
Slicing, I/O and the Implicit State

Yoga Sivagurunathan, Mark Harman and Sebastian Danicic
Project Project,

School of Computing,
University of North London,

Eden Grove, London, N7 8DB.
tel: +44 (0)171 607 2789
fax: +44 (0)171 753 7009

e-mail: {eml3sivaguy, m.harman, s.danicic}@uk.ac.unl
www : http://www.unl.ac.uk/∼mark/projproj.html

Keywords: Slicing, Embedded Systems, Implicit State, I/O

Abstract

Program slicing consists of deleting statements from a pro-
gram, creating a reduced program, a slice, that preserves
the original program’s behaviour for a given set of variables
at a chosen point in the program.

However, some aspects of a program’s semantics are not
captured by a set of variables, rendering slicing inapplica-
ble to their analysis. These aspects of the program’s state
shall, collectively, be termed the ‘implicit state’. For ex-
ample, the input list supplied to a program is not denoted
by a variable, rather it is part of the implicit state. It will
be shown that this implicitness causes existing slicing algo-
rithms to produce incorrect slices with respect to input.

In order to solve the problem the program to be sliced
will be transformed into an ‘explicit’ version (in which all
aspects of its semantics are captured by variables). The
approach is also applied to a wider class of problems in
which slicing is inhibited by the lack of variables upon which
to form a suitable slicing criterion.

Because the approach can be expressed as a source–level
transformation, it has the attractive property that the slic-
ing algorithm need not be altered.

1 Introduction

Many programmers spend a considerable amount of time
attempting to understand and manipulate computer pro-
grams. If the program is sufficiently simple, it can be anal-
ysed manually, but such a task is too difficult to perform
for larger programs which contain much information which
is irrelevant to a particular line of analysis.

Program slicing consists of deleting statements from a
program whilst preserving some projection of its semantics,

1 z = 4; 1 z = 4;

2 y = z + 1; 2

3 x = 5 + z; 3 x = 5 + z;

4 4

Original Program Slice w.r.t. (4, {x})

Figure 1: Weiser’s Static Slice

thereby removing such ‘irrelevant information’. Slicing has
been applied to algorithmic debugging [12], testing[1, 8],
integration[10], parallel execution[21], maintenance[6] and
measurement[16, 14].

The concept of program slicing was first introduced by
Weiser[20, 21]. A wide variety of slicing paradigms have
been proposed, each based upon a formulation of the slic-
ing criterion (which captures the semantic projection to be
preserved during the process of command deletion).

As introduced by Weiser[21], the slicing criterion consists
of a line number, n, and a set of variables, S. Consider the
program fragment in Figure 1.

The selected variable was x and the slicing was performed
at (just before the execution of) line 4. The variable x does
not depend on y, hence the slice does not contain line 2. In
this simple example, slicing can be performed by hand. For
larger programs, tools such as Unravel [15] can be used to
automatically construct slices.

This paper is concerned with the kinds of slices con-
structed from programs which perform I/O, and, more gen-
erally with slices of programs which affect components of
the state for which there is no variable to capture the se-
mantic projection of interest. In order to study this prob-

1



lem the static slicing paradigm will be adopted for simplic-
ity of exposition. However, the results apply equally well to
the dynamic [13], quasi–dynamic [19] and conditioned [3, 5]
paradigms.

The contribution of this paper can be summarised as fol-
lows:

• A minor problem concerning slicing in the presence of
input is identified.

• The problem is circumvented using an implicit state
removal transformation.

• The transformation is shown to be applicable to a
wider class of programs which contain few (or no) vari-
ables upon which to form slicing criteria.

The rest of the paper is organised as follows: Section 2
contains some preliminary definitions, which are used in
sections 3 and 4 to provide a formal treatment of static
slicing in the presence of input statements. Section 5 in-
troduces the implicit state removal transformation, used to
rectify a problem identified with slicing in the presence of
input, and section 6 shows how this approach can be ap-
plied to the more general problem of slicing embedded sys-
tem programs, which may contain few variables upon which
to base a suitable slicing criterion. Section 7 concludes with
some directions for future work.

