
SScchhooooll ooff PPhhyyssiiccaall SScciieenncceess aanndd EEnnggiinneeeerriinngg

MMSScc iinn AAddvvaanncceedd SSooffttwwaarree EEnnggiinneeeerriinngg

22000066

SSeeaarrcchh--bbaasseedd AApppprrooaacchheess ttoo

UUnnddeerrssttaannddiinngg PPrroojjeecctt MMaannaaggeemmeenntt

CChhooiicceess

PPrroojjeecctt RReeppoorrtt

bbyy

FFaahhiimm QQuurreesshhii

SSuuppeerrvviisseedd

bbyy

PPrrooffeessssoorr MMaarrkk HHaarrmmaann

11
sstt
 SSeepptteemmbbeerr 22000066

 I

ACKNOWLEDGEMENTS

I would like to express my gratitude to the following for their help and support

throughout the project.

First of all I am thankful to Allah Almighty who gave me strength and ability to

complete my MSc and this project. Without His will nothing is possible.

My dearest friend Ahmad Faruq Taraq who helped me and guided me at critical

stages of the project with his analytical skills and exceptional expertise. I am indebted

to him for his continuous support.

My lovely fiancé Sabin for her love, care and whole-hearted support.

My family – my father and mother and my all siblings for their confidence in me and

encouragement they provided at every stage.

Kiarash Mahdavi for his valuable assistance during initial phase of the project that

helped me define my project objectives.

Professor Mark Harman for his inspiring supervision, innovative ideas, valuable

advice and continuous motivation that made this project possible.

 II

ABSTRACT

Project managers always try to ensure that the project is completed in minimum

possible time. Once breakdown and effort estimation of tasks is completed, next step

is allocation of tasks to the project teams. This is critical stage of the project which

determines the completion time of the project. An effective tasks allocation must

ensure both minimum completion time and maximum resource utilization. Such

decision making becomes difficult with the increase in project size. Also the

complexity of such problem increase in the presence of inter-related tasks.

Based on notion of search-based software engineering, this problem can be

categorized as search-based problem with no ideal solution. Heuristic techniques

prove to be effective for such problems in obtaining near optimal solution. Work has

been done in past to solve the problem of resource allocation using heuristic

techniques and the results obtained are encouraging. This project aims at extending

the work of solving project management problems using search-based approach.

While this project attempts to solve problem of efficient resource allocation, it also

addresses the issue of communication and its importance in a project. Project

managers tend to use estimation techniques that assume no communication takes

place among team members and thus confuse effort with progress. This leads to

false assumption that increase in human resource will result in reduction of

completion time.

Brook’s law is studied and various experiments are carried out, based on Brook’s law

and its variations, in this project to understand and address this problem of

communication and enable project managers to better understand the relationship

between time and human resource in presence of complex inter-related tasks. The

aim is to provide project managers with techniques that can provide more accurate

estimates and allow them to make realistic assumptions about the project progress

and completion time to be achieved.

Results proved that this technique outperforms human decision making as far as

resource allocation is concerned and allows better human resource utilization by

allocating tasks more uniformly resulting in lesser completion time. Results from

Brook’s law experiments proved that communication requires significant amount of

effort and it must be ensured that proper communication level must be maintained in

order to complete tasks on time.

