of the targ#iod.

mutation, and crossover in order to eventually obtain avagietest
data. Such an iteration is named as a generation. For fitmaks e
uation, the candidate test data is executed. Better fitreses
are assigned to individuals that are better able to solvese¢hech
problem at hand, e.g., coming closer to covering the tangetdn
during execution. ET has been found to achieve better paeince
than random testing as it concentrates the search towardditest
data with high fitness values [41].

Structural testing. For structural testing, such as branch testing,
the fitness value is usually determined based on how closeatite

As we can see, the number of parameters where various data val didate test data comes to cover the target branch duringigaec

ues shall be tried determine the size of the search spacstafat.
Usually this test data generation process (i.e., searcteps) is
quite expensive, inducing high cost.

However, in testing aspectual behavior such as generagstg t
data to cover aspectual branches, we can observe two main-opp
tunities for reducing this cost. First, not all parametdrthe target
method would affect whether the advice containing the taage
pectual branch would be invoked. Second, not all parameters
the target method would affect whether the target aspebtaalch
would be covered. Based on this observation, our approaeh us
the input-domain reduction technique to reduce the inputao
by identifying irrelevant parameters and excluding theamfrthe
scope of testing in order to reduce test effort. Howevehatsd be
noted that even when all parameters are irrelevant, it doemean
no test effort, since there may be other factors such as wate
ables and infeasible paths that effect the attempts to dwaeches.

Program slicing. To identify such irrelevant parameters, we use
program slicing [42]. Program slicing is a static analysishinique
that helps to create a reduced version of a program by plating
tention on selected areas of semantics. The process reranyes
part of the program that cannot influence the semantics efést
in any way. The reduced version of the program is named ase sli
and the semantics of interest is known as slice criterion.

Based on the slice criterion, itis possible to produce backver
forward slices. A backward slice consists of the set of states
that can influence the slice criterion based on data or cidigva A
forward slice contains the set of statements that are domtidata
dependent on the slice criterion. That is, a forward slicduites
any statement that can be affected by the slice criterion.

The closeness is typically expressed as the sum of the twe met
rics approximation levelndlocal distance Approximation level
is defined in terms of the control flow graph of the target paogr
and criticality of branching nodes. A branching node isicait

if no path exists from one of its outgoing branches to theetarg
Approximation level is measured as the number of criticahioh-
ing nodes between the path taken during execution and tpettar
branch. Local distance is defined in terms of the conditiothaf
critical branching node at which execution diverged awaynfthe
target branch. lIts values are withi®, 1]. To determine the local
distance, a condition-specific distance function is carcséd by
composing operator-specific atomic distance functions: e&gh
relational operator of the programming language, an atatise
tance function exists [6]. The lower its value, the closer ¢bndi-
tion is to being evaluated in favor of the non-critical bran&ince
both metrics are non-negative and 0 in the case of an optasal t
data, the evolutionary searches aim at minimizing the fitvatues
of the candidate test data.

Class testing. In class testing (i.e., testing a class), evolution-
ary testing [40] transforms the task of creating test or wetbe-
quences that lead to high structural coverage of the coderuast
to a set of optimization problems that a genetic programralgg-
rithm then tries to solve.

Each not-covered structural entity, such as a branch when
forming branch testing, becomes an individual test goainbich
an evolutionary search will be carried out. A tree-basedesm-
tation of test sequences is used to account for the call deperes
that exist among the methods of the classes that participdhe
test sequences. This representation combats the occeiiwénon-

pe

Search space reduction by program slicing has been used as th executable test sequences. Method call trees are evolaeslibi

technique for identifying irrelevant parameters for easpeatual

tree crossover, demotion, promotion, and the mutationeftim-

branch. After aspects have been woven to base classes and astive arguments.

pectual branches have been identified, the line of the dondit
statement associated with the target aspectual branckdsassthe
slicing criterion for backward slicing. Then we check whestla

Our approach conducts evolutionary testing for structi@sting
and class testing on the target method of the base classdoget t
aspectual branch. Our approach specially narrows dowretirels