2 Preliminary Definitions

This section introduces some definitions which will be used
in subsequent sections.

Definition 1 (REF and DEF Variable Sets)
DEF (n) denotes the set of variables defined at node n.
REF (n) denotes the set of variables referenced at node
n. For example, if n were the assignment statement
x = y + z; we would have DEF (n) = {x} and REF (n)
= {y,z}.

Definition 2 (Head and Tail) The head of a sequence,
s, shall be denoted hd(s) and the remaining sequence shall
be denoted tl(s).

Definition 3 (Function Overriding) This is an opera-
tion that takes two functions and creates a new one by
overriding all the mappings in the first function with those
in the second. We write the overriding of the function, f ,
by the function g like this: f ⊕ g.

Definitions 4, 5, 6 and 7 which follow, are those intro-
duced by Weiser [21].

A state trajectory of a program is a trace of its execution,
containing ‘snapshots’ of all its variable values (its state)
just before the execution of each statement.

Definition 4 (State Trajectory) A state trajectory of
length k of a program P is a finite list of ordered pairs

< (n1, s1), (n2, s2), . . . , (nk, sk) >

where each n is a node of P and each s is a function
mapping the variables in V to their values. Each (n, s)
gives the values of variables in V immediately before the
execution of n.

Definition 5 (Static Slicing Criterion) A static slic-
ing criterion of a program P is a pair <i, V >, where i is a
statement in P and V is a subset of the variables in P .

A static slicing criterion C =<i, V > determines a projec-
tion function ProjC which throws out of the state trajectory
all ordered pairs except those starting with i, and from the
remaining pairs throws out all identifiers not in V .

Definition 6 (Projection) Let T = (t1, t2, . . . , tn) be a
state trajectory, n any node in N and s any function from
variable names to values. Then

Proj′<i,V >((n, s)) =

{
λ if n 6= i
(n, s|V ) if n = i

where s|V is s restricted to domain V , and λ is the empty
string. Proj′ is now extended to entire trajectories:

Proj<i,V >(T ) = Proj′<i,V >(t1) . . . Proj′<i,V >(tn).

A slice is defined, behaviourally, as any subset of a pro-
gram which preserves a projection of its behaviour, deter-
mined by the slicing criterion.

Definition 7 (Static Slicing) A slice S of a program P
on a slicing criterion C = <i, V > is any program with the
following two properties.

1. S can be obtained from P by deleting zero or more
statements from P .

2. Whenever P halts on an input I with state trajectory
T , then S also halts on input I with state trajectory T ′,
and ProjC(T ) = ProjC′(T ′), where C ′ = <succ(i),V >,
and succ(i) is the nearest successor to i in the original
program which is also in the slice, or i itself if i is in
the slice.

2



1: x = 4; 1: x = 4;

2: z = 2*x; 2:

3: q = x; 3: q = x;

4: y = z + q; 4:

5: 5:

Original program P Slice P ′

Figure 2: Static Slicing on the Criterion (5, {q})

3 The Formal Definition of a Slice

Suppose the initial state for program P in Figure 2 is σ.
The elements of the state trajectory are pairs, (n,σ) where
n is the next line to be executed. Therefore at line 1, the
pair will be (1,σ). The term ‘at line n’ means ‘when the
next line to be executed is at line n’.