 III

TTAABBLLEE OOFF CCOONNTTEENNTTSS

1. INTRODUCTION…………………………………………………………………………. 1

1.1 Objective………………………………………………………………………………... 1

1.2 Road Map……………………………………………………………………………….. 1

2. LITERATURE REVIEW…………………………………………………………………. 3

2.1 Related Work…………………………………………………………………………… 3

2.1.1 A Robust Search Based Approach to Project Management………………... 3

2.1.2 Efficient Resource Allocation Using Search-based Techniques……………. 4

2.2 Brook’s Law and The Mythical Man-Month………………………………………. 4

2.2.1 The Man-Month………………………………………………………………….. 4

2.2.2 Mathematical Representation………………………………………………….. 6

2.3 Bin Packing Problem…………………………………………………………………. 7

2.4 Heuristic Algorithms………………………………………………………………….. 7

2.4.1 Genetic Algorithm………………………………………………………………... 8

2.4.2 Hill Climbing………………………………………………………………………. 9

2.4.3 Simulated Annealing…………………………………………………………….. 10

3. RESEARCH QUESTIONS AND EXPERIMENT DESIGN…………………………... 12

3.1 Questions……………………………………………………………………………….. 12

3.1.1 Question 1………………………………………………………………………… 12

3.1.2 Question 2………………………………………………………………………… 13

3.1.3 Question 3………………………………………………………………………… 13

3.1.4 Question 4………………………………………………………………………… 14

3.1.5 Question 5………………………………………………………………………… 14

3.1.6 Question 6………………………………………………………………………… 15

3.1.7 Question 7………………………………………………………………………… 15

3.2 Motivation for Experimentation…………………………………………………….. 16

4. IMPLEMENTATION……………………………………………………………………… 17

4.1 Fitness Function………………………………………………………………………. 17

4.2 Algorithm……………………………………………………………………………….. 17

4.3 Functions……………………………………………………………………………….. 19

5. TESTING AND RESULTS………………………………………………………………. 22

5.1 First Phase Testing…………………………………………………………………… 22

5.1.1 Completion Time…………………………………………………………………. 23

5.1.2 Work Packages Allocation……………………………………………………… 23

5.1.3 Effort Distribution………………………………………………………………… 24

5.2 Second Phase Testing……………………………………………………………….. 26

5.2.1 MMC………………………………………………………………………………. 27

5.2.2 Project Completion Time………………………………………………………... 27

5.2.3 Significance of Results………………………………………………………….. 30

 IV

5.2.4 Resource Allocation/Effort Distribution……………………………………….. 31

5.2.5 Summary of Results……………………………………………………………... 33

6. FUTURE WORK…………………………………………………………………………. 35

7. CONCLUSION……………………………………………………………………………. 36

8. REFERENCES…………………………………………………………………………… 38

9. GLOSSARY………………………………………………………………………………. 39

10. APPENDIX A…………………………………………………………………………... 40

10.1 Source Code…………………………………………………………………………. 40

10.1.1 Code Version 1.0……………………………………………………………… 40

10.1.2 Code Version 2.0……………………………………………………………… 45

11. APPENDIX B……………………………………………………………………………. 56

11.1 Program Output……………………………………………………………………… 56

11.1.1 Version 1.0 Program Output………………………………………………….. 56

11.1.2 Version 2.0 Program Output………………………………………………….. 57

12. APPENDIX C……………………………………………………………………………. 58

12.1 Input File………………………………………………………………………………. 58

12.1.1 Input File Version 1.0………………………………………………………….. 58

12.1.2 Input File Version 2.0………………………………………………………….. 59

13. APPENDIX D……………………………………………………………………………. 60

13.1 Test Data………………………………………………………………………………. 60

 V

LLIISSTT OOFF TTAABBLLEESS AANNDD FFIIGGUURREESS

1. TABLES

Table 1: Summary of Second Phase Testing Results…………………………………………... 34

2. FIGURES

Figure 1: Time versus Number of Workers-Perfectly Partitioned Tasks……………………… 5

Figure 2: Time versus Number of Workers-Unpartitioned Tasks……………………………… 5

Figure 3: Time versus Number of Workers-Partitionable Task with communication………… 5

Figure 4: Time versus Number of Workers-Tasks with complex interrelationships………… 6

Figure 5: Control Flow Diagram…………………………………………………………………… 18

Figure 6: Completion Time achieved by Hill Climbing Algorithm……………………………… 23

Figure 7: Actual versus Algorithm-Work Packages Allocation………………………………… 24

Figure 8: Actual versus Algorithm-Effort Distribution among Teams………………………… 25

Figure 9: Completion Time achieved by Simulated Annealing………………………………… 25

Figure 10: Completion Time achieved by Random Search…………………………………… 26

Figure 11: MMC versus Project Completion Time-N(N-1)/2 Strategy………………………… 27

Figure 12: MMC versus Project Completion Time-N Strategy………………………………… 28

Figure 13: MMC versus Project Completion Time-Log(N) Strategy…………………………… 29

Figure 14: MMC versus Project Completion Time-All Strategies……………………………… 30

Figure 15: MMC versus Effort Distribution-N(N-1)/2 Strategy………………………………… 31

Figure 16: MMC versus Effort Distribution-N Strategy………………………………………… 32

Figure 17: MMC versus Effort Distribution-Log(N) Strategy…………………………………… 33

 1

1. INTRODUCTION

Most large scale software projects involve several teams and numerous individual work

packages. These work packages are derived from Work Breakdown Structure (WBS).

The optimal allocation of work packages to teams is an important problem and becomes

more difficult as the size of the project increases. Such a resource allocation problem is

an example of a bin packing problem, the solution of which is NP-hard and for which,

heuristic algorithms are known to be effective[1,2,3].

Apart from efficient resource allocation another major problem faced by project

managers while meeting the deadlines of the project is the use of estimation techniques

that fallaciously confuse effort with progress, hiding the assumption that men (human

resource) and months are interchangeable. This leads to a false assumption that

increasing the human resources will directly reduce the completion time of the project.

As a result when a project falls behind schedule project managers add more people to

the project in an attempt to improve the progress. The result is more delay in the project.

This happens due to the fact that project managers fail to understand the complex

relationship between human resource and time in presence of inter-related tasks.

There is a need for technique that allows optimization of resource allocation in order to

reduce the completion time of the project. Also there is need to understand the

relationship between human resource and time in presence of complex inter-related

tasks to prevent situations which might result in delay of the projects.

1.1 Objective

This project aims to achieve two main objectives:

• Optimization of resource allocation using search based techniques

• Study the effect of Brook’s law in order to understand the relationship between

men (human resource) and months (time) in presence of inter-related tasks.

1.2 Road Map

The document is divided into the following sections:

• Literature review gives a detailed review of related research papers and

explanation of concepts which act as basis of this project.

CChhaapptteerr 11:: IInnttrroodduuccttiioonn

 2

• Research Questions and Experiment Design discusses the research questions to

be answered by this project and how experiments will be designed to answer

those questions

• Implementation chapter discusses in detail the implementation phase of the

project which includes design and explanation of the algorithm. The chapter also

discusses some main methods defined in the code to provide better

understanding of the implementation.

• Testing and Results explains how testing was performed and what were the

results. The analysis of results is also presented in this chapter.

• Future work suggests some future directions in which this work can be carried

forward.

• Conclusion sums up what has been achieved and discovered by this project.

• There is glossary of terms and appendices of code and other details at the end of

the report.

CChhaapptteerr 11:: IInnttrroodduuccttiioonn

 3

2. LITERATURE REVIEW

In this chapter we discuss the related research work done in past as well as explain

various concepts which provide basis of this project.

2.1 Related Work

2.1.1 A Robust Search Based Approach to Project Management in Presence of

Abandonment, Rework, Error and Uncertainty

This paper addresses the problem of uncertainty, abandonment and rework of work

packages by combing genetic algorithms with queuing simulation model in a robust

manner. A tandem genetic algorithm is used to search for the best sequence in which to

process work packages and the best allocation of staff to project teams. The simulation

model, that computes the project estimated completion date, guides the search. The

possible impacts of rework, abandonment and erroneous or uncertain initial estimates

are characterised by separate error distribution. The paper presents results from the

application of these techniques to data obtained from large scale commercial software

maintenance project.

