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Abstract

This paper introduces an approach to locating dependence structures in a program
by searching the space of the powerset of the set of all possible program slices. The
paper formulates this problem as a search based software engineering problem. To
evaluate the approach, the paper introduces an instance of a search based slicing
problem concerned with locating sets of slices that decompose a program into a set
of covering slices that minimize inter-slice overlap. The paper reports the result of
an empirical study of algorithm performance and result-similarity for hill climbing,
genetic, random search and greedy algorithms applied to a set of 12 C programs.
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1 Introduction

Dependence analysis has been applied to several stages of the software engi-
neering process, such as program restructuring [21,53], program comprehen-
sion [26], regression testing [12] and program integration [42]. It can also be an
effective way of understanding the dependence structure of a program [13,52]
and a measurement of dependence-related attributes such as cohesion and cou-
pling [10,60]. For these applications, sets of slices are used to reveal interesting
properties of the program under analysis, such as the presence of dependence
clusters and the cohesive (and less cohesive) parts of the program.

The advent of commercial, scalable and robust tools for slicing such as Gram-
matech’s CodeSurfer [36] makes it possible to construct all possible slices for
large programs in reasonable time. By constructing the set of all slices of a
program, it is possible to analyse the dependence structure of the program.
This allows slicing to be used to capture the dependence of every point in the
program, allowing analysis of the whole program dependence structure. This
raises an interesting research question:
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“How can useful interesting dependence structures be formed in amongst
the mass of dependence information available?”

In this paper, dependence is analysed using program slicing, and so this ques-
tion is reformulated as:

“Of the set of all possible slices of a program, which subsets reveal interesting
dependence structures?”

Of course, for a program consisting of n program points, there will be n pos-
sible slices and, therefore, 2n subsets of slices. Since the number of program
points is always at least as large as the number of statements in the program,
the powerset of all possible slices will be extremely large; too large to enu-
merate for any realistically sized program. This is merely a reflection of the
mass of dependence information available and would need to be considered
by any whole program dependence analysis. The overwhelming quantity of
information motivates the search based approach introduced in this paper.

The paper introduces an approach to location of dependence structures, founded
on the principles of search-based software engineering (SBSE) [23,40]. Using
this formulation, the problem becomes one of a search for a set of slices that
exhibit interesting dependence structures. The choice of what constitutes an
‘interesting dependence structure’ is a parameter to the overall approach, mak-
ing it highly flexible. In search based software engineering, a fitness function
is defined to capture such a property of interest. In the case of search based
slicing, it captures the properties of a dependence structure that make it in-
teresting to a particular analysis.

The search process is realized by an algorithm that uses the fitness function to
guide a search that seeks to find optimal or near optimal solutions with respect
to the fitness function. In order to experiment with the search based slicing
approach, the paper presents the results of an implementation and associated
empirical study into the search for slice sets that decompose a program into a
set of slices that cover the program with minimal overlap. The fitness function
used in the empirical study is motivated by work on slicing as a decomposition
technique [34,73].

This instantiation of the search based slicing approach formulates the decom-
position problem as a set cover problem [31]. However, it must be stressed
that this represents merely the instantiation of a parameter to the approach
(the fitness function). The search based slicing approach derives a great deal
of flexibility from the fact that the fitness function (and therefore the property
of interest) is merely a parameter; in order to search for a different kind of
dependence structure, only the fitness function needs to be changed.

The paper reports the results of experiments with four different search algo-
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rithms for search based slicing and presents the results of an empirical study
involving 12 C programs. The empirical study aims to answer four related
research questions:

(1) How well does each algorithm perform?
(2) How similar are the results produced by each algorithm?
(3) How can the results be visualized and what do they reveal?
(4) How efficiently can the best algorithm perform with large practical pro-

grams and for all the functions in programs?

The paper makes the following primary contributions:

(1) An approach that identifies dependence structures is introduced as a
search problem over the powerset of the set of all possible program slices,
allowing search based algorithms to be used to search for interesting de-
pendence structures.

(2) A fitness function is introduced that seeks to optimise the search towards
solutions that decompose the program into a set of slices that collectively
cover the whole program with minimal overlap. Four search algorithms
are implemented in order to experiment with this fitness function.

(3) The results of an empirical study are reported, showing that the greedy
algorithm performs better than random, hill climbing and genetic al-
gorithm approaches to the problem. This is an attractive finding, since
greedy algorithms are extremely simple and efficient.

(4) A simple visualization is introduced to explore the results and their
similarity. This shows a higher degree of similarity for the intelligent
techniques over random search. This visual impression is augmented by
computational analysis of results. The similarity of results for intelligent
search provides that the results are consistent and meaningful.

(5) The visualization also has an interesting side effect, which may be a useful
spin off: the presence of code clones becomes visually striking in some of
the examples. However, clone detection is not the focus of this paper.

(6) The paper also reports results on redundancy. That is how often a slice is
completely included by another one. The results suggest that redundancy
phenomena are universal in 12 programs. However, it is shown that this
redundancy does not affect the Greedy algorithm advocated in the paper.

(7) Based upon the performance comparison with 4 search algorithms, the
greedy algorithm is further applied to 6 larger programs to decompose
each function of each program. The results show that majority of func-
tions can be decomposed into sets of slices efficiently.

The data used in this paper are made available to the research community to
facilitate replication at http://www.dcs.kcl.ac.uk/pg/jiangtao/.

The rest of the paper is organised as follows: Section 2 presents the prob-
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lem description in more detail, while Section 3 introduces the search-based
algorithms and their application to the problem. Section 4 and 5 presents
the results of the empirical study. Sections 6 and 7 present related work and
conclusions.

2 Problem Description

The goal is to identify dependence structures by searching the space of all
subsets of program slices. In this paper, static backward slicing is used, but
the approach is not confined merely to static backward slicing; it can be used
with any analysis that returns a set of program points (thereby including all
forms of program slicing).

As an illustrative example, consider a program that has only 8 program points.
Table 1 gives all the slices of this hypothetical example in terms of each pro-
gram point as slicing criteria.

Program Slicing Program point

1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0

2 0 1 1 1 1 0 0 0

3 1 0 1 1 0 0 0 0

4 0 1 1 1 1 0 0 0

5 0 1 0 1 1 0 0 0

6 1 1 1 1 1 1 1 0

7 0 0 1 0 0 1 1 1

8 1 0 0 0 1 1 1 1
Table 1
An example of looking for optimum properties in program slicing sets.

The table represents the value of each slice. In this table, a 1 represents a
program point that is included in the slice, while a 0 represents a program
point that is not included in the slice. In this situation, a good decomposition
would be the set {1,5,7}, rather than {1,2,7}, {6} or any other subsets. The
solution {1,5,7} is preferable, even though {1,2,7} has the same coverage as
{1,5,7}, because {1,2,7} has more overlap than {1,5,7}; even though {6} has
the same overlap as {1,5,7}, because {6} has less coverage than {1,5,7}. The
other subsets have the same situation as the set {1,2,7} and/or {6}.
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However, with increasing program size, the number of possible solutions grows
exponentially. Therefore, the paper formulates this kind of slice subset identi-
fication problem as an optimization problems within the framework of Search
Based Software Engineering (SBSE). SBSE is a framework for considering
the application of metaheuristic search techniques to software engineering
problems. The SBSE framework allows search based techniques to be used
to provide acceptable solutions in situations where perfect solutions are either
theoretically impossible or practically infeasible [40].