Program Whole Test | # Aspectual | # Aspectual brancheg Brief description

program LoC | driver LoC branches from predicates
Fi gure 147 147 1 0 | Drawing program handling GUI updates using aspects
PushCount 119 119 1 0 | Stack program counting the number of push operations usipecis
I nstrunentation 96 96 2 0 | Stack program counting number of stack operations usingcsp
Hel |l o 33 33 3 0 | Introductory Aspectd program demonstrating use of advitaspects
Qui ckSort 127 127 4 0 | QuickSort program counting partitions and swaps using@spe
NonNegat i ve 94 94 6 4 | Stack program enforcing pushing only nonnegative valuegyuspects
Nul | Check 3115 140 6 4 | Stack program detecting null values during pop operatisitsguaspects|
Nul | Checker 70 70 7 6 | Stack program finding null values in stack cells using aspect
Tel ecom 696 696 8 0 | Telephone call management program maintaining billinggisispects
Savi ngsAccount 215 215 15 12 | Bank account program enforcing policies using aspects
QueueSt ate 545 545 15 12 | Queue program maintaining various states of queues uspegts
Pr odLi ne 1317 1317 25 8 | Product lines with features enforced by aspects
DCM 3406 446 103 82 | Program computing dynamic coupling metrics using aspects
Law of Deneter 3063 185 356 306 | Policy enforcer program for the Law of Demeter using aspects

Figure 3: Subject programs being studied

space for evolutionary testing by instructing the evoluicy tester
not to explore those identified irrelevant parameters.

4. |IMPLEMENTATION

5. EXPERIMENTAL SETUP

We next describe the experiment setup, including the progra
used for the empirical study and the research questions tmbe
swered. The paper provides empirical results as evidersugmort
the claims made in answering the questions.

In the empirical studies, we applied the proposed approaeh t

We have implemented the proposed approach for ATDG of aspectsuite of 14 aspect-oriented programs written in Aspect]l. [BR)-
oriented programs in a prototype tool named as EvolutiokspgctTesteure 3 shows the details of these programs with Columns 1e8ysh

(EAT). We next describe the implementation details of eaui t
component.

Aspectual-branch identifier. To identify aspectual branches
and measure the coverage of aspectual branches, we motiied t
aspectual branch coverage measurement tool named as dosc fr
the Aspectra approach [43]. In particular, based on Jusddere
tify branches from aspects by scanning and matching methoe:a
in the bytecode (produced by an AspectJ compiler) agairest pr
defined patterns related to aspects.

Relevant-parameter identifier. We used the Indus Java slicer [34]

ing the program name, the lines of code (LoC) of the whole pro-
gram, the LoC of the test driver (the base classes used te tirév
aspects under test) together with the aspects, the numbspet-
tual branches (including both branches from predicatesjreets
and methods in aspects, where the entry of a method in agpects
counted as one branch to accommodate covering a methodwvitho
any branching points [43]), the number of aspectual brasétoen
predicates in aspects, and a brief description, respéctivéote
that only the aspectual branches from predicates are usashto
duct domain reduction in the empirical studies. These stilpje-

to produce backward slices from Java code. Because an Aspect grams were previously used in the literature in testing avalya-

compiler by default produces bytecode instead of source ebd
ter weaving, we convert Aspect] woven bytecode to Java sourc
code by using the ajc Aspect] Compiler 1.0.6; it offers anoopt
of producing an equivalent Java version of the AspectJ cbvde.
modified the Indus API to store the information of originalisze
line numbers in Jimple [39] code, the format of slices geteetay
Indus. After slicing, line numbers of the slices are exeddrom
the Jimple output. Corresponding statements from thoss livere
used to construct slices in the source code. Once a targabthet
is sliced for an aspectual branch and the method’s parasnater
identified as relevant or not, our tool produces a new versidava
code for each branch, with the irrelevant parameters rechanel
declared as local variables within the method. This newiorrsf
Java code is fed to the evolutionary tester as input.

Evolutionary tester. In our implementation, we used EvoUnit [40]
from Daimler Chrysler to implement the evolutionary tegttech-
nique as well as the random testing technique, which is uséaea
comparison base in our experiments being described in tiefe
the paper. We also extended EvoUnit to implement the corafept
reducing the input domain for evolutionary testing. Evaldigner-
ated JUnit test suites where each test case covers at leaseon
target branch.