In order to define the state trajectory produced by the
execution of a program, it will be necessary to formally
define the state–to–state mapping1, MI [[s]], denoted by an
assignment statement, s. This is defined in the standard
way [18], namely:

MI [[i=e;]] = λσ.σ ⊕ {i 7→ E [[e]]σ}

Using this semantic description, the state trajectory T ,
for the example program P can be determined:

T =
<
(1, σ),
(2, σ⊕ {[[x]] 7→ 4}),
(3, σ⊕ {[[x]] 7→ 4, [[z]] 7→ 8}),
(4, σ⊕ {[[x]] 7→ 4, [[z]] 7→ 8, [[q]] 7→ 4}),
(5, σ⊕ {[[x]] 7→ 4, [[z]] 7→ 8, [[q]] 7→ 4, [[y]] 7→ 12})
>

Proj<n,V > denotes the sequence obtained by removing
all pairs (x,y) such that x 6= n, and restricting the state, y,
of those which remain, to include only those mappings for
variables in V , so Proj<5,{q}>(T ) = <(5, {[[q]] 7→ 4})>

The state trajectory T ′ for the slice, P ′, when the initial
state is σ, is:

T ′ =
<
(1, σ),
(2, σ⊕ {[[x]] 7→ 4}),
(3, σ⊕ {[[x]] 7→ 4}),
(4, σ⊕ {[[x]] 7→ 4, [[q]] 7→ 4}),
(5, σ⊕ {[[x]] 7→ 4, [[q]] 7→ 4})
>

Now Proj<5,{q}>(T ′) = <(5, {[[q]] 7→ 4})>, so
Proj<5,{q}>(T ) = Proj<5,{q}>(T ′), and therefore P ′ is a

1The reason we add the subscript I to M will become clear in the
next two sections.

1: scanf("%d",&x); 1: scanf("%d",&x);

2: scanf("%d",&y); 2: scanf("%d",&y);

3: 3:

Original Program, P Slice on (3, {y}), P ′

Figure 3: Slicing Programs with Input Statements

slice of P according to definition 7.

4 The Input Problem

In the previous section, the state was described as a map-
ping, I → V , where I is the set of all variable identifiers
and V is the set of all possible values. This form of state
is known as an environment and V is known as the set of
denotable values [18].

In order to represent the semantics of input statements
we shall need to augment the environment with a se-
quence of values, seq(V ), to denote the input sequence,
thus the state will become (I → V ) × seq(V ). This aug-
mentation of the state allows us to model the statement
scanf("%d",&x); as a state transformation from (σ, i) to
(σ ⊕ {[[x]] 7→ hd(i)}, tl(i)), enabling us to construct state
trajectories for programs which perform input.

Consider, for example the program P in Figure 3. Sup-
pose the slicing criterion is (3, {y}). The state trajectory,
T , when the initial environment is σ and the initial input
list is i is:

T =
<
(1, (σ, i)),
(2, (σ⊕ {[[x]] 7→ hd(i)}, tl(i))),
(3, (σ⊕ {[[x]] 7→ hd(i), [[y]] 7→ hd(tl(i))}, tl(tl(i))))
>

Therefore Proj<3,{y}>(T ) = <(3, ({[[y]] 7→ hd(tl(i))},
tl(tl(i))))>.

Let P ′ be a slice of P constructed with respect to the
slicing criterion (3, {y}) according to definition 7, and let
the state trajectory produced by the execution of P ′ in the
initial state (σ, i) be T ′. By definition 7, Proj<3,{y}>(T )
must be Proj<3,{y}>(T ′), so Proj<3,{y}>(T ′) will be <(3,
({[[y]] 7→ hd(tl(i))}, tl(tl(i))))>.

Clearly therefore, any valid slice, P ′ of P with respect
to (3, {y}) must affect the value of the variable y. Since
the only statement in P which does this is statement 2,
statement 2 must be included in the slice. Furthermore,
if the slice P ′ were to contain only statement 2, then
Proj<3,{y}>(T ′) would be <(3, ({[[y]] 7→ hd(i)}, tl(i)))>.
Therefore, in order to satisfy definition 7, statement 1 must
also be included in P ′. The only valid slice of P w.r.t. (3,

3



{y}) is therefore P itself. However, this is not the slice
produced by currently published static slicing algorithms
[21, 11, 4], (all of which delete line 1).