The search-based approach suggested in the paper uses two GAs in tandem. The first

GA aims to find optimal solution to the problem of determining the ideal order in which to

present work packages to the process. The second GA aims to find a good allocation of

staff to project teams to maximize the throughput for the WP ordering found by the first

GA. The overall optimization process is iterative; the results of the second GA are fed

back into the first GA, which attempts to fine tune the optimisation of WP ordering. The

repetition continues until the search stabilises on a solution.

Once an optimal solution is found, a sensitivity analysis is performed to model the effect

of i) uncertainty in the effort estimation, ii) abandonment, and iii) rework.

An empirical study is proposed in the paper based on the results obtained after applying

the suggested technique on real life project. This study aims at defining a near optimal

project staffing and scheduling for maintenance activities of WPs coming from the

project.

This paper emphasises on effect of abandonment and rework of work packages on

progress of the project which result in erroneous estimates and uncertainty. Thus the

paper suggests a robust approach that is not affected by abandonment or rework of

work packages.

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 4

2.1.2 Search-based Techniques for Optimizing Software Project Resource

Allocation

This paper evaluates three optimization techniques namely hill climbing, simulated

annealing and genetic algorithm in order to optimize resource allocation among project

teams. Each technique is applied to two very different encoding strategies. Each

encoding represents the way in which the work packages of the overall project are to be

allocated to teams of programmers.

Results obtained from evaluation prove that the overall difference between the three

approaches appear to be small whereas the scanning genome encoding was found to

outperform vector-based genome encoding.

2.2 Brook’s Law and the Mythical Man-Month

Brook’s law states that “adding more manpower to late software projects makes it

later”. The number of months of a project depends upon its sequential constraints. The

maximum number of men depends upon the number of independent subtasks. From

these two quantities one can derive schedules using different number of men and

months.

2.2.1 The Man-Month [4]

Man-Month (now referred to as person-months) is the unit of effort used in estimating

and scheduling. Cost does indeed vary as the product of number of men and the number

of months. Progress does not. Hence the man-month as a unit for measuring the size of

job is a dangerous and deceptive myth. It implies that man and months are

interchangeable.

Men and month are interchangeable commodities only when a task can be partitioned

among many workers with no communication among them. This is true of reaping wheat

or picking cotton but not true of programming.

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 5

Men

M
o
n
th
s

When a task cannot be partitioned because of sequential constrain, the application of

more effort has no effect on the schedule. The bearing of child takes nine months, no

matter how many women are assigned. Many software tasks have this characteristic

because of sequential nature of debugging.

Men

M
o
n
th
s

In tasks that can be partitioned but require communication among subtasks, the effort of

communication must be added to the amount of work to be done. Therefore the best that

can be done is somewhat poorer than even trade of men for months.

Men

M
o
n
th
s

Figure 1: Time versus number of workers- perfectly partitioned tasks

Figure 2: Time versus number of workers- unpartitioned tasks

Figure. 3: Time versus number of workers- partitionable task requiring communication

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 6

Effort required for intercommunication is calculated in the following manner. If each part

of the task must be separately coordinated with each other part, the effort increases as

n(n-1)/2. Three workers require three times as much pair wise intercommunication as

two; four requires six times as much as two. If moreover, there need to be conferences

among three, four, etc. workers to resolve things jointly, matters get worse yet. The

added effort of communication may fully counteract the division of original task and bring

us to the situation of the following figure:

Men

M
o
n
th
s

2.2.2 Mathematical Representation [5]

The effort required for intercommunication among team members in order to complete

partitioned task can be calculated as following:

Let MMc be the average effort expended by a pair of persons, working on the project, in

communicating with each other - determined to be based on the project not N (where N

= number of members). Then:

∑ MMc =N (N-1)/2 x MMc = Pairs x MMc

Assuming no original level isolations but complete communication among team

members.

MMn = Effort required without communication

MM = Total effort including communication:

MM=MMn + (N (N-1)/2) x MMc = N x T

T = MMn/N + ((N-1)/2) x MMc

Figure 4: Time versus number of workers- task with complex interrelationships

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 7

2.3 Bin Packing Problem

In computational complexity theory, the bin packing problem is a combinatorial NP-hard

problem. In it, objects of different volumes must be packed into a finite number of bins of

capacity V in a way that minimizes the number of bins used [6].

There are many variations of this problem, such as 2D packing, linear packing, packing

by weight, packing by cost, and so on. They have many applications, such as filling up

containers, loading trucks with weight capacity, and creating file backup in removable

media.

2.4 Heuristic Algorithms

Heuristic algorithms either give nearly the right answer or provide a solution for not all

instances of the problem. Usually heuristic algorithms are used for problems that cannot

be easily solved. Classes of time complexity are defined to distinguish problems

according to their” hardness”. Class P consists of all those problems that can be solved

on a deterministic Turing machine in polynomial time from the size of the input. Turing

machines are an abstraction that is used to formalize the notion of algorithm and

computational complexity. Class NP consists of all those problems whose solution can

be found in polynomial time on a non-deterministic Turing machine. Since such a

machine does not exist, practically it means that an exponential algorithm can be written

for an NP-problem, nothing is asserted whether a polynomial algorithm exists or not. A

subclass of NP, class NP-complete includes problems such that a polynomial algorithm

for one of them could be transformed to polynomial algorithms for solving all other NP

problems. Finally, the class NP-hard can be understood as the class of problems that

are NP-complete or harder. NP-hard problems have the same trait as NP-complete

problems but they do not necessary belong to class NP, that is class NP-hard includes

also problems for which no algorithms at all can be provided. In order to justify

application of some heuristic algorithm we prove that the problem belongs to the classes

NP-complete or NP-hard. Most likely there are no polynomial algorithms to solve such

problems; therefore, for sufficiently great inputs heuristics are developed [7].

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 8

2.4.1 Genetic Algorithms

A genetic algorithm (or GA for short) is a programming technique that mimics biological

evolution as a problem-solving strategy. Given a specific problem to solve, the input to

the GA is a set of potential solutions to that problem, encoded in some fashion, and a

metric called a fitness function that allows each candidate to be quantitatively evaluated.