Aspectual-branch-coverage measurer.We used Jusc [43] to
measure the aspectual branch coverage achieved by thetdbmnit
suite generated by EvoUnit. For each covered branch, olatem
produces the name of the first-encountered JUnit test casedir
ers that branch.

ing aspect-oriented programs [12, 35, 43].

Most of these programs were used by Xie and Zhao in evaluat-
ing Aspectra [43]. These programs include most of the progra
used by Rinard et al. [35] to evaluate their classificatiostesy for
aspect-oriented programs. The programs also include nfidseo
programs used by Dufour et al. [12] in measuring performance
behavior of Aspect] programs. These programs also inclonde o
aspect-oriented design pattern implementatmnHannemann and
Kiczales [16].

Although the programs are relatively small, they repreagange
of different popular uses of aspect code including instnotagon,
monitoring, contract enforcement, exception handlingglog, up-
dating, and filtering. There are a total of 658 different lofeas
considered, each of which represents a different seardbigmo
The involved search space is large in many cases, leadingrto n
trivial search problems for search-based test data geéoerat

In the empirical studies, we compare evolutionary testiridp w
random testing for testing aspect-oriented programs withdon-
siderations. First, random testing is the test data geparstch-
nique used by existing test data generation approached$4ifyr
aspect-oriented programs. Second, random testing is darbpu
used testing approach [15] in practice.

The AspectJ programs used by Dufour et al. [12] can be olitaine
fromhttp://ww. sabl e. ncgi | | . ca/ benchmar ks/ .
2Hannemann and Kiczales’s design pattern implementatismbe
obtained fromht t p: / / www. cs. ubc. ca/ ~j an/ ACDPs/ .



To overcome the inherent random effects present in bothvitie e
lutionary algorithm and the random search, the empiricallte are
averages of 30 trials, each of which applies the random aoldi-ev
tionary testing techniques. On coverage improvement, \wgeaoe
the average coverage achieved by the 30 trials for each ization
problem.

The effort calculations for the testing process are prodiiesed
on the used testing technique; these effort statisticssed in the
experiments. For evolutionary testing, effort is caloedhin terms
of the number of evaluations. For random testing, it is dateal
using the number of generations for random testing. As tfuatef
for evolutionary and random testing is calculated usingsthime
way, the results are directly comparable.

The research questions addressed in the three empirickéstu
are described as follows:

Assessment of evolutionary testing

e RQ 1.1. Can evolutionary testing outperform random testing
for testing aspect-oriented programs?

Impact of domain reduction

RQ 2.1. What is the number of branches in each program
that have irrelevant parameters and how high percentage of
parameters are irrelevant for each of these branches?

RQ 2.2. What is the computational effort reduction for each
branch that has irrelevant parameters removed and for how
many of these branches is the improvement statistically sig
nificant?

RQ 2.3. For each program that contains branches that have ir-
relevant parameters, what is the overall improvement in-com
putational effort for test data generation?

RQ 2.4. When generating test data for a particular target
branch, what is the co-lateral effect on the level of coverag
achieved for not-targeted branches?

Impact of focusing on testing aspectual behavior

e RQ 3.1. What is the computational effort reduction for test
data generation for each program if aspectual behavior in-
stead of all behavior is focused on?

Metrics. We useaspectual branch coveragghe number of
covered aspectual branches divided by the total numberpefcas
tual branches) to measure how well the advices in aspestted
programs have been tested. This metric was used in exigsig t
data generation techniques [43] for aspect-oriented progr it is
stronger (arguably better) than aspectual statementageewhose
counterpart in traditional program testing is statememnecage,
one of the most popularly used code coverage metrics inipeact

As is standard in experiments on evolutionary and searsheba
computation algorithms, we measure the effort (i.e., thamata-
tional cost) in terms of the number of fithess evaluationgl use
each algorithm to find a test data that covers the target brarus
measurement avoids implementation bias and the difficuétiso-
ciated with reliable, robust, and replicatable assessmenbm-
putation effort; the evaluation of fitness is the core atoamiit of
computational effort for search-based approaches.