Existing algorithms fail to produce the correct slice be-
cause, according to the standard definition of defined and
referenced variables (definition 1),

DEF [[scanf("%d",&x);]] = {x}

and

REF [[scanf("%d",&x);]] = {}

This means that there will be no du–chain [2] between
nodes 1 and 2 in the program P in Figure 3. This is an
example of a more general problem concerning the ‘implicit
state’ [7, 8, 9].

To see why traditional formulations of defined and refer-
enced variables do not cater for input statements correctly,
we need to examine the state in more detail. It will be
shown that by making the implicit state explicit the prob-
lem can be overcome.

Definition 8 (The Explicit State)
The explicit state is (I → V ), where I is the set of variable
identifiers and V is the set of denotable values.

Definition 9 (The Implicit State)
The implicit state is any part of the state which is not
explicit. That is, the implicit state consists of those state
components which are not denoted by a variable identifier.

Observe that, whilst the effect of a program has upon
the values stored in its variables is explicit, the effect it has
upon the input sequence is implicit.

Existing slicing algorithms will include a statement n in
a slice iff:

1. the slicing criterion is transitively data dependent on
n or,

2. the slicing criterion is transitively control dependent
on n.

Data dependence arises because of variable assignments
(or, more generally, because of statements which affect the
explicit state). Changes to the implicit state do not lead
to dependences as there is no variable to carry the depen-
dence. In the most extreme case suppose a non-predicate
statement s, affects only the implicit state; No slicing cri-
terion can be transitively control or data dependent upon
s, and therefore, a slicing algorithm will be free to delete s.

Consider, for example, the program2 in Figure 4. Sup-
pose the slicing criterion is (3,{y}). The slicing algorithm

2Where getint() has the sole purpose of consuming an integer
from the input.

1: getint(); 1:

2: scanf("%d",&y); 2: scanf("%d",&y);

3: 3:

Original Program P Slice P ′

Figure 4: An Incorrect Slice

will be free to delete line 1 because the slicing criterion
is neither transitively control nor data dependent upon it.
Indeed, line 1 may be deleted in the construction of any
slice.

However, removal of line 1 clearly does affect the meaning
of line 2. That is, in the original program, line 2 reads the
second input into y, whereas, if line 1 is removed, it reads
the first. Therefore, removing line 1 will produce a reduced
program which does not preserve the effect of the original
upon the final value of y. Such a reduced program is not
a slice of the original according to Weiser’s definition of a
slice (definition 7).

5 Denoting the Input Sequence

The solution to the problem lies not in altering the slicing
algorithm, rather it requires a change to the value of defined
and referenced variable sets (upon which the algorithm de-
pends). This is achieved by a reformulation of the implicit
state as an explicit state [7, 8, 9], rather than altering the
slicing algorithm, which constructs these slices.

Observe that, because

MI [[scanf("%d",&x);]](σ, i) = (σ ⊕ {[[x]] 7→ hd(i)}, tl(i))

it will be inferred that

DEF [[scanf("%d",&x);]] = {x}

and

REF [[scanf("%d",&x);]] = {}.

because the only variable which alters its value in σ is x

and this change references (depends upon) the value of no
other mapping in σ. That is, although the input statement
affects the implicit state, it does not affect the explicit state.
Therefore the defined and referenced variable sets will not
capture the linkage between successive input statements;
this linkage consists of ‘implicit du–chains’.

In order to remove the implicit state we need a new vari-
able (and possibly a new denotable value [18] — the list),
to denote the implicit state component. In this case, the
pseudo-variable Π shall be used to denote the input list.

LetME describe the meaning of a statement in terms of
the explicit state.

4



ME [[scanf("%d",&x);]]σ =
σ ⊕ {[[x]] 7→ hd(σ[[Π]]), [[Π]] 7→ tl(σ[[Π]])}

from which it will be inferred that

DEF [[scanf("%d",&x);]] = {x,Π}

and

REF [[scanf("%d",&x);]] = {Π}.