In order to apply the framework to a specific software engineering problem,
it is necessary to reformulate the problem as a search problem [35,78,79].
This can be achieved by defining the search space, representation, and fitness
function that describe the problem. The next 3 subsections explain each of
these attributes of the formulation in more detail.

2.1 Search Space

The purpose of all search algorithms is to locate the best (or an acceptably
good) solution among a number of possible solutions in the search space. The
process of looking for a solution is equivalent to that of looking for some
extreme value—minimum or maximum, in the search space.

In the experiments reported upon here, the search space is the set of all the
possible sets of slices. Following Horwitz et al. [44], a ‘possible slicing criterion’
is taken to mean ‘any node of the System Dependence Graph (SDG) of the
program’. Therefore, for a program with n nodes in the SDG, there will be n
corresponding slicing criteria and, therefore, 2n subsets of slicing criteria. This
space of 2n subsets of slicing criteria forms the search space for this problem.
Clearly, enumeration will not be possible since n can be arbitrarily large.
This observation motivates the search based software engineering approach
advocated in this paper.

2.2 Representation of Slicing

The representation of a candidate solution is critical to shaping the nature
of the search problem. Frequently used representations include floating point
numbers and binary code. In this problem, the representation of solutions
is binary. The definition of representation of slicing can be formulated as a
simple 2-dimensional array: Let A[i, j] be a binary bit, i be a program point
and j be a slicing criterion, so that A[i, j] = 1 if the slice based on criterion
j includes the program point i and A[i, j] = 0 if the slice based on criterion j
does not include the program point i. In this way, the array A denotes the set
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of slices of the program, with both array bounds determined by the number
of program points (i.e. nodes of the SDG).

2.3 Fitness Function

The choice of a fitness function depends upon the properties of the set of slices
for which the search algorithm will optimize. This choice is a parameter to the
overall approach to search based slicing. In order to illustrate the search based
slicing approach, this section introduces several metrics that will be used as
fitness functions to decompose a program into a set of slices that collectively
cover the entire program, while minimizing the degree of overlap between the
slices.

These metrics are inspired by previous work on sliced-based metrics by Bie-
man, Ott and Weiser [10,56,60,65–69,75,76]. The following notation will be
used.

Let M be the number of program points of the program, P be the number of
program points of the optimal slicing set, ∩(S1, ..., Si) be the intersection of i
slices, ∪(S1, ..., Si) be the union of i slices and Max(S1, ..., Si) be the largest
slice selected from i slices. All the metrics defined below are normalized. Nor-
malization allows for comparison of metrics from differently sized programs,
while the expression as a percentage is merely a convenience: the metrics are
so-defined that 100% denotes the maximum possible value. The metrics used
are as follows:

Coverage. This measures how much the program points in a slicing set cover
the program points of the whole program. This metric was introduced by
Weiser [75].

100 · ∪(S1, ..., SP )

∪(S1, ..., SM)
1 < P < M

Overlap. This Evaluates the number of program points of the intersection
within a slicing set. It can be defined in many ways; this paper considers
two possibilities:
Average For each pair of slices in the set, evaluate the percentage of pro-

gram points that are in both. The average value is evaluated based on all
such pairwise comparisons.

100 · (ΣP−1
i=1 ΣP

j=i+1

∩(Si, Sj)

Max(Si, Sj)
) 0 < i < P

Maximum For each pair of slices in the set, evaluate the percentage of
program points that are in both. The maximum value is the largest value
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among all pairwise comparisons.

100 ·Max(
∩(Si, Sj)

Max(Si, Sj)
) 0 < i 6= j < P

With any definition of properties of interest, a mechanism is needed to map
properties onto overall fitness values. For multiple objective problems, one sim-
ple technique for combining values for n fitness values: Property1, . . . , P ropertyn

is to combine them into a single fitness value using corresponding ‘weights’
K1, . . . , Kn.

In the experiments reported upon here, two fitness functions are defined, im-
plemented and experimented with (corresponding to the two choices for mea-
surement of average):

Coverage · 0.5 + (100− Average) · 0.5 (1)

Coverage · 0.5 + (100−Maximum) · 0.5 (2)

In both cases the weights are set to 0.5 so that each of the two objectives
of the two fitness functions is considered equal. Nevertheless, decision of the
weights is optional, different weights for the coverage and overlap could be
considered in terms of the specific needs. As an illustrated example of fitness
here, equal weights are considered since there are no other evidence that the
coverage is more dominant to the overlap and vice versa. Both formulations of
fitness attempt to capture the decomposition of the program that maximises
coverage while minimizing overlap. Future work will consider the variation of
these weights and the exploration of the Pareto front of optimal solutions.

3 Search Algorithms

This section describes the 4 types of search algorithms used in the experi-
ments reported upon in the paper. The detailed description of these is given
in algorithmic pseudo code in Figures 1, 2, 3 and 4.

3.1 Genetic Algorithm

A Genetic Algorithm (GA) [78] begins with a set of solutions (represented by
chromosomes) called a population. Solutions from one population are used to
form a new population. This is motivated by a hope that the new population
will be better (according to the fitness function) than the old one. Solutions
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Genetic Algorithm:
Parameters: Population(P): 50; Generation(G): 100; Crossover Probabil-
ity: 0.8; Mutation Probability: 0.01.
Begin

i ← 0
while(i < G) do

begin
t ← 0
initiate P (t)
evaluate F (t)
while (t < P ) do

begin
t ← t + 1
select P (t) from P (t− 1)
crossover P (t) according to crossover rate
mutate P (t) according to mutation rate
evaluate F (t)

end
i ← i + 1

end
End

Fig. 1. Genetic Algorithms Used in the Study

are selected to form new solutions (offspring) according to their fitness; the
more suitable they are, the more chance they have to reproduce. This process
is repeated over a series of ‘generations’ until some termination condition is
satisfied. In the GA, the primary operations and parameters are as follows:

Selection Selection determines the chromosomes that are selected from the
population to be parents for crossover, based on their fitness. There are
many methods for selecting the best chromosomes such as roulette wheel,
Boltzmann, tournament, rank and steady state [78]. The experiments re-
ported upon in this paper use the elitism and rank selection method.

Crossover and Crossover Probability Crossover operates on selected genes
(elements of chromosomes) from parent chromosomes to create new off-
spring. The likelihood that crossover will be performed is called Crossover
Probability [78]. The experiments reported upon in this paper use the
method of multi-point crossover with a Crossover Probability of 0.8.