In theory, if running forever, then random will eventuallshéeve
coverage. In practice, testing researchers tend to givepaaru

bound. We set this bound at 10,000 runs. Effort is only mesasur
for successful coverage. Fitness is evaluated in severedplin the
evolutionary algorithm. On each call, a static counter séased
to reflect the exact number of times the algorithm assesses$it

For the random test data generator, the ‘algorithm’ simglg-g
erates random test sequences and evaluates their fitndssthat
the target branch is covered (purely at random) or the 10j600
is reached without the target branch having been coveredheln
case of random search, the number of fitness evaluationsris-th
fore identical to the number of random test data generated.

To cater for the inherently stochastic nature of the sebased
algorithms, each algorithm was executed 30 times on eaghctub
program, facilitating the assessment of the statistigaiicance
of the results. For each branch to be covered,titest was used
to assess the significance in the difference of means ovse @
runs, at the 95% confidence level.

The analysis cost of slicing and domain reduction is dwabigd
the cost of evolutionary testing; even in the best casekéstdawo
orders of magnitude more time to conduct evolutionary heggtian
it does to compute the reduced domain information. Theegtbe
analysis time of slicing and domain reduction can be comsitle
to be inconsequential in this study; the focus of the expeninis
thus the difference in performance of the two test data geioer
problems (with and without domain reduction).

6. EMPIRICAL STUDY: ASSESSING EVO-
LUTIONARY TESTING

RQ 1.1. Can evolutionary testing outperform random
testing for testing aspect-oriented programs?.

We applied evolutionary testing and random testing on the 14
programs and compared their results in terms of the achieved
coverage and effort taken for testing. Figure 4 shows theaue
ment in coverage achieved by evolutionary testing over aand
testing. The x axis represents each program and the y axis rep
resents the improvement in aspectual branch covéraga result
of using evolutionary testing. We observed that we achighed
same branch coverage on 9 out of 14 programs with evolutjonar
and random testing.

We achieved better branch coverage on the remaining 5 pregra
with evolutionary testing. The maximum improvement of 426
in branch coverage is observed on the proggam ngsAccount .

Figure 5 shows the effort reduction per program for evohaiy
testing over random testing. The x axis shows the 14 progeards
the y axis shows the percentage reduction in effort withueianh-
ary testing. We observed that 5 out of 14 programs had nordiffe
ence in effort for evolutionary testing and random testang the
remaining 9 programs had a reduction in effort for using etioh-
ary testing. The maximum reduction of 61.28% is achievechiy t
programQueue. Overall we can deduce that evolutionary testing
takes the same or less effort for testing the same programes wh
compared to random testing.

An interesting observation is that, when the results of thnan
coverage improvement and effort reduction are compardd; al
programs that had an improvement in branch coverage also had
a reduction in effort for evolutionary testing. In summagyplu-
tionary testing does not only achieve better branch coeethgn
random testing, it also does it with less effort. This studyvjles
evidence that evolutionary testing is a better techniqueesting
aspect-oriented programs in comparison to random testing.

Aspectual branch coverage is measured as the percentage-of ¢
ered aspectual branches among all the aspectual branches.
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7. EMPIRICAL STUDY: IMPACT OF DO-
MAIN REDUCTION

We applied evolutionary testing without and with domainued
tion on the 14 programs to investigate research questiorsRQ
2.2,2.3,and 2.4.

Program # Aspectual | # Aspectual [ # Aspectual | # Testable

branches branches branches| aspectual

from with with branches

predicates irrelevant testable covered
parameters irrelevant inall

parameters 30 runs
NonNegative 4 0 0 0
NullCheck 4 4 4 3
NullChecker 6 0 0 0
SavingsAccount 12 2 2 2
Queue 12 12 12 12
ProdLine 8 2 2 0
DCM 82 46 42 30
Law of Demeter 306 24 4 1
Total 434 90 66 48

Figure 6: Domain reduction to remove irrelevant branches

ified for domain reduction because we conduct domain realucti
on only aspectual branches from predicates, although éicasal
branches have been used to guide the search. Indeed, wertan si
larly consider the entry of a method in aspects as the sliciiteg-
rion for conducting domain reduction, but in this empiristlidy,
we focus on those branches from predicates in aspects.