These candidates may be solutions already known to work, with the aim of the GA being

to improve them, but more often they are generated at random [8].

The GA then evaluates each candidate according to the fitness function. In a pool of

randomly generated candidates, of course, most will not work at all, and these will be

deleted. However, purely by chance, a few may hold promise - they may show activity,

even if only weak and imperfect activity, toward solving the problem.

These promising candidates are kept and allowed to reproduce. Multiple copies are

made of them, but the copies are not perfect; random changes are introduced during the

copying process. These digital offspring then go on to the next generation, forming a

new pool of candidate solutions, and are subjected to a second round of fitness

evaluation. Those candidate solutions which were worsened, or made no better, by the

changes to their code are again deleted; but again, purely by chance, the random

variations introduced into the population may have improved some individuals, making

them into better, more complete or more efficient solutions to the problem at hand. Again

these winning individuals are selected and copied over into the next generation with

random changes, and the process repeats. The expectation is that the average fitness of

the population will increase each round, and so by repeating this process for hundreds

or thousands of rounds, very good solutions to the problem can be discovered [9].

Methods of Selection

• Elitist Selection

• Fitness Proportionate Selection

• Roulette-Wheel Selection

• Scaling Selection

• Tournament Selection

• Rank Selection

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 9

• Generation Selection

• Steady State Selection

• Hierarchical Selection

Methods of Change

• Mutation

• Crossover

o Single Point Crossover

o Uniform Crossover

2.4.2 Hill-climbing

Similar to genetic algorithms, though more systematic and less random, a hill-climbing

algorithm begins with one initial solution to the problem at hand, usually chosen at

random. The string is then mutated, and if the mutation results in higher fitness for the

new solution than for the previous one, the new solution is kept; otherwise, the current

solution is retained. The algorithm is then repeated until no mutation can be found that

causes an increase in the current solution's fitness and this solution is returned as the

result [11]. (To understand where the name of this technique comes from, imagine that

the space of all possible solutions to a given problem is represented as a three-

dimensional contour landscape. A given set of coordinates on that landscape represents

one particular solution. Those solutions that are better are higher in altitude, forming hills

and peaks; those that are worse are lower in altitude, forming valleys. A "hill-climber" is

then an algorithm that starts out at a given point on the landscape and moves inexorably

uphill.) Hill-climbing is what is known as a greedy algorithm, meaning it always makes

the best choice available at each step in the hope that the overall best result can be

achieved this way. By contrast, methods such as genetic algorithms and simulated

annealing are not greedy; these methods sometimes make suboptimal choices in the

hopes that they will lead to better solutions later on.

Hill climbing is used widely in artificial intelligence fields, for reaching a goal state from a

starting node. Choice of next node/ starting node can be varied to give a list of related

algorithms.

The algorithm [10] below describes steps involved in Hill Climbing.

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 10

 Algo (Hill Climbing)

 bestEval = -INF;

 currentNode = startNode;

 bestNode = NULL;

 for MAX times

 if (EVAL(currentNode) > bestEval)

 bestEval = EVAL(currentNode);

 bestNode = currentNode;

 L = NEIGHBORS(currentNode);

 tempMaxEval = -INF;

 for all x in L

 if (EVAL(x) > tempMaxEval)

 currentNode = x;

 tempMaxEval = EVAL(x);

 return currentNode;

The problem with hill climbing is that it will find only local maxima. Unless the heuristic is

good / smooth, it doesn't reach global maxima. There are many methods to overcome

this problem, including iterated hill climbing, stochastic hill climbing, random walks, and

simulated annealing.

2.4.3 Simulated Annealing

Another optimization technique similar to evolutionary algorithms is known as simulated

annealing. The idea borrows its name from the industrial process of annealing in which a

material is heated to above a critical point to soften it, then gradually cooled in order to

erase defects in its crystalline structure, producing a more stable and regular lattice

arrangement of atoms [12]. In simulated annealing, as in genetic algorithms, there is a

fitness function that defines a fitness landscape; however, rather than a population of

candidates as in GAs, there is only one candidate solution. Simulated annealing also

adds the concept of "temperature", a global numerical quantity which gradually

decreases over time. At each step of the algorithm, the solution mutates (which is

equivalent to moving to an adjacent point of the fitness landscape). The fitness of the

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 11

new solution is then compared to the fitness of the previous solution; if it is higher, the

new solution is kept. Otherwise, the algorithm makes a decision whether to keep or

discard it based on temperature. If the temperature is high, as it is initially, even changes

that cause significant decreases in fitness may be kept and used as the basis for the

next round of the algorithm, but as temperature decreases, the algorithm becomes more

and more inclined to only accept fitness-increasing changes. Finally, the temperature

reaches zero and the system "freezes"; whatever configuration it is in at that point

becomes the solution. Simulated annealing is often used for engineering design

applications such as determining the physical layout of components on a computer chip

[13].

CChhaapptteerr 22:: LLiitteerraattuurree RReevviieeww

 12

3. RESEARCH QUESTIONS AND EXPERIMENT DESIGN

In this chapter we discuss the research questions that will be answered by this project.

The implementation and testing strategy will be based on these research questions

therefore it is important to fully understand these questions and how the implementation

and testing strategy will be formulated.

3.1 Questions

The research questions to be addressed in this project are:

3.1.1 How to allocate work packages to teams in such a way that project

completion time is minimized?

As we already discussed resource allocation is an important problem in project

management and as size of the project increases, this problem becomes more complex.

Such problem is an example of bin packing problem and search space for such problem

is TNw where T is number of teams and Nw is number of work packages. The solution of

such problem is NP-hard and for which heuristic techniques are known to be effective.