Mutation and Mutation Probability Mutation randomly changes the off-
spring resulting from crossover. The likelihood of mutation is called the
Mutation Probability [78]. The experiments reported upon in this paper
use random bit flip with a Mutation Probability of 0.01.
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Hill Climbing Algorithm:
Parameters: Max: Population ∗ Generation (referring to parameters of
GA); Sum: the calculation times of the fitness;
S: the current solution; N: the neighbour of the current solution.
Begin

Sum ← 0
while(Sum <= Max) do

begin
initiate S randomly
if(S < HC(S))

S ← HC(S)
end

End

HC(S)
i ← 0
while(i < the number of all the slices) do

begin
look for N(i)

while(true) do
begin
Sum ← Sum + 1
if(fitness of S < fitness of N(i))

S ← N(i)
i ← 0
break

else look for next neighbour of the current solution.
end

i ← i + 1
end

return current S

Fig. 2. Hill Climbing Algorithms Used in the Study

3.2 Hill Climbing

A Hill-Climbing (HC) algorithm looks for the neighbour of current solution
and if the neighbor is better, this neighbour replaces the current solution. The
operation will be repeated until no better neighbour can be found. In order
to ensure fairness of comparison, the HC algorithm has the same budget of
computation time. That is, the experiments use multiple restart Hill-Climbing
and allow the same number of fitness evaluations in total (over all hill climbs)
as are allowed to other algorithms.

9



Greedy Algorithm:
Parameters: Initial Solution Set: {0,0,0,...,0,0}; Candidate Set: the set of
all the slices of the program.
Begin

evaluate each slice of candidate set
while(not solution)

begin
select the slice

end
End

Fig. 3. Greedy Algorithm Algorithms Used in the Study

Random Algorithm:
Parameters: Generation(G): 100; Individuals(I) (corresponding to the
population in GA): 50.
Begin

i ← 0
while(i < G) do

begin
t ← 0
while(t < I) do

begin
initiate I(t) randomly
evaluate F (t)
t ← t + 1

end
i ← i + 1

end
End

Fig. 4. Random Algorithms Used in the Study

3.3 Greedy Algorithm

In general, a greedy algorithm consists of two sets and three main functions
[63]:

Solution Set From which a solution is created.
Candidate Set Which represents all the possible elements that might com-

pose the solution.
Selection Function Which chooses the most promising candidate to be added

to the solution.
Value-Computing Function Which gives the value of a solution.
Solution Function Which checks whether a final solution has been reached.
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In the experiments, the initial solution set is a binary string with each bit set
to 0 and all the slices make up the candidate set; the value-computing function
evaluates the number of program points of current solution set; the selection
function chooses the slice that has the best contribution to the coverage value
of solution and the smallest overlap value, that is, the bigger the ratio of
increment of coverage and increment of overlap, the more chance the slice
is choosen; the solution function checks whether coverage value of current
solution has covered the whole program points in the program. The greedy
algorithm is a heuristic algorithm and not a search algorithm, but its results
can be compared to the others using the same fitness function.

3.4 Random Algorithm

The Random Algorithm generates the individuals (solutions) randomly. The
purpose of using the Random Algorithm is to measure the performance of the
other algorithms. Since a random search is unguided and therefore “unintel-
ligent”, it would be hoped that the guided search approaches and the greedy
algorithm would outperform it. The random algorithm is therefore included to
provide a base line, below which performance of the other algorithms should
not fall.

4 Empirical Study

An empirical study was conducted to investigate the first three research ques-
tions described in Section 1. The slicing data used in the empirical study
was collected by constructing the set of a possible backward slices (with
CodeSurfer) of each program’s System Dependence Graph (SDG) [44]. Slice
size is measured by counting vertices of the dependence graph, rather than
lines of code. The study concerns source codes of six open source programs,
written in C. The program sizes range is from 37 to 1,008 program points.
On the first sight, this may seem relatively small. However, the problem com-
plexity is determined by the number of sets of slices which ranges from 237 to
21008 which is a very large search space. Summary of information concerning
the programs studied can be formed in Table 2.
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(a) sum (b) hello

(c) informationflow (d) acct

(e) newton (f) tss

Fig. 5. Box plot of results for backward slicing in term of Fitness Function 1 defined
in Section 2.3. The results show that the greedy algorithm performs the best. The
low variance for the Hill Climbing algorithm (HC) suggests either a low order of
modality in the landscape or a multi-modal landscape with similar valued peaks.
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(a) sum (b) hello

(c) informationflow (d) acct

(e) newton (f) tss

Fig. 6. Box plot results for backward slicing in term of Fitness Function 2 defined
in section 2.3. The results confirm the result from Fitness Function 1 (presented in
Figure 5) that the greedy algorithm performs the best. The programs are presented
in increasing order of size (top-to-bottom, left-to-right), providing evidence that
the gap in performance between the greedy algorithm and the others increases with
program size. The low variance for the Hill Climbing Algorithm (HC) also replicates
the finding for Fitness Function 1.
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Programs LoC Program Point Size of Search Space Description

Sum 20 34 1.37× 1011 Numerical value calculation

Hello 43 76 7.55× 1022 Simple program, but more

complex than ‘hello world’

Inform- 109 176 9.57× 1052 Example of simple

ationflow information processing

Acct 681 546 2.30× 10164 Accounting package

Newton 819 998 2.67× 10300 Interpolated polynomial

that uses Newton’s method

Tss 896 1008 2.74× 10303 Three kinds of mathematical

interpolation function

Total 2,568 2,838 2.74× 10303

Table 2
The subject programs studied.

4.1 Which Algorithm Is the Best?

Each non-greedy algorithm was executed 100 times with randomly chosen
initial values (thus effectively sampling the space of possible start points). This
produces a set of 100 results, one for each execution. The results obtained for
some particular execution is determined by the random seed. The population
from which this sample of 100 execution comes, is thus the population of
random seeds. For the Greedy Algorithm, the execution results are the same
every time since the results are gained with ‘Greedy Strategy’, rather than
the random initial population.

Under the first fitness function (results presented in Figure 5), the performance
of the Greedy algorithm is the best except for the smallest program sum.
Moreover, it is observed that for the smaller programs (e.g. (a) and (b)) HC
performs better than either GA or Random. As program size increases (e.g.
(c)-(f)) the GA performs better, beating HC and Random. HC performs worse
on the larger programs suggesting that the HC landscape is too flat to easily
find maxima.

To determine the relative performance of these three algorithms (non greedy
algorithms), the Mann-Whitney and Wilcoxon test is applied to every pro-
gram. As mentioned above, 100 sample results from execution are gathered
for each program. For each program, the difference between the set of samples
for each algorithm is significant due to Asymp. Sig. (2-tailed)=.000 and Exact
Sig.(2-tailed)=.000) at p = .05.
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Under the second fitness function (results presented in Figure 6), similar char-
acteristics can be observed to the first fitness function. The Greedy algorithm
outperforms the others except for the smallest program sum. The GA per-
forms the best of the non-greedy algorithms and the HC algorithm does not
improve on Random except in the smallest program (a). In the same way, the
Mann-Whitney and Wilcoxon test at p = .05 applied in each program finds
that Asymp. Sig. (2-tailed)=.000 and Exact Sig.(2-tailed)=.000 represent that
the difference of values of GA, Random and HC is statistically significant in
each program.