For only 2 of the remaining 8 programs (2 smaller programs:
NonNegat i ve and Nul | Checker ), there were no branches that
had irrelevant parameters; all parameters potentiallgcstl the
outcomes of all predicates for these 2 programs accordirigeto
Java slicing tool, Indus, used in the implementation. Of riire
maining 6 programs with branches that have irrelevant petars,
there were a total of 90 branches with irrelevant parameteds
which could, therefore, potentially benefit from the exfation of
domain reduction. Of these 90 branches, 66 were testableddv-
erable) using the evolutionary tester. Untestable branai@ude
those that make reference to interfaces, abstract clapsethase
that contain static global variables of primitive type. @ése 66
testable branches, it was possible to generate test dathlyglon
all of the 30 runs of the test data generation system) for rioye
48 branches.

Figure 7 shows the reduction in parameters achieved for each
of the 48 branches for which some non-zero reduction was-poss
ble. The size of reduction is represented using the pergenif
irrelevant parameters. The x axis shows all 48 brancheg tis&ir
branch identifiers and the y axis shows the percentage ¢éveet
parameters. Overall, a considerable amount of domain ftietuc
was possible for all 48 branches.

We observed that for several branches we have achieved 100%
domain reduction (i.e., the set of relevant parameters igtym

Research Question RQ 2.1. What is the number ofThis complete reduction is possible because only the sepate
branches in each program that have irrelevant param- related to input parameters is represented here. 100% domai
eters and how high percentage of parameters are irrel- duction implies that the methods that contain these brangbeot
evant for each of these branches?. have any parameters that can help to cover these branches. Ho
Figure 6 shows the results of applying domain reduction to 14 ever, a class may define public fields whose values can affect t
subject programs under study (the first 5 subject programstan coverage of these branches and the search space for thd&e pub
Tel ecomprogram have 0 values in Columns 2-5, not being shown fields is not considered as part of the search space relatefub
in the figure for simplicity). Column 2 shows the total numloér ~ parameters in our measurement. In summary, when the seft of re
aspectual branches from predicates in each program. Cofumn €vant parameters is empty, evolutionary testing can Heapplied
shows the number of aspectual branches with irrelevaninmra  for searching relevant public fields.
ters among the branches listed in Column 2. Column 4 shows the

number of aspectual branches with irrelevant parametatsitére
possible to be covered with the implemented testing toolu@ao 5

shows the number of aspectual branches that were alwaysecbve

during all 30 runs in testing. In other words, the aspecttahthes

counted in Column 5 do not include any aspectual branch that w
not covered in some run during testing, even if they usuallyew

covered.

Research Question RQ 2.2. What is the computational
effort reduction for each branch that has irrelevant pa-
rameters and for how many of these branches is the
improvement statistically significant?.

Figure 8 shows the effect of domain reduction in test data gen
eration effort for each branch with non-zero irrelevantapaeters.
Recall that the number of fitness evaluations required dueiolu-

We observed that for 6 of the programs there were no aspec-tionary testing has been used as the measure of effort. figtre,

tual branches from predicates so that these programs arpiabt

the x axis shows each branch with non-zero irrelevant paeme
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and the y axis shows the percentage reduction in effort afpert
domain reduction.

11 out of 12 branches with an increase in effort are triviahches
whose average effort size is so small that random effectiopne

Branches covered by 15 evaluations or fewer have been eonsid nate.

ered to be trivial branches. 17 out of 33 branches fall inis th
‘trivial’ category out of which, one is statistically sididant. The
majority of the branches (9 out of 11) with statisticallyrsficant
changes in effort provides evidence that effort is reducbdmdo-
main reduction is applied.

We observed that 25% (12 of 48) of the branches had an in-

crease in effort, 6.25% (3 of 48) of the branches had no change
and 68.75% (33 of 48) of the branches had a reduction in effort
due to input domain reduction. The maximum reduction acdev
is 93.67% by a branch iNul | Check and the minimum reduction
achieved is -87.98% by a branch@neue. Although the maximum
and minimum reduction values are far apart, we observedtileat
majority of the branches respond positively to input donraituc-
tion.