Once we have decided that heuristic techniques are effective for such problem, next

step is to define the fitness function for this problem. Now during tasks allocation, since

number of tasks is greater than number of teams, multiple tasks are allocated to teams

simultaneously. The team that finishes in the end decides the completion time of the

project because rest of the teams had finished their allocated tasks by then. Therefore in

order to minimize the completion time of the project we have to minimize the maximum

time taken by any team to complete the allocated tasks. Now we can define our fitness

function as “maximum time taken by any team to complete allocated tasks”. We will

try to minimize the fitness value as low as possible; lower the value better will be the

solution.

We will design an algorithm that will search for optimal configuration that will result in

minimum completion time. Since the algorithm will be heuristic in nature, the solution will

be near optimal. Following techniques will be implemented:

1. Random Search

2. Hill Climbing

3. Simulated Annealing

CChhaapptteerr 33:: RReesseeaarrcchh QQuueessttiioonnss aanndd EExxppeerriimmeenntt DDeessiiggnn

 13

Random search will be implemented to compare its performance with hill climbing and

simulated annealing. Hill climbing or simulated annealing will be selected for further

testing based on their performance and results.

3.1.2 How to distribute work packages uniformly among teams in order to avoid

starvation or exhaustion?

While minimizing project completion time we have to ensure that tasks distribution

among teams is uniform and teams are allocated tasks according to their size. Project

managers try to ensure that teams are allocated tasks uniformly to avoid situation that

might lead to starvation and exhaustion therefore we must ensure that our technique

must allocate tasks uniformly.

In order to solve this problem, we enhance the functionality of our technique in order to

minimize standard deviation among teams. Once a configuration with minimum

completion time is obtained, we will maximize the minimum completion time and ensure

that the maximum value achieved previously is kept intact. In this way the standard

deviation will be minimized and tasks distribution will become more uniform.

3.1.3 How to preserve dependencies among work packages during allocation in

case of dependent work packages?

Till now we have been discussing how to allocate work packages in such a way that it

minimizes the project completion time. We reshuffle the allocation in an attempt to find

near optimal solution assuming that work packages are independent of each other which

simplifies the problem as we do not have to consider the dependency while shuffling the

configuration of work packages. But in real-life projects, work packages or tasks are

dependent and dependency structure must be preserved in order to complete tasks.

Most of the tasks depend on each other and one task cannot start until certain task is

completed and the chain goes on.

In our first phase we will combine the dependent work packages to form a set of

independent work packages and test our technique on the modified data. Once we

achieve minimum completion time, we will modify our algorithm so that the dependency

structure is preserved and work packages are allocated in order of their dependency.

For this purpose the dependency structure will be provided as input to the program

alongwith other data. The dependency is stored as array-list data structure and before

allocation of each work package to team its dependency structure is checked and then it

CChhaapptteerr 33:: RReesseeaarrcchh QQuueessttiioonnss aanndd EExxppeerriimmeenntt DDeessiiggnn

 14

is allocated accordingly. This allows dependent work packages to be allocated to

different teams but in order of their completion. Thus with incorporation of dependency

preservation, this technique becomes more practically applicable and the results

obtained will be more reliable and realistic.

3.1.4 How to calculate the effort team members consume during communication in

order to complete allocated tasks?

In literature review we discussed the Brook’s law and concept of man-month. We also

discussed how the effort for communication among team members in order to complete

the allocated tasks can be calculated. Till this point in our technique, we are assuming

no communication among team members which is highly optimistic assumption and

might lead to unrealistic results. Communication is an integral part of team effort and

team members need to communicate and synchronize their efforts for smooth operation.

This communication requires some time and hence effort which adds to the overall effort

for completing the allocated tasks.

In order to calculate the effort for communication, we incorporate the mathematical

formula (discussed in literature review) in our algorithm that will calculate the total effort

which includes effort to complete task as well as effort for communication. The value of

coefficient of effort MMC is provided as input. Therefore we specify value of MMC in

input file. Once the value of MMC is read from the input file it is stored in the variable of

program and the effort is calculated according to value of MMC. Since MMC is user-

defined we can vary its value and study how it affects the project completion time.

3.1.5 How communication affects overall progress of the project?

Now that we have modified our technique to calculate the effort required for

communication, we will study how communication affects the overall progress of the

project.

Since the value of co-efficient of communication MMC is user-defined we can vary its

value and see how it affects the completion time of the project. We can plot a graph

between MMC and project completion time and see how time increases with increase in

MMC. This will allow us to understand what role communication plays in the completion

time of the project.

We will also test variations of Brook’s law, each variation representing how team

members communication among themselves. According to Brook’s law, team members

CChhaapptteerr 33:: RReesseeaarrcchh QQuueessttiioonnss aanndd EExxppeerriimmeenntt DDeessiiggnn

 15

have N(N-1)/2 communication links (where N = Number of team members) among them

and for each link an effort is required. We will test following variations:

1. N – Linear law

2. Log(N) – Log Law

With these variations, we will study the effect of communication on project completion

time by plotting a graph between MMC and completion time. The result will help us in

understand for each communication strategy how communication affects the progress of

the project.

3.1.6 How can we define upper bound for the amount of effort to be dedicated to

communication?

Once we plot a graph between MMC and project completion time we can analyze how

completion time increases with increase in MMC. With this information we can define

upper bound for the amount of effort to be consumed in communication. If we are

required to complete a project in X days and we plot a graph between MMC and project

completion time using our technique, we can look at maximum MMC value with which

the project completion time is equal to or less than X. Thus we can define an upper limit

for how much effort to be consumed in communication. This can prove to be very useful

information for project managers as they can have specific information regarding what

level of communication must be maintained in order to complete project on time.

3.1.7 How allocation process is affected by increase in communication?

After studying the effect of communication on completion time, we will study how

allocation process is affected by communication. We will study the impact of increase in

communication on work package configuration; how different the allocation becomes

with increase in communication. This will enable us to understand if there is any

relationship between allocation process and the communication among team members.

As increase in communication causes increase in overall effort to complete the project,

there is a possibility that the technique might change the configuration/allocation of work

packages. The results from this study will enable us to understand relationship between

communication and allocation process.