In summary, the GA performs better as program size increases with the HC
algorithm having the opposite characteristic. Random is beaten by GA in
all programs but by the HC algorithm only in small programs. The Greedy
algorithm beats the other 3 algorithms in the most situations. Furthermore,
Table 3 shows the execution time of each algorithm for each program, which
suggests that the Greedy algorithm also has the best performance among 4
algorithms.

Programs Greedy GA HC Random

F1 F2 F1 F2 F1 F2 F1 F2

Sum 11 11 15121 15640 14902 10985 14525 14859

Hello 15 15 15611 16471 17760 15484 13250 16096

Information- 20 20 16611 17019 15531 14953 16353 16768

Acct 46 46 30676 42007 31553 21937 27256 36534

Newton 139 139 109122 166521 112229 97794 99665 161412

Tss 140 140 119124 183091 127693 103511 111678 171653
Table 3
Execution time of each algorithm for each program in condition of the machine—
Ram 512M; Pentium4 3.2GHz. F1 and F2 represent the fitness function (1) and (2)
defined in section 2.3, respectively; the measurement is based upon the milli second.

4.2 How similar are the results for each algorithm?

This section presents two approaches to compare the results produced by each
algorithm for similarity. The first is a purely visual representation, used to
provide visual evidence for similarity. The second is a quantitative assessment
of the similarity of results. The findings suggest that the algorithms find similar
(though not identical) solutions. This level of agreement, coupled with the low
variance in hill climbing results provides evidence that the landscape is either
uni-modal or multi-modal but with many local optima of similar value to each
other, with the result that it is possible for search algorithms to find solutions
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of reasonable quality.

4.2.1 Qualitative Similarity Analysis

Figures 7 to 12 provide a visualization of the results of the search. The goal of
visualizing the optimal slicing set is to display the result obtained. Thus, the
figures show optimal slicing set with search algorithms, rather than the entire
set of slices for all the program points.

The X axis represents the slicing criteria, ordered by their relative location
in the source code: earlier source code locations appear closer to the left side.
The Y axis represents the program points belonging to the corresponding slice.
As can be seen from these figures, the results produced by each algorithm are
strikingly similar (Especially for the newton and tss, the image appears almost
the same) but not identical.

In the Figures 11 and 12, it can be seen that there is a greater degree of
similarity in the three heuristic methods (greedy, GA and HC), while the
Random algorithm appears to produce rather less ‘coherent image’. On the
other hand, the greedy algorithm is apt to find the optimal slicing set which
has less slices than the GA, HC and random algorithm (except for the sum
due to so small program points in the program–too tiny). That is, the greedy
can find optimum solutions which have smallest slices in the slicing set, such
that the decomposition of program has the simplest form.

Moreover, GA and HC perform better than random algorithm, which can
be observed from Figures 5 and 6(also from the empirical study in section
4.1), since GA and HC always try to cover with the program points in the
program as many as possible, whereas the random algorithm has the form of
less coverage–less coherent image. However, GA sometimes finds the slicing
set which has more overlap than three others. Of course, these observations
are qualitative and of illustrative value only. The next subsection provides a
quantitative similarity analysis.

4.2.2 Quantitative Similarity Analysis

Table 4 presents results concerning the quantity of agreement between each
pair of results for each algorithm. The calculation used for this is: 100· ∩(A,B)

Min(A,B)
.

This represents, as a percentage, the degree of agreement between two sets
A and B. If the sets are identical then agreement is 100%; if there is no
intersection then agreement is 0%. The percentage agreement measures the
size of the intersection between the two sets relative to the size of the smaller
of the two. Therefore, it is a measure of the degree to which the maximum
possible intersection size is achieved.
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(a) Greedy (Fitness Value = 88)
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(b) GA (Fitness Value = 88)
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(c) HC (Fitness Value = 88)
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(d) Random (Fitness Value = 87)

Fig. 7. Visualized results for backward slicing based on Fitness Function 1 with the
program sum. The GA produces smallest results for this very small program.
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(a) Greedy (Fitness Value = 92)
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(b) GA(Fitness Value = 90)
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(c) HC (Fitness Value = 92)
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(d) Random (Fitness Value = 91)

Fig. 8. Visualized results for backward slicing based on Fitness Function 1 with the
program hello.
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(a) Greedy (Fitness Value = 92)
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(b) GA (Fitness Value = 90)
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(c) HC (Fitness Value = 90)
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(d) Random (Fitness Value = 90)

Fig. 9. Visualized results for backward slicing based on Fitness Function 1 with
the program informationflow. Note that the greedy algorithm produces the best
results and also achieves this with the fewest slices.
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(a) Greedy (Fitness Value = 84)

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160 180 200

Program Slicing
P
r
o
g
r
a
m
 
P
o
i
n
t

(b) GA (Fitness Value = 80)
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(c) HC (Fitness Value = 78)
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(d) Random(Fitness Value = 77)

Fig. 10. Visualized results for backward slicing based on Fitness Function 1 with
the program acct. The greedy algorithm produces the best results with the fewest
slices.
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(a) Greedy (Fitness Value = 77)
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(b) GA (Fitness Value = 76)
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(c) HC (Fitness Value = 68)
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(d) Random (Fitness Value = 66)

Fig. 11. Visualized results for backward slicing based on Fitness Function 1 with the
program newton. Note the image for the Random search appears to be a ‘grainy’
version of that for the others and that the greedy algorithm result contains fewer
slices. There are more similarity in the intelligent searches; random produces a ‘poor
imitation’.
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(a) Greedy (Fitness Value = 88)
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(b) GA (Fitness Value = 50)
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(c) HC (Fitness Value = 47)
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(d) Random (Fitness Value = 43)

Fig. 12. Visualized results for backward slicing based on Fitness Function 1 with
the program tss. Note the image for the Random search appears to be a ‘grainy’
version of that for the others and that the greedy algorithm result contains fewer
slices.
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By comparing how many identical slices there are in each pair of slicing sets,
it is possible to measure result similarity. That is, the Table 4 indicates the
level of agreement the different search techniques share as to their choices of
optimal solution.

4.3 Visual Evidence for the Presence for Clones

Clone detection is referred to as techniques to detect duplicated code in pro-
grams. Clone detection techniques have been widely investigated and can be
roughly classified into three categories: string-based [28,45], token-based [6,46],
parse-tree based [9,50,58], which have different performance with refactoring
tools to remove duplicated code [70]. Moreover, Komondoor [49] and Krinke
[51] use dependence to identify clone code.

The visualization of results yields an unexpected but interesting finding related
to the presence of clones. Notice the repeated patterns in Figures 13, 14, 15
and 16. There are two kinds of repeated patterns. The first kind are examples
of sharing the same program points. In these patterns, the same vertical image
is replicated across the X axis, for example, the middle section of Figure 10
(b) where the number of program points is between 200 and 300. This is an
example of a situation where a whole series of slices share the same subset of
nodes in their slices.