The results indicate that input domain reduction can alssea
increased effort of up to 87.98%. Further investigatioreegded that

We also performed atest to identify the percentage of branches
where a change in effort (before and after input domain reaiic
is statistically significant. The results of theest show that there
are 11 out of 48 branches where the change in effort aftertinpu
domain reduction is statistically significant at the 95%elevlhe
change in effort for the remaining 37 branches was found to be
statistically insignificant.

Research Question RQ 2.3. For each program that con-
tains branches that have irrelevant parameters, what is
the overall improvementin computational effort for test
data generation?.

Figure 9 shows the effect of domain reduction (shown on the y
axis) on each program (shown on the x axis) that containchesn
with irrelevant parameters. Note that for some (compaghtitriv-
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ial) branches presented earlier in Figure 8, there was aBeadgse in
effort. But this effect does not translate into an increaseffort

to test the program. In all cases, the overall effort to testyro-
gram is reduced by 17.34% to 99.74%. This finding answers RQ
2.3 and suggests that domain reduction may be a useful tgahni
for improving test data generation for aspect-orientedjrams.

In summary, for the programs that contained branches with ir
relevant parameters that were testable (i.e., coverable)pverall
impact of domain reduction on the effort required to testphe
gram was positive. Note that these results are not purelfjextion
of the number of branches to be covered, indicating that ¢ine-c
plexity of the testing problem of covering the branch is tesue

We observed that there is often a ‘positive effect’ of domain
reduction on other branch objectives; co-lateral coveiagaore
likely to increase with domain reduction. That is, a t-testeraled
that the change in co-lateral coverage on 9 branches wastistat
cally significant at the 95% level. Of these 9, only 2 brandte$a
reduction in coverage, whereas 7 branches had an increasg-in
erage. As Figure 10 shows, most branches experience amasecre
in co-lateral coverage, though this effect is not universédre re-
search is required in order to explore this co-lateral cagereffect
in more detail.

This interesting finding suggests possible further re$ealtds
possible that the target branches are on a path that comttiias
controlling predicates that share similar sub-domainshefitiput
with the target branch. In this situation, it could be expdcthat
attaching the target branch with test data generation wealsta hit
the non-target branches on paths to the target. Howeveg reer
search is needed to explore these possibilities.

In summary, test data generation aimed at covering a chasen t
get branch can result in other non-target branches beingredv
Interestingly, by reducing the domain for the target braticére is
a tendency to improve this ‘co-lateral coverage’. The figgivews
the improvement in co-lateral coverage ordered by the gtheof
improvement. For only a few branches does the co-laterarage
decrease, whereas for the majority, it increases.

8. EMPIRICAL STUDY: IMPACT OF FOCUS-

ING ON ASPECTUAL BEHAVIOR

Research Question RQ 3.1. What is the computational
effort reduction for test data generation for each pro-

rather than the sheer number of branches to be covered. For in gram if aspectual behavior instead of all behavior is

stance, the programiul | Check has only four branches (three of
which are testable, being considered in domain reductang,yet
enjoys a 92.86% reduction in test effort through domain c&da.

focused on?.

We compared the results of (1) our evolutionary testing @ggn
(without domain reduction) that focuses on aspectual livasonly
and (2) the same approach that focuses on all branches irit@th

Research Question RQ 2.4. When generating test dataspects and base classes. Figure 11 shows the impact afjtesti

for a particular target branch, what is the co-lateral

aspectual behavior in terms of effort per tested programe Xh

effect on the level of coverage achieved for not-targetedaxis shows the tested programs and the y axis shows the pageen

branches?.
RQ 2.4 addresses the issue of co-lateral coverage, whickxwe e
plain next. In testing a program, each branch is targetedrim t

reduction in effort for these programs. As shown by the tssul
in all 14 programs, a reduction in effort has been achieved as
result of testing aspectual branches as opposed to tesenfyll

and an attempt is made to cover the branch. However, in commonprogram. The maximum overall reduction of 99.99% was pdesib

with other work on search-based test data generation [29232,
40, 41], it is common for non-target branches to be covered as
byproduct of test data generation.