CChhaapptteerr 33:: RReesseeaarrcchh QQuueessttiioonnss aanndd EExxppeerriimmeenntt DDeessiiggnn

 16

3.2 Motivation for Experimentation

The questions raised above will act as motivation for experimentation. The experiments

will be based on these questions and will be carried out in a way as to answer these

questions. The details of experiments will be discussed in Chapter 4: Testing and

Results.

CChhaapptteerr 33:: RReesseeaarrcchh QQuueessttiioonnss aanndd EExxppeerriimmeenntt DDeessiiggnn

 17

4. IMPLEMENTATION

In this chapter we discuss the algorithm design and its implementation details. The

programming language used is C-Sharp (C#) and the development environment is

Microsoft Visual Studio Dot Net 2005.

First we look into the algorithm and then how the algorithm is implemented in

programming language. After discussing the algorithm we will look at details of various

functions in the code for better understanding of the implementation.

4.1 Fitness Function

Fitness function acts as evaluation criteria for the solution to determine how good the

solution is. As there is no absolute or ideal solution in heuristic technique, fitness

function helps in determining how good the solution is and it helps in obtaining near

optimal solution.

For this problem the fitness function is defined as the “maximum time taken by any

team to complete allocated tasks”. As multiple teams will be involved in the project

working concurrently on the allocated tasks, the team which takes the maximum time will

determine the project completion time. Our aim will be to minimize the maximum time

taken by any team to complete the allocated tasks. Lower the time better will be the

solution.

4.2 Algorithm

We will discuss the improved version of algorithm which includes preservation of

dependency structure and calculation of effort for internal communication. Following

explains the working of algorithm:

1. Randomly assign work packages to teams while checking the dependency

2. Calculate the time taken by each team to complete their allocated work packages

3. Store the maximum time among teams which will be the fitness value

4. Mutate the current configuration/solution

5. Calculate the fitness value

6. If the fitness value calculated in step 5 is less than fitness value calculated in

step 3, it means we have obtained better solution so overwrite the fitness value

stored at step 3

7. Move to step 4

CChhaapptteerr 44:: IImmpplleemmeennttaattiioonn

 18

8. Repeat till minimum value is achieved

9. Once the maximum value is minimized, next step is to maximize the minimum

value

10. The team with maximum time (X) is excluded from this search

11. For the rest of the teams, the minimum value is maximized by mutating the WPs

assignment whilst ensuring that the maximized value do not exceed the fitness

value calculated in previous search (X)

12. This process is repeated for same number of iterations

Figure 5 shows control flow graph of the algorithm.

Program Exits

Randomly assign

WPs

Calculate time of

each team

Mutate

configuration

Store fitness

value(X)

Calculate fitness

value

Is calculated

value<stored

value(X)?

Better solution

therefore store it

(Overwrite X)

Yes No

No solution with

higher fitness found

Figure 5: Control Flow Graph

CChhaapptteerr 44:: IImmpplleemmeennttaattiioonn

 19

4.3 Functions

Now we will look at some details of main functions in the code:

4.3.1 void AssignWorkPackage(int WorkID)

This function assigns work package to a team. It takes ID of the work package as input

and has no return value. The assignment of work package to the team is random. While

assigning the work packages, this function first checks the dependency structure in order

to ensure that the work package must be assigned after completion of the work

packages it is dependent on.

4.3.2 void CalcFitnessFunc()

This function calculates the fitness value of a solution. Once a solution is obtained after

allocation of all the work packages to teams, this function is called to check the fitness of

that solution. The completion time for each team is calculated. For minimizing the

maximum time taken by team, the maximum time taken by any team is stored as fitness

value and in case of maximizing the minimum time; the minimum value is stored as

fitness value.

4.3.3 void CalculateWorkday(int WorkPaID, int TeamNo)

This function calculates the days required to complete the work package. This function

also calculates the time and effort required for internal communication among the team

members. For this purpose it takes ID of target work package and ID of team, to which it

is allocated, as input. The time calculated by this function is sum of time required to

complete the allocated work package and time consumed during communication within

team members. There are 3 variations of work day calculation, each representing a

strategy followed for internal communication.

• Case 1 is for the “N(N-1)/2” strategy

• Case 2 is for the “N” strategy and

• Case 3 is for the “Log (N)” strategy where N is number of team members.

This function is critical from Brook’s law point of view because it allows us to study the

relationship between human resources and time by varying the values of input

parameters.

If a team comprises of only 1 member then the effort required to complete the work

package is returned as time to complete that work package.

CChhaapptteerr 44:: IImmpplleemmeennttaattiioonn

 20

4.3.4 void ClearAssignedWorkPackages()

This function simply clears the assigned work packages structure. This method is called

in order to evaluate other solutions to find the most optimal solution. All attributes of work

package list are set to -1 or false, depending upon the datatype, as well as list of

assigned work packages of each team is cleared.

4.3.5 void DisplayConfig(string str)

This method displays the configuration of the work packages allocated to teams. It

shows which work packages are allocated to which team and in what order. It also

outputs the fitness value of each configuration. When we execute the code, first of all the

initial configuration is dispayed. Next whenever a better solution is found with lower

completion time, configuration of that solution is displayed. This also helps in analysing

the behavior of the program.

4.3.6 private void DisplayLoadedData()

This method simply displays the data loaded from the input file. Information related to

teams and work packages which has been read from the input file is displayed by this

method.

4.3.7 public void HillClimb(int MaxTries, bool useMaxFit)

This function implements the core hill climbing algorithm. Starting from a random point

this function evaluates neighbouring solutions at each point and moves toward the first

better solution. The first parameter “MaxTries” specifies the number of evaluations to be

performed and “useMaxFit” which is a boolean variable specifies either to maximize the

minimum value or minimize the maximum value.