However, there are also some potentially more interesting repeated images.
Those are not dependence clusters, because they do not share a set of y axis
points. For example, consider the four blocks in Figures 14 and 16 (A, B,
C and D). These images denote patterns of dependence that are repeated in
different sections of the code. For instance, if one scans the program newton,
the code related to similar blocks in Figure 14 is shown in the Figure 13. The
corresponding four blocks of the codes compute the four interpolated coeffi-
cients with the different inputs. For the code of tss as shown in Figure 15,
the corresponding blocks A, B, C and D in Figure 16 represent 4 functions
which compute three kinds of mathematical interpolation in different param-
eters, respectively. In each group of 4 blocks of codes, a similar functionality
emerges.

Inspection of the code quickly reveals that the four chunks of code are clones.
However, they are not identical. Nonetheless, they have a similar dependence
structure which shows up in the visualisation. Because the search seeks to cover
the program, these similar figures occur at different program points they tend
to show up.

When these two groups of duplicate code are mapped to the visualization of
slicing sets shown in Figures 14 and 16 respectively, the corresponding blocks
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(a) Program1 sum.c

Algorithms Greedy Genetic H-Climbing Random

Greedy N/A 40 60 71

Genetic 40 N/A 50 29

H-Climbing 60 50 N/A 57

Random 71 29 57 N/A

(b) Program2 hello.c

Algorithms Greedy Genetic H-Climbing Random

Greedy N/A 71 91 80

Genetic 71 N/A 79 71

H-Climbing 91 79 N/A 82

Random 80 71 82 N/A

(c) Program3 informationflow.c

Algorithms Greedy Genetic H-Climbing Random

Greedy N/A 32 41 38

Genetic 32 N/A 48 61

H-Climbing 41 48 N/A 59

Random 38 61 59 N/A

(d) Program4 acct.c

Algorithms Greedy Genetic H-Climbing Random

Greedy N/A 28 34 32

Genetic 28 N/A 53 55

H-Climbing 34 53 N/A 56

Random 32 55 56 N/A

(e) Program5 newton.c

Algorithms Greedy Genetic H-Climbing Random

Greedy N/A 54 56 57

Genetic 54 N/A 58 61

H-Climbing 56 58 N/A 59

Random 57 61 59 N/A

(f) Program6 tss.c

Algorithms Greedy Genetic H-Climbing Random

Greedy N/A 38 36 32

Genetic 38 N/A 49 57

H-Climbing 36 49 N/A 51

Random 32 57 51 N/A

Table 4
Comparison of slicing sets between the programs of the source code, 100 · ∩(A,B)

Min(A,B)
.
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are denoted by a similar shape, which suggests the presence of clones. Consider
the program Newton as an illustrated example. The program computes the
outputs of four interpolated coefficients with the different inputs, and the
computation of each coefficient is dependent on a corresponding block of code.
The code for each of the four is very similar. The information can be captured
with visualization of slices of the set of some program points contributing to
computation of the coefficients.

This is interesting and may suggest applications for search based slicing in
clone detection. However, this remains a topic for future work, as clone detec-
tion is not the focus of the present paper.

4.4 Flexibility of the Framework

This paper introduces the general framework that applying the Search Based
Software Engineering theory to Program Slicing looks for the interesting De-
pendence Structures in the source code. The authors define the fitness function
that can decompose the program into a slicing set in which the overlaps might
be minimum. This is only an illustrated example to demonstrate the possible
application of the framework. In fact, search based slicing could be some other
potential applications in source code analyses. The following section will in-
troduce three feasible applications with this framework and researchers might
define different fitness functions according to the specific purposes for different
problems.

4.4.1 Splitting/Refactroing functions/procedures to improve cohesion

In general, a function (or procedure) in a program independently computes
one or multi results and return outputs by defining some processing elements
[68]. Functions have different cohesion levels, which determine the readability,
testability, and maintainability of software in terms of the relationship between
these processing elements. High cohesion is usually considered to be desirable
[14,2]. According to the definition of Ott and Thuss [68], cohesion levels can
be divided into 4 classifications: low, control, data and function as depicted in
Figure 17.

The goal of splitting a function is to reconstruct the original function which has
the lower cohesion into the set of subfunctions which all have higher cohesion,
without changing original semantics. The hope is that each smaller function
is more reusable and robust.

The low level suggests several distinct unrelated processing elements; the con-
trol level case is similar to the low level except that processing elements is all
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log_file("***newtoncoefficient\n number=6：**********\n"); 

 strcat(str_tmp1,"\n independent variable x："); 

 strcat(str_tmp2,"\n f(x)："); 

 strcat(str_tmp3,"\n newton N(x)："); 

 for(i = 0;i <= 5 ; i ++) 

 { 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  sprintf(str_vtmp,"%f ",x1[i]); 

  strcat(str_tmp1,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  sprintf(str_vtmp,"%f ",y1[i]); 

  strcat(str_tmp2,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  memset(&str_tt,0,sizeof(str_tt)); 

  memset(&str_new,0,8192); 

  if(i != 0){ 

  for(j = i  ; j > 0 ; j --) 

  { 

      memset(&str_tt,0,sizeof(str_tt)); 

      if(x1[j-1] <0) 

           sprintf(str_tt,"*(x + %f)",((-1.0)*x1[j-1])); 

      else sprintf(str_tt,"*(x - %f)",x1[j-1]); 

      strcat(str_new,str_tt); 

  } 

  } 

  if (i == 0) sprintf(str_vtmp,"%f ",n1[i]); 

  else { 

   if(n1[i]>0) sprintf(str_vtmp," + %f " , n1[i]); 

   else sprintf(str_vtmp," %f " , n1[i]); 

  } 

  strcat(str_vtmp,str_new); 

  strcat(str_tmp3,str_vtmp); 

 } 

(a) Block A

log_file("\n*****the number=11：*****\n\n"); 

 memset(&str_tmp1,0,sizeof(str_tmp1)); 

 memset(&str_tmp2,0,sizeof(str_tmp2)); 

 memset(&str_tmp3,0,sizeof(str_tmp3)); 

 strcat(str_tmp1,"  independent variable x："); 

 strcat(str_tmp2,"\n f(x)："); 

 strcat(str_tmp3,"\nnewton N(x)："); 

 for(i = 0;i <= 10 ; i ++) 

 { 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  sprintf(str_vtmp,"%f ",x2[i]); 

  strcat(str_tmp1,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  sprintf(str_vtmp,"%f ",y2[i]); 

  strcat(str_tmp2,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  memset(&str_tt,0,sizeof(str_tt)); 

  memset(&str_new,0,8192); 

  if(i != 0){ 

  for(j = i  ; j > 0 ; j --) 