The function Φ, takes an implicit state and transforms
into an equivalent explicit state:

Φ : (I → V )× seq(V ) −→ (I → V )

Φ(σ, i) = σ ⊕ {[[Π]] 7→ i}

The connection between MI and ME is

∀s.MI(s) ◦ Φ = Φ ◦ME(s)

The relationship betweenME ,MI and Φ is represented
in the commutative diagram below:

(I → V )× seq(V )
MI(s)−→ (I → V )× seq(V )

Φ
y yΦ

(I → V )
ME(s)−→ (I → V )

Observe that this reformulation of the implicit state as
an explicit state could have been achieved by re–writing
the program, introducing assignments to the new pseudo–
variable Π. The transformation, T , takes a statement s,
and produces a statement s′, where s′ neither depends upon
nor affects implicit state. The transformation T for our
simple while loop language is defined in Figure 5.

Observe that MI ◦ T = ME , thus T is guaranteed to
remove the implicit state by source–to–source transforma-
tion. This could be established more formally by a simple
structural induction on the structure of the language.

6 A Thermostat Program

Often, in embedded real–time systems, there will be a set
of primitive commands for controlling input and output us-
ing devices such as sensors and actuators. These primitive
commands will form part of a control language. Such pro-
grams may be hard to slice in any meaningful way, because
we shall not be able to identify the interesting properties of
the embedded system in slicing criteria — they will all be
implicit.

1 reset();

2 while (inoperation()) {
3 if (gettemp())

4 switchoff();

5 else switchon();

6 userchoice();

}

Figure 6: A Simple Thermostat Program

Consider, the (highly idealised) thermostat control pro-
gram in Figure 6. As it stands this program is completely
unslicable, as it mentions no variables.

If we model the implicit state using pseudo variables,
we shall be able to transform programs such as the ther-
mostat program into longer, but slicable, explicit versions.
This corresponds to modelling the unavailable bodies of
the primitive functions of the control language. In order to
perform this transformation for the thermostat program we
will need a specification of the effect of each of the primi-
tives. In this case, the device language primitives control
and depend upon a thermometer and a heater. Figure 7
informally specifies the meaning of each primitive of the
control language.

Figure 8 describes the implicit state value denoted by
each pseudo variable we shall introduce.

Notice that we could, for all such problems, use a sin-
gle variable to capture the entire implicit state [17]. This
would require us to model the implicit state as a large data
structure, denoted be a single variable. Using a single vari-
able, primitive commands which depend upon or affect the
implicit state would be transformed into commands which
select and update parts of this data structure. Whilst this
approach is theoretically acceptable, it is impractical, as it
will dramatically reduce the precision of any slicing algo-
rithm which depends upon it.

Figure 9 describes the transformation function for remov-
ing the implicit state. For the userchoice() primitive, the
enumeration type {up, down,manual} is used to model the
user’s input.

The application of transformation rules from Figure 9 to
the program in Figure 6 is depicted Figure 10.

We have adopted a decimal point numbering system to
allow us to relate elements of the transformed program to
those of the original (via their integral values).

Slicing with respect to (6, {ideal}) yields the slice de-
picted in Figure 11.

Converting this slice back to the original program no-
tation we take the integral part of each statement as the
members of the slice, thereby including a statement from
the original if any of its transformed counterparts are in the
slice of the explicit version.

5



T [[scanf(s,&i1, . . . ,&in); ]] = I[[i1]] . . . I[[in]]
T [[while(e)c]] = [[while(e){T [[c]]}]]
T [[{c1 . . . cn}]] = [[{T [[c1]] . . . T [[cn]]}]]
T [[if(e)c]] = [[if(e){T [[c]]}]]

T [[getint();]] = [[Π=tl(Π);]]
T [[i=e;]] = [[i=e;]]

I[[i]] = [[i = hd(Π); Π = tl(Π); ]]