4.3.8 private void ReadFromFile(string filename)

This function reads all the data from input file. The input file contains following

information:

• Number of teams

• Members in each team

• Number of work packages

• Effort required for each work package

CChhaapptteerr 44:: IImmpplleemmeennttaattiioonn

 21

• Work package dependency

• Value of MMC variable

The data is read and loaded into respective data structures for further processing.

CChhaapptteerr 44:: IImmpplleemmeennttaattiioonn

 22

5. TESTING AND RESULTS

Testing is carried out in two phases in order to achieve the objectives of the project and

answer the questions raised in Research Questions chapter. In first phase, different

heuristic techniques were tested on same dataset. The purpose was to find out which

technique outperforms others in achieving the most optimal results and also compare

the results obtained from technique with actual results i.e. results obtained without using

the technique. The target in this case was to achieve minimum completion time for the

project and the techniques tested were:

1. Random

2. Hill Climbing

3. Simulated Annealing

For further testing, hill climbing was selected to analyze other aspects of allocation

process such as work packages and effort distribution.

In second phase the effect of Brook’s law was analyzed by applying modified hill

climbing algorithm on more detailed dataset. The modifications made in the algorithm

were incorporation of communication effort calculation and work package dependency

preservation. The dataset used in the testing contained additional information such as

dependency structure of work packages and value of MMC (internal communication)

variable.

5.1 First Phase Testing

Following are the results obtained from first phase testing:

Test Data

• Work packages = 48

• Total effort = 514 person days

• Teams = 5

• Total team member = 20

• Team1 = 3 members

• Team2 = 3 members

• Team3 = 7 members

• Team4 = 5 members

• Team5 = 2 members

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 23

Following results were obtained:

5.1.1 Completion Time

After running the program on test data, it was found that under the most optimal

allocation configured by the program, the completion time is 25 days as compared to the

duration of 31 days taken actually to complete the allocated tasks. Figure 6 shows

behaviour of the program.

5.1.2 Work Packages Allocation

By analyzing the work packages allocation pattern of the program and comparing it

with the actual allocation, we find that the automatic allocation (i.e. done by program)

is more uniform and evenly distributed as compared to manual allocation (i.e. done

by project manager). The program tends to minimize the standard deviation among

allocated work packages in order to evenly distribute the tasks. Thus the program

successfully avoids the situation of starvation or exhaustion of a team during

resource allocation which is an important aspect from management point of view.

Figure 7 shows work packages allocation done by program (algorithm) and by

project manager (actual).

Figure 6: Completion time achieved with Hill Climbing

Hill climbing achieves minimum time of 25 days as compared to actual

completion time of 31 days.

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 24

Work Packages Allocation

0

2

4

6

8

10

12

14

16

T1(3) T2(3) T3(7) T4(5) T5(2)

Teams

#
 o
f
W
P
s
 a
s
s
ig
n
e
d

Algorithm

Actual

5.1.3 Effort Distribution

Since work packages vary in size and effort required, along with tasks distribution we

also need to analyze how effort is distributed among teams. This will give us better idea

of how much effort each team is required to do in order to complete the allocated tasks.

In previous graph we observed that teams t3 and t4 are assigned equal number of work

packages which might lead to the assumption that both teams are assigned equal effort

to perform even though their size is different. But by looking at the graph below we

observe that the effort allocated to them vary by a significant margin. This is due to the

fact that team t3 having 7 members is assigned bigger work packages as compared to

team t4 as a result team t3 is assigned 190 person days and t4 is assigned 120 person

days.

Comparing it with actual effort distribution we can see that the automatic distribution is

again more uniform and the standard deviation is less than that of actual distribution. We

get the following when we compare the difference between maximum and minimum

effort allocation done manually and automatically:

Algorithm: Effort of t3 (190) – Effort of t5 (45) = 145

Actual: Effort of t3 (224) – Effort of t5 (23) = 201

Figure 7: Actual versus Algorithm-Work Packages Allocation

The work packages are distributed more accordingly in case of algorithm

while in actual case the distribution is not according to size of team

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 25

Clearly there is a significant difference in two values which further supports our claim

that the suggested technique outperforms human effort from point of view of both

minimizing completion time and uniform distribution of effort.

Team Effort

0

50

100

150

200

250

T1(3) T2(3) T3(7) T4(5) T5(2)

Teams

P
e
rs
o
n
 D
a
y
s

Algorithm

Actual

Results obtained from other techniques are shown in figures below:

Figure 8: Actual versus Algorithm-Effort Distribution among Teams

The algorithm tends to distribute effort more uniformly as compared to human expert (actual),

standard deviation in case of algorithm is less than actual.

Figure 9: Completion time achieved by Simulated Annealing

Completion time achieved by simulated annealing is 24.5 days which is approximately equal to

hill climbing (25 days) hence the two techniques produce almost similar results.

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 26

5.2 Second Phase Testing

Second phase testing is aimed at analyzing the effect of Brook’s law on project

completion time and resource allocation. For testing purpose different variations of the

formula are tested each variation representing how teams communicate among

themselves and how much effort they consume in doing so. The variations are:

• N (N-1)/2 (Square Law)

• N (Linear Law)

• Log (N) (Logarithmic Law)

Where N is number of members in a project team

The effort required to complete the task and effort for communication is calculated as:

MMn = Effort required without communication

MM = Total effort including communication:

MM=MMn + (N (N-1)/2) x MMc = N x T

T = MMn/N + ((N-1)/2) x MMc

Test data for second phase testing can be found in Appendix D on page 60 of this

report.

Figure 10: Completion time achieved by Random Search

Completion time achieved by random search is 38 days which is highest as compared to hill

climbing and simulated annealing making it least efficient technique.

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 27

5.2.1 MMC

MMC is variable of effort estimate which is represented as percentage of effort required

to complete a particular work package. This variable determines how much effort will be

dedicated to communication among team members.