  { 

      memset(&str_tt,0,sizeof(str_tt)); 

      if(x2[j-1] <0) 

           sprintf(str_tt,"*(x + %f)",((-1.0)*x2[j-1])); 

      else sprintf(str_tt,"*(x - %f)",x2[j-1]); 

      strcat(str_new,str_tt); 

  } 

  } 

  if (i == 0) sprintf(str_vtmp,"%f ",n2[i]); 

  else { 

   if(n2[i]>0) sprintf(str_vtmp," + 

   else sprintf(str_vtmp," %f " ,  

  } 

  strcat(str_vtmp,str_new); 

  strcat(str_tmp3,str_vtmp); 

 } 

(b) Block B
log_file("\n********the number=16：******\n\n"); 

 memset(&str_tmp1,0,sizeof(str_tmp1)); 

 memset(&str_tmp2,0,sizeof(str_tmp2)); 

 memset(&str_tmp3,0,sizeof(str_tmp3)); 

 strcat(str_tmp1," independent variable x："); 

 strcat(str_tmp2,"\n f(x)的："); 

 strcat(str_tmp3,"\nnewton N(x)："); 

 for(i = 0;i <= 15 ; i ++) 

 { 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  sprintf(str_vtmp,"%f ",x3[i]); 

  strcat(str_tmp1,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  sprintf(str_vtmp,"%f ",y3[i]); 

  strcat(str_tmp2,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  memset(&str_tt,0,sizeof(str_tt)); 

  memset(&str_new,0,8192); 

  if(i != 0){ 

  for(j = i  ; j > 0 ; j --) 

  { 

      memset(&str_tt,0,sizeof(str_tt)); 

      if(x3[j-1] <0) 

           sprintf(str_tt,"*(x + %f)",((-1.0)*x3[j-1])); 

      else sprintf(str_tt,"*(x - %f)",x3[j-1]); 

      strcat(str_new,str_tt); 

  } 

  } 

  if (i == 0) sprintf(str_vtmp,"%f ",n3[i]); 

  else { 

   if(n3[i]>0) sprintf(str_v   

                        else sprintf(str_vtmp," %f " , n3[i]); 

  } 

  strcat(str_vtmp,str_new); 

  strcat(str_tmp3,str_vtmp); 

 } 

(c) Block C

log_file("\n**********the number=21：*************\n\n"); 

 memset(&str_tmp1,0,sizeof(str_tmp1)); 

 memset(&str_tmp2,0,sizeof(str_tmp2)); 

 memset(&str_tmp3,0,sizeof(str_tmp3)); 

 strcat(str_tmp1," independent variable x："); 

 strcat(str_tmp2,"\n f(x)："); 

 strcat(str_tmp3,"\nnewton N(x)："); 

 for(i = 0;i <= 20 ; i ++) 

 {memset(&str_vtmp,0,sizeof(str_vtmp)); 

 sprintf(str_vtmp,"%f ",x4[i]); 

 strcat(str_tmp1,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

 sprintf(str_vtmp,"%f ",y4[i]); 

 strcat(str_tmp2,str_vtmp); 

  memset(&str_vtmp,0,sizeof(str_vtmp)); 

  memset(&str_tt,0,sizeof(str_tt)); 

  memset(&str_new,0,8192); 

 if(i != 0){ 

 for(j = i  ; j > 0 ; j --) 

 {memset(&str_tt,0,sizeof(str_tt)); 

  if(x4[j-1] <0) 

  sprintf(str_tt,"*(x +                                      

         %f)",((-1.0)*x4[j-1])); 

  else sprintf(str_tt,"*(x -%f)",x4[j-1]); 

  strcat(str_new,str_tt); 

  if (i == 0)  

       sprintf(str_vtmp,"%f ",n4[i]); 

     else {if(n4[i]>0)  

         else sprintf(str 

  } 

  strcat(str_vtmp,str_new); 

  strcat(str_tmp3,str_vtmp); 

 } 

(d) Block D

Fig. 13. clones present in the program newton

26



Fig. 14. Clone detection to newton

void  TSS1(float arr_low1[5],float arr_up1[5],float d1[6],float arr_res1[6]) 

{       int k; 

        int arr_diag[6] = {2,2,2,2,2,2}; 

        float arr_q[6] ; 

        float arr_y[6]; 

        float arr_p[5]; 

        arr_q[0]= arr_diag[0]; 

        arr_y[0]= d1[0]; 

        for(k = 2;k <= 6;k ++) { 

        arr_p[k-2]= arr_low1[k-2]/arr_q[k-2]; 

        arr_q[k-1]= arr_diag[k-1]-arr_p[k-2]*arr_up1[k-2]; 

        arr_y[k-1]= d1[k-1]-arr_p[k-2]*arr_y[k-2]; } 

        arr_res1[5]= arr_y[5]/arr_q[5]; 

        for(k = 6 - 2 ;k >= 0;k --) { 

        arr_res1[k]=(arr_y[k]-arr_up1[k]*arr_res1[k+1])/arr_q[k];} 

        return;} 

(a) Block A

void  TSS2(float arr_low2[10],float arr_up2[10],float d2[10],float arr_res2[10]) 

{       int k; 

        int arr_diag[11] = {2,2,2,2,2,2,2,2,2,2,2}; 

        float arr_q[11] ; 

        float arr_y[11]; 

        float arr_p[10]; 

        arr_q[0]= arr_diag[0]; 

        arr_y[0]= d2[0]; 

        for(k = 2;k <= 11;k ++) { 

        arr_p[k-2]= arr_low2[k-2]/arr_q[k-2]; 

        arr_q[k-1]= arr_diag[k-1]-arr_p[k-2]*arr_up1[k-2]; 

        arr_y[k-1]= d1[k-1]-arr_p[k-2]*arr_y[k-2]; } 

        arr_res2[5]= arr_y[10]/arr_q[10]; 

        for(k = 11 - 2 ;k >= 0;k --) { 

        arr_res2[k]=(arr_y[k]-arr_up2[k]*arr_res2[k+1])/arr_q[k];} 

        return;} 

(b) Block B

void  TSS3(float arr_low3[15],float arr_up3[15],float d3[16],float arr_res3[16]) 

{      int k; 

        int arr_diag[16] = {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; 

        float arr_q[16] ; 

        float arr_y[16]; 

        float arr_p[15]; 

        arr_q[0]= arr_diag[0]; 

        arr_y[0]= d3[0]; 

        for(k = 2;k <= 16;k ++)   { 

        arr_p[k-2]= arr_low3[k-2]/arr_q[k-2]; 

        arr_q[k-1]= arr_diag[k-1]-arr_p[k-2]*arr_up3[k-2]; 

        arr_y[k-1]= d3[k-1]-arr_p[k-2]*arr_y[k-2]; } 

        arr_res3[15]= arr_y[15]/arr_q[15]; 

        for(k = 16 - 2 ;k >= 0;k --) { 

        arr_res3[k]=(arr_y[k]-arr_up3[k]*arr_res3[k+1])/arr_q[k];} 

        return;} 

(c) Block C

void  TSS4(float arr_low4[20],float arr_up4[20],float d4[21],float arr_res4[21]) 