Figure 5: Removing the Implicit State from a Language with Input Statements

reset() Initialises the ideal temperature setting
inoperation() True iff the user has not switched to manual control
gettemp() True iff the current temperature is ideal (±2 degrees Fahrenheit)
switchoff() Switches the heater off
switchon() Switches the heater on
userchoice() Allows the user to make one of three decisions:

a) to switch to manual control
b) to increment the ideal temperature
c) to decrement the ideal temperature

Figure 7: Informal Semantics for the Thermostat Language Primitives

Pseudo Variable Type Description of Implicit State Modelled

ideal int The ideal temperature

IsManual boolean True iff the system is in manual mode

temp int Current temperature reading on the thermometer

IsHeaterOff boolean True iff the heater is off

Π list(choice) The User’s list of inputs

Figure 8: Pseudo–Variables and the Implicit State Components they Denote

T [[while(e)c]] = [[while(E [[e]]){T [[c]]}]]
T [[{c1 . . . cn}]] = [[{T [[c1]] . . . T [[cn]]}]]
T [[if(e)c]] = [[if(E [[e]]){T [[c]]}]]
T [[i=e;]] = [[i=E [[e]];]]

T [[reset()]] = [[IsManual = False; ideal = Default; ]]
T [[switchoff()]] = [[IsHeaterOff = True]]
T [[switchon()]] = [[IsHeaterOff = False]]

T [[userchoice()]] = [[if(hd(Π) = up)ideal = ideal + 1;
else if(hd(Π) = down)ideal = ideal− 1;

else if(hd(Π) = manual)IsManual = True;
Π = tl(Π); ]]

E [[inoperation()]] = [[!IsManual]]
E [[gettemp()]] = [[((temp >= ideal− 2.0)&&(temp <= ideal + 2.0))]]
E [[e1 b e2]] = E [[e1]] b E [[e2]]

Figure 9: Removing the Implicit State from the Thermostat Control Language

6



1 reset(); 1.1 IsManual = False;
1.2 ideal = Default;

2 while (inoperation()) { 2 while (!IsManual) {
3 if (gettemp()) 3 if ((temp >= ideal - 2.0) && (temp <= ideal + 2.0))
4 switchoff(); 4 IsHeaterOff = True;
5 else switchon(); 5 else IsHeaterOff = False;
6 userchoice(); 6.1 if (hd(Π) = up)

6.2 ideal = ideal + 1;

6.3 else if (hd(Π) = down)
6.4 ideal = ideal - 1;

6.5 else if (hd(Π) = manual)
6.6 IsManual = True;
6.7 Π = tl(Π);

} }
Original program Transformed program

Figure 10: Original and Transformed Thermostat Program

1.1 IsManual = False; 1 reset();

1.2 ideal = Default;
2 while (!IsManual) { 2 while (inoperation())

6.1 if (hd(Π) = up) 6 userchoice();

6.2 ideal = ideal + 1;

6.3 else if (hd(Π) = down)
6.4 ideal = ideal - 1;

6.5 else if (hd(Π) = manual)
6.6 IsManual = True;
6.7 Π = tl(Π);

}
Sliced Transformed Program Corresponding Sliced Original Program

Figure 11: Slicing the Thermostat Program Using its Explicit Counterpart

7



7 Conclusion and Future Work

The implicit–state–removal transformation technique can
be applied to any problem where we want to slice a program
upon some value which is implicit, namely, where there is
no variable to denote the state components of interest. The
approach is easy to integrate into existing slicing algorithms
and tools, as only the defined and referenced variables need
change. Furthermore, a suitable change in defined and ref-
erenced variables is obtained by pre–transforming the pro-
gram to be sliced to remove the implicit state. Thus the
slicing algorithm can be viewed as an unaffected ‘black box
process’.

The approach was used to correct a minor deviation of
existing slicing approaches concerning the deletion or oth-
erwise of input statements in slice construction. More im-
portantly, it is argued that the approach could be applied
to embedded systems, where slicing may be frustrated by a
want of variable to slice upon.