This non-target coverage typically results from situagiormere
the target branch is hard to cover and requires a certain euofb
intermediate branches to be covered before the target breanc
be reached. This non-target coverage also results fromattueah
stochastic nature of the test data generation process seargh-
based optimization; there always remains the possibititysbme
run of the algorithm to coveany branch. This stochastic nature
is the reason for the careful control denoted by the repeated
cution of the algorithm (30 times) and the application ofisteal
techniques to investigate significance of results.

In RQ 2.4, the question is whether the reduction of a domain
for a target branch can help generate test data for othetargnt
branches. In the study, this effect was indeed found to happe
though not always. The results are presented in Figure 16awhe
x axis shows the branches and the y axis shows the brancragever
improvement.

in theQui ckSor t program. The minimum reduction of 3.02% was
observed in théwl | Check program.

Figure 12 shows the improvement in aspectual branch cogerag
for all 14 programs as a result of testing aspectual branabiep-
posed to testing all branches in the program. We observédhba
improvement in aspectual branch coverage is quite smad.nfin-
imum improvement is 0% for 8 out of 14 programs, indicatinatth
there was no change in aspectual branch coverage. The ntaximu
improvement is on theueue program where the improvement was
62.20%. However, aspectual coverage improvement in th@4 pr
grams was statistically significant at the 95% level.

Further investigation revealed that the improvement irecage
caused by the random behavior of evolutionary testing asssom
branches in th€ueue program were not covered while testing all
branches in the program. However, while testing aspectaaldhes
only, some of these branches were randomly covered more ofte
resulting in the spike in branch coverage. The improvemeag w
random and not caused by a better technique; otherwiselasimi
results would have been observed in other programs.



12.00

10.00

8.00

6.00

4.00

Coverage Improvement

Branch

Figure 10: Co-lateral coverage improvement effect of domai reduction.

We performed #-test independently on all 65 classes undeftest adapted Jusc coverage measurer [43], the underlying atleytes

(included in the 14 programs) by taking the effort data aéd
from all 30 runs as input for the statistical test. The resoftt-
test show that there are 47 classes where the reductionoir eff
statistically significant. There were 13 classes for whickajues
could not be calculated as the formula calculation encosrde

Java slicer [34], and the underlying adapted EvoUnit [40§hmi
cause such effects. To reduce these threats, we manuglcies!
the intermediate results of each component for selectegramo
subjects to confirm that these results are expected.

vision by zero in those cases. 5 out of 65 classes were found to

be statistically insignificant. This analysis indicateattthe reduc-
tions in effort for majority of the classes (and the programe
statistically significant. Therefore, it can be concludeslt testing
only aspectual branches results in effort reduction andeasame
time achieves same or better aspectual branch coverage.

9. THREATS TO VALIDITY

The threats to external validity primarily include the degito
which the subject programs and testing techniques undey sine
representative of true practice. We collected AspectJraacks
from the web and reused benchmarks used in the literatuesin t
ing and analyzing aspect-oriented programs. Despite lodisigall
size, the subject programs under study do represent typas-of
pects commonly used in practice. The small size of thesectspe
does not devalue the importance of testing these aspecisidrc
these aspects are woven into many locations of the baseslasd
once there are defects in these aspects, the impact woeld loét
substantial.

We studied the application of evolutionary testing and cend
testing in testing aspect-oriented programs, becausestigegom-
mon testing techniques used in practice, being able to belyid
used in various types of programs without being constrainyetthe
characteristics of the programs under test, unlike somer ¢isting
techniques such as those based on symbolic execution [24]21
These threats to external validity could be reduced by mxperg
ments on wider types of subject programs and testing teaksim
future work.

The threats to internal validity are instrumentation efethat
can bias our results. Faults in our own prototype, its uryiegl

10. RELATED WORK

To support adequate testing of aspect-oriented prograevs, s
eral approaches have been proposed recently, includitignfiad-
els and coverage criteria [3, 5, 49], test selection [45, A&]del-
based test data generation [46, 47], and white-box tesigdsiera-
tion [43].