{      int k; 

        int arr_diag[21] = {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}; 

        float arr_q[21] ; 

        float arr_y[21]; 

        float arr_p[20]; 

        arr_q[0]= arr_diag[0]; 

        arr_y[0]= d4[0]; 

        for(k = 2;k <= 21;k ++) { 

        arr_p[k-2]= arr_low4[k-2]/arr_q[k-2]; 

        arr_q[k-1]= arr_diag[k-1]-arr_p[k-2]*arr_up4[k-2]; 

        arr_y[k-1]= d4[k-1]-arr_p[k-2]*arr_y[k-2];} 

        arr_res4[20]= arr_y[20]/arr_q[20]; 

        for(k = 21 - 2 ;k >= 0;k --) { 

        arr_res4[k]=(arr_y[k]-arr_up4[k]*arr_res4[k+1])/arr_q[k];} 

        return;} 

(d) Block D

Fig. 15. clone codes in tss
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Fig. 16. Clone detection to tss
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Fig. 17. Four classifications of function cohesion. The A, B and C represent the
processing elements; A1, A2 and A3 represent the processing elements are all in the
same control block such as if , for or while.
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Fig. 18. The results of splitting or refactoring the functions. En and Re represent
subfunction entry and return value, respectively; Fa and Fb represent function call-
ing sites to subfunctions of processing element A and B, respectively. Note that the
new subfunctions in (b) all includes control statements in which block A1, A2 and
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dependent on some control statements. In this situation, search approaches
can find several sets of slices, each of which represents a processing element,
thereby in condition of no overlap or minimum overlap (or only control state-
ments) allowing the function to be split out into subfunctions, hopefully with
higher cohesion levels. The results of splitting the function are shown in Figure
18 (a) and (b). For the data level, there are two cases. Figure 17 (c) suggests
that the computation of the processing elements B and C depend upon the
results of the element A. This function also can be divided into two subfunc-
tions by putting the element A into each subfunction computing B and C in
the Figure 18 (c).

On the other hand, The Figure 17 (d) and (e) show ’non-split-function’ cases.
However, search approaches can look for several sets of slices corresponding
to the processing elements A, B in the subfigure (d) and A in the subfigure
(e). In this situation, a set/sets of slices representing the processing element
A and/or B can be extracted from the functions into a new subfunction and
position of the A and/or B can be replaced by function calling. The results of
refactoring the function are shown in Figure 18 (d) and (e).

4.4.2 Parallelism Computation

Parallelizability can be measured as the number of slices which have a pair-
wise overlap less than a certain threshold. A high degree of parallelizability
would suggest that assigning a processor to execute each slice in parallel could
give a significant program speed-up [77].

Search approaches can seek to find specific combinations of slices which can
reach such a threshold. Therefore, the fitness function can be described as:

“Seek to search for a set of slices Slice1, ..., Slicen, in which the overlap of
each pairwise is all less than the parameter of parallelism (to be defined in
terms of the specific problem), such that the influences among the slices are
least when each slice is given a separate processor.”

4.4.3 ‘The Chain of Slices’ for Program Comprehension

Normally, some slices in a program have overlaps, other than complete ’inde-
pendence’. Especially, some slices could completely include the others or some
slices are identical, for example, in the same dependence cluster [11]. There-
fore, search approaches could look for several sets of slices, in each of which
bigger slices can cover the smaller one, which is like a set of a chain of slices.

Therefore, the fitness function can be described as:
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“Seek to search for a set of sets of slices {S1, ..., Sn} containing the whole
program, in which S1, ..., Sn each represent a set of slices Slice1, ..., Slicem

which are chosen by the criteria: Slicei ⊂ Slicei+1. That is:
∀x ∈ Slicei ⇒ x ∈ Slicei+1 (0 < i < m)”

This idea is to find out some inclusive relationship amongst slices such that
it can contribute to comprehension for understanding the program. When
maintainers want to catch on the program developed by other programmers,
‘the chain’ is helpful for comprehending the program structure step by step
by understanding a program from the smallest slice to biggest one.

5 Further Empirical Study

In our previous experiments in Section 4, all 6 programs studied were relatively
small since the purpose was to demonstrate that the SBSE framework can be
applied to program slicing, to locate the interesting dependence structures in
source code. At the same time, it was found that the Greedy algorithm was
the best of the 4 algorithms in terms of its fitness function value, its execution
time and the number of the chosen slices in the solution it finds.

Our further empirical study, reported below, applies the Greedy algorithm
to 6 different larger C programs as shown in Table 5. These programs are
all open source, drawn from the ‘Gnu’ website (ftp://ftp.gnu.org/gnu). The
vertices are the program points in the SDG [43] and the slices are based on
contributions from source code only. This is because, for the decomposition
problem, the real concern is with the program exclusive of its library files and
other program points from CodeSurfer representations. The purpose here is
to find out how efficient the Greedy algorithm is in its decomposition of the
program into a set of slices.

In Table 6, the percentage indicates the ratio of the size of the optimal set of
slices to the size of the whole set of slices. The execution time shows running
time to decompose the whole program. For each program, each function is
decomposed into a set of slices using the Greedy algorithm. Figure 19 shows
the frequency distributions of the percentage of the functions decomposed in
each program.

As this figure shows, the majority of decomposed functions falls into the range
where the percentage is lower than 25%. Many of them lie between 6% and
20% and relatively few are higher than 50%. This suggests that less than
one fifth of a program can usually be used to decompose the whole program
or function. Moreover, in Table 6, the percentage for the whole program also
suggests that fewer than 20% of the program points can be used to decompose
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(f) a2ps

Fig. 19. Frequency distributions of the percentage of decomposed functions. The X
axis is the percentage of the ratio of the size of the optimal set of slices to the size
of all slices in a function; the Y axis is the number of decomposed functions which
lie within the corresponding percentage ranges.
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Programs termutils2.0 acct6.3 space oracolo2 byacc1.9 a2ps4.1

Size (Loc) 6697 9536 9126 14326 6337 42600

Number of vertices 11037 21382 20556 20551 33022 43141

Number of slices 2952 5305 9887 8776 8046 17226

Number of functions 56 88 137 135 178 248
Table 5
Program descriptions.

Programs termutils2.0 acct6.3 space oracolo2 byacc1.9 a2ps4.1

Percentage 14 20 18 13 19 20

Execution time

of the program 6.7 44.0 126.4 105.0 140.4 1399.0

Execution time

of the functions 1.4 3.3 8.3 8.1 7.5 208.4
Table 6
Percentage and execution time. Percentage is the ratio of the optimal set of slices to
the set of all the slices in the whole program; execution time measured in seconds
was obtained from execution on a Pentium4 3.2GHz with 512Mb RAM.

the whole program, capturing the programs semantics in the transitive closure
of the dependencies of only one fifth of its program points.