More work is required to produce a general set of guide-
lines for implicit state modelling. It would also be interest-
ing to apply the approach introduced here to other implicit
state components. For example, file systems and dynamic
memory allocation and deallocation. Such analysis might
prove fruitful in producing more precise slices of programs
which affect and depend upon the heap store, and may al-
low us to address problems associated with programs which
perform I/O through file access. This work could also al-
low previously implicit computation to be analysed using
slicing. For example, the potential of a program to leak
dynamic memory could be analysed by making the implicit
top of heap explicit.

References

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic
program slicing. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 246–256, New York, June 1990.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, techniques and tools. Addison
Wesley, 1986.

[3] G. Canfora, A. Cimitile, Andrea De Lucia, and
G. A. Di Lucca. Software salvaging based on condi-
tions. In International Conference on Software Main-
tenance (ICSM’96), pages 424–433, Victoria, Canada,
September 1994. IEEE.

[4] Sebastian Danicic, Mark Harman, and Yogasundary
Sivagurunathan. A parallel algorithm for static
program slicing. Information Processing Letters,
56(6):307–313, December 1995.

[5] Andrea. De Lucia, Anna Rita Fasolino, and Malcolm
Munro. Understanding function behaviours through
program slicing. In 4th IEEE Workshop on Program
Comprehension, Berlin, Germany, March 1996.

[6] Keith B. Gallagher and James R. Lyle. Using program
slicing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751–761, August 1991.

[7] Mark Harman. Functional Models of Procedural Pro-
grams. PhD thesis, University of North London, 1992.

[8] Mark Harman and Sebastian Danicic. Using program
slicing to simplify testing. Journal of Software Test-
ing, Verification and Reliability, 5:143–162, September
1995.

[9] Mark Harman and Sebastian Danicic. Slicing programs
in the presence of errors. Formal Aspects of Comput-
ing, 1996. To appear.

[10] Susan Horwitz, Jan Prins, and Thomas Reps. Inte-
grating non–interfering versions of programs. ACM
Transactions on Programming Languages and Sys-
tems, 11(3):345–387, July 1989.

[11] Susan Horwitz, Thomas Reps, and David Binkley.
Interprocedural slicing using dependence graphs. In
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 25–46, At-
lanta, Georgia, June 1988. Proceedings in SIGPLAN
Notices, 23(7), pp.35–46, 1988.

[12] Mariam Kamkar. Interprocedural dynamic slicing with
applications to debugging and testing. PhD Thesis, De-
partment of Computer Science and Information Sci-
ence, Linköping University, Sweden, 1993. Available
as Linköping Studies in Science and Technology, Dis-
sertations, Number 297.

[13] Bogdan Korel and Janusz Laski. Dynamic program
slicing. Information Processing Letters, 29(3):155–163,
October 1988.

[14] Arun Lakhotia. Rule–based approach to computing
module cohesion. In Proceedings of the 15th Confer-
ence on Software Engineering (ICSE-15), pages 34–44,
1993.

[15] James R. Lyle, Dolores R. Wallace, James R. Graham,
Keith B. Gallagher, Joseph P. Poole, and David W.
Binkley. Unravel project.

[16] Linda M. Ott and J. J. Thuss. The relationship be-
tween slices and module cohesion. In Proceedings of the
11th ACM conference on Software Engineering, pages
198–204, May 1989.

8



[17] D. A. Schmidt. Denotational semantics: A Method-
ology for Language Development. Allyn and Bacon,
1986.

[18] Joseph E. Stoy. Denotational semantics: The Scott–
Strachey approach to programming language theory.
MIT Press, 1985. Third edition.

[19] G. A. Venkatesh. The semantic approach to program
slicing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 26–
28, Toronto, Canada, June 1991. Proceedings in SIG-
PLAN Notices, 26(6), pp.107–119, 1991.

[20] Mark Weiser. Program slices: Formal, psychological,
and practical investigations of an automatic program
abstraction method. PhD thesis, University of Michi-
gan, Ann Arbor, MI, 1979.

[21] Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, 1984.

9