There exist neither previous approaches to optimizatiotestf
data generation nor empirical results on advanced testgesier-
ation (beyond random testing) for AOP. This current lack QIFA
test automation progress and the associated empiricalkpposes
barriers to increased uptake and practical application@®PAech-
niques [9]. This paper is the first to present evolutionagpathms
for AOP test data generation and the first to provide detaiegir-
ical results concerning automated AOP test data generaftiuare-
mainder of this section surveys related work on proposals@P
testing approaches and OO test data generation.

Xu et al. [46,47] presented specification-based testingeambes
for aspect-oriented programs. The approaches createtaspstate
models and then include two techniques for generating st d
from the model. Their approaches require models to be spdcifi
whereas our approach does not. In addition, their appreatiaot
provide automation, implementation, or empirical resultereas
our approach does.

Zhao [49] proposed a data-flow-based unit testing approach f
aspect-oriented programs. For each aspect or class, theaabp
performs three levels of testing: intra-module, inter-mied and
intra-aspect or intra-class testing. His approach focosedata-
flow coverage criteria and test selection without providang sup-
port to automated test data generation, which is focuseduby o
approach. In addition, this work does not provide any aut@mna

“We move down the abstraction chain to focus on an analysis Implementation, or empirical results.

‘per class’ rather than ‘per program’ since the latter is ¢oarse-
grained to provide an answer to the investigated question.

One of the few tools available that is applicable to aspeetted
program test data generation is Aspectra [43]. It providesapper
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havior over all behavior

mechanism to leverage the existing object-oriented teatgkner-
ation tool Parasoft Jtest [31]. Parasoft Jtest generatesiiteal-
ues for primitive-type arguments and generates randomadesté-
guences. However, the approach supports only the generatio
default or random data. This testing strategy is known toigklj
sub-optimal for testing non-aspect oriented programsg;22, 32,
41], and there is no reason to believe that it will be any Ibegim-
ply because of the presence of aspects. Indeed, this pasamnis
results that support the claim that it is not.

Other related work on the general area of testing aspeetveidl
programs includes fault models for aspect-oriented progri8-5,
13], which could potentially be used to help assess the tyuatli

the test data generated by our approach in addition to thecasp

tual branch coverage being used currently. Test seleabioresult
inspection [45] can be applied on the test data generatedibgm
proach when specifications are not available for assertiogram
behavior. Test selection for regression testing [48] caalbe ap-
plied on the test data generated by our approach in the sgnes
testing context. Our approach complements these otheoagipes
on testing aspect-oriented programs.

11. CONCLUSION

In this paper, we have introduced a novel approach to autamat

test data generation for AOP. The approach is based on &mwlut

ary testing, which uses search-based optimization tottaaye-to-
cover branches. The results of empirical studies on sekaralred
search problems drawn from 14 AOP benchmark programs show
that the evolutionary approach is capable of producingifsogimtly
better results than the current state of the art.

The results reported here are the first detailed empiricalyst
of AOP testing. We have also adapted recent results on domain
duction, introducing an optimized tool to reduce the teshdaarch
space. The results provide evidence that this optimizatioreases
both effectiveness and efficiency, an improvement overipusv
work [17], which was able to demonstrate efficiency improeam
but not effectiveness improvement. Finally, the paperqmesthe
results of a study into the differential effects of AOP tegtcom-
pared to traditional testing. The results quantify the ioyement
in efficiency that can be gained by focusing solely on asjeé tte-
havior.

In future work, we plan to develop other more advanced tdst da
generation techniques such as Dynamic Symbolic Execufidh [
for AOP. We plan to evaluate various techniques on larger 83P
tems such as AOP code in the AspectOptima framework [2] aad th
AOP demonstrators released by the AOSD-Europe projecif].
also plan to conduct more experiments on comparing the diult
tection capability of the test suites generated by varieakrtiques,
going beyond the structural coverage achieved by the téstssu
Towards this aim, we plan to use mutation testing by seedinljsf
in aspects [13] or in pointcuts [4,13]. Our current approachuses
on generating test data for achieving high aspectual braocér-
age. In future work, we plan to extend the approach to geméeat
data for achieving other types of coverage in AOP systemh suc
as data flow coverage [49] between aspect and base codeydhelpi
expose faults related to interactions of aspect and base cod
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