In this empirical study, the non-Greedy algorithms are not considered. This
is because it was found earlier that the Greedy approach outperforms the
others. On the other hand, there are scalability issues for the Genetic, HC
and Random algorithms with large programs. For instance, our experiments
implement the 4 algorithms with the program space, a popular source code
that has 9,887 source code program points. Except for the Greedy Algorithm,
which runs in 126.4 seconds, the running times of the others are roughly 1
minute for each individual fitness function evaluation. That is, for both 100
populations and 100 generations, running times are about a week. This is
clearly impractical.

5.1 Redundancy

This section reports the results of an experiment which aims to establish the
extent to which redundancy in the slices affects the accuracy of decomposition.
Redundancy here refers to instances when slices are the same as others or are
completely included within others. Such slices are redundant because they will
not contribute the fitness function value; they could always be subsumed by
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Programs sum hello informationflow acct newton tss

Percentage 3.57 2.17 21.54 26.52 41.98 42.76

Programs termutils-2.0 acct-6.3 space oracolo2 byacc1.9 a2ps-4.1

Percentage 43.1 45.2 40.5 40.9 44.9 48.7
Table 7
Percentage of redundant slices. Slicing criteria are referred to as every program
point in the programs.

an alternative slice.

Possible ways in which such redundancy would likely affect our search algo-
rithms are as follows:

with the Greedy Algorithm: Firstly, where a slice is completely the same
as another one or completely included by another one, the algorithm selects
either one or the other (but not both). Secondly, even where slices are similar
as opposed to exactly the same or included in others, the ’Greedy Strategy’
enables the Greedy algorithm to take into consideration the extent of overlap
(as well as of the coverage) when selecting - or not selecting - a given slice.
Therefore, every slice chosen by the algorithm is one that will include the
greatest fitness improvement. That is, the ‘Greedy Strategy’ will not select
slices that are redundant.

with the GA and HC Algorithms: Although many identical or similar
pairs of slices are likely to be selected as the initial generation, the fitness
function values will gradually improve - through crossover and mutation (in
the GA), or consideration of neighbours (in the HC). That is, redundancy
will be filtered out as the algorithm progresses.

with the Random Algorithm: Redundancy could affect the algorithm’s
performance. However, the random algorithm is only considered as a base-
line to check the performance of the other algorithms, rather than as a
genuinely ‘intelligent’ search approach.

As the above analysis reveals, redundancy will not affect the value of fitness
function with the Greedy, Genetic and HC algorithms, but it could affect
overall execution times, especially when there are a lot of redundant slices in
the program.

Table 7 lists the percentage of redundant slices of the 12 programs in our
experiments. Redundancy is defined as the number of slices which are included
in others as a percentage of the number of all the slices in the program. As
shown in the figure, redundancy is prevalent in all 12 programs. It is suggested
that execution time could be improved by reducing the redundancy in the
source code. This is referred to as the further work.
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6 Related Work

The work reported here is related to work in three areas that the paper draws
together: set cover problems, decomposition slicing and Search Based Software
Engineering (SBSE). This section briefly reviews related work on each of these
three areas.

The set cover problem [31] is that of finding a minimally sized subset, σ of a set
of sets, Σ, such that the distributed unions of σ and Σ are identical. The idea
is that σ ‘covers’ the elements of Σ in the most economical manner. Though
the set cover problem is NP-hard, it has been shown that greedy algorithms
can provide good approximate answers [41]. This finding is also bourne out
here for the application of set cover to slice decomposition.

The closest work to that reported in the present paper is that of Leon et al.
[54], which considered minimum set cover in order to generate test cases by
filtering techniques. The primary difference to the work reported here is that
our set cover problem is also constrained by the need to reduce the overlap
between the sets in the solution and, of course, the application area for the
present paper is dependence analysis, not testing.

Gallagher introduced decomposition slicing, which captures all computation
on a given variable [32]. Its purpose is to form a slice-based decomposition for
programs through a group of algorithms. Decomposition slicing introduced a
new software maintenance process model such that the need for regression
testing can be eliminated. The idea is that changes to the decomposition
slice that do not effect the compliment can be performed safely. In this way,
the approach of limiting the side effects of software changes [33] has recently
been extended by Tonella [73] to provide a mechanism for comprehension and
impact analysis, using a formal concept lattice of slices.

The work reported here takes a different approach to decomposition. Rather
than focusing on a particular variable, the approach seeks to find sets of cri-
teria that partition the program. However, this was merely selected as one
illustrative example of the general approach of search based slicing. One at-
tractive aspect of this approach is the component-based nature of the search
criteria; the fitness function is all that need be changed to search for a different
set of slice properties.

The work reported here is an instance of Search Based Software Engineering
(SBSE). Search based techniques have been applied to many software en-
gineering activities from requirements engineering [5], project planning and
cost estimation [1,3,4,20,27,48] through testing [7,8,15,18,19,37,39,55,59,74],
to automated maintenance [16,30,38,61,62,64,71,72], service-oriented software
engineering [22], compiler optimization [24,25] and quality assessment [17,47].
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Although there has been much previous work on SBSE [29,39,57,62,74]. How-
ever, to the authors’ knowledge, this is the first application of SBSE to de-
pendence analysis.

In the last decade, several clone detection techniques have been investigated to
detect duplicated code in programs exceeding hundreds of thousands lines of
code: string-based [28,45], which is best suited for a first crude overview of the
duplicated code; token-based [46,6], which works best in combination with a
refactoring tool that is able to remove duplicated subroutines; parse-tree based
[50,58,9], works best in combination with more fine-grained refactoring tools
that work the statement level.

Moreover, Krinke [51] and Komondoor and Horwitz [49] introduce dependence-
based approach to the identification of clone code by looking for similar iso-
morphic subgraphs of Procedure Dependence Graphs(PDG). The former con-
structs isomorphic subgraphs by partitioning the edges and vertices into the
equivalence classes in terms of their PDG [44]. The latter constructs the simi-
lar subgraphs with backward and forward program slicing based on the PDG
which also is partitioned into equivalence classes according to the syntactic
structure of the statements and predicates of the program.

The observation of pictorial similarity in visualization of the optimal set of
slices in Section 4.3 indicates that search based techniques for finding depen-
dence patterns may also be useful in clone detection. More work is required
to evaluate this possibility.

7 Conclusions

This paper has introduced a general framework for search based slicing, in
which the principles of Search Based Software Engineering are used to formu-
late a problem of locating dependence structures as a search problem.

The paper presented results from an instantiation of this general framework of
search based slicing, for the problem of program decomposition, presenting the
results of a case study that evaluated the application of Greedy, Hill Climbing
and Genetic Algorithms for both performance and similarity of results. Based
upon the greedy algorithm, the best of 4 algorithms, further empirical study
is formed to explore how efficiently large programs and single function can be
decomposed.

The results indicate that the algorithms produce relatively consistent results
and that the greedy algorithm outperforms its rivals. The results also provide
the evidence that the landscape for the problem is either of low modality or
is multi-modal, but with similarly valued peaks. The results are encouraging,
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because they suggest that it is possible to formulate dependence analysis prob-
lems as search problems and to find good solutions in reasonable time using
this approach.
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