For each variation, the effect of increase in MMC on project completion time and

resource allocation to team members is studied, details of which are as follows:

5.2.2 Project Completion Time

project completion time

0

10

20

30

40

50

60

70

80

0
0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

MMc

C
o
m
p
le
ti
o
n
 t
im
e

This graph represents the most complex interaction among the team members. As the

value of MMC increases, the completion time of the project increases significantly. With

every 1% increase in MMC, the project is delayed by 4 to 5 days therefore the MMC

should be kept minimum if the tasks require this form of communication among team

members.

As more people are added in project which requires this form of communication, the

project will get even more delayed due to the increase in effort required for interaction

among members.

At some points in the graph, the completion time tends to reduce with increase in MMC;

this is due the fact that the algorithm which is heuristic in nature finds a more optimal

Figure 11: MMC versus Project Completion Time-N(N-1)/2 Strategy

This graph shows the effect of increasing communication on completion time

of project in case of N(N-1)/2 communication links

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 28

solution as compared to solution with lower MMC and therefore calculates a lower value.

The probability of finding such solution is very low due to which such behaviour is rarely

observed in the graph.

From 0 to 10% increase in MMC the completion time increases from 33.5 days to 72.18

days causing a difference of approximately 40 days which shows how critical the MMC

variable is in meeting the project deadlines. In the light of this analysis, the project

managers must ensure that the communication effort must be minimized and it does not

exceed a certain limit to reduce the risk of exceeding project deadlines.

project completion time

0

10

20

30

40

50

60

0
0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

MMc

C
o
m
p
le
ti
o
n
 t
im
e

This is slightly less strict form of communication. The delay in completion time with

increase in MMC is less than the previous case which is due to the fact that in this form

of communication there will be N communication links among team members as

compared to N (N-1)/2 links. Due to this linear behavior the increase in MMC is causing

slightly less significant difference in the project completion time.

With every 1% increase in the MMC, the completion time of the project is delayed by 2 to

3 days and the overall difference from 0 to 10% MMC is 19 days (52.4 – 33.4) which is

still crucial.

Figure 12: MMC versus Project Completion Time-N Strategy

This graph shows the effect of increasing communication on completion time

of project in case of N communication links

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 29

project completion time

0

10

20

30

40

50

60

70

80

0
0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

MMc

C
o
m
p
le
ti
o
n
 t
im
e

This is the least strict form of communication in which the increase in MMC causes

negligible effect on the project completion time. This is due to minimum number of

communication links among team members. As the links are significantly reduced, the

effort required for such communication will not have any significant impact on the project

completion time.

As seen in the graph the completion time stays between 30 to 40 days for 10% increase

in MMC from 0 to 10 which shows that MMC has practically no impact in this case.

Figure 13: MMC versus Project Completion Time-Log(N) Strategy

This graph shows the effect of increasing communication on completion time

of project in case of Log(N) communication links

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 30

project completion time

0

20

40

60

80

100

120

140

160

180
0

0
.8

1
.6

2
.4

3
.2 4

4
.8

5
.6

6
.4

7
.2 8

8
.8

9
.6 1
5

3
0

6
0

MMc

C
o
m
p
le
ti
o
n
 t
im
e

n(n-1)/2

n

log(n)

By comparing the three strategies and extending the value of coefficient, it can be clearly

observed that MMC has maximum impact on “N (N-1)/2”strategy and the completion

time tends to increase significantly with increase in MMC. This increase is maximum as

compared to the remaining strategies. The “N“ strategy is also affected by MMC and the

completion time increases by an average of 2 days for every 2% increase in MMC.

Finally the “Log (N)”strategy do not seem to be affected by increase in MMC till 10% but

as we increase the value of MMC with greater margin we see a slight increase in

completion time of log(n) strategy.

5.2.3 Significance of the Results

These results provide an upper bound for the effort to be consumed in communication

among the team members to complete the allocated task. Once effort has been

estimated for all the tasks and they are allocated to the project teams, the project

manager can then project the completion date of the project using the suggested

technique. Then project manager can study the impact of increasing communication

effort on completion time and can set an upper bound for the communication effort in

order to complete project on time. With upper bound defined at the initial phase of the

project, the progress can be monitored more effectively.

Figure 14: MMC versus Project Completion Time-Comparison

Value of MMC is increased to 60% and results of the 3 techniques are compared. We can notice an

increase in yellow line as we move from 10% to 60% while blue and pink lines increase drastically.

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 31

5.2.4 Resource Allocation/Effort Distribution

Now we will analyse how allocation of effort (person days) to teams is affected by

change in communication variable MMC. Below are the results obtained from the study.

Effort Distribution with N(N-1)/2 Communication Links

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10

MMC

P
e
rs
o
n
 D
a
y
s

t1(3)

t2(3)

t3(7)

t4(5)

t5(2)

As seen in figure 15, the algorithm tends to allocate more work packages to teams with

higher number of members (t3=7 and t4=5). As a result at MMC=0, approximately 82%

of effort is allocated to teams t3 and t4 (t3=46.5% and t4=34.1%). As we move along the

x-axis, this ratio is maintained with the increase in MMC and at MMC=10 t3 and t4 are

assigned approximately 78% of total effort (t3=42.4% and t3=35.1%). There is no

significant change in effort allocation to team t5. This is due to the fact that team t5 has

only 2 members therefore the algorithm tends to allocation minimum effort to that team.

Allocation to t1 (3 members) and t2 (3 members) appear to be random as no regular

behaviour is observed with the increase in MMC.

Due to strict dependencies among work packages, the effort distribution is not uniform

among project teams. As the number of independent tasks increase, the effort

distribution becomes uniform.

Figure 15: MMC versus Effort Distribution-N(N-1)/2 Strategy

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 32

Effort Distribution with N Communication Links

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

MMC

P
e
rs
o
n
 D
a
y
s

t1(3)

t2(3)

t3(7)

t4(5)

t5(2)

With N communication links (figure 16), major portion of the total effort is assigned to

teams t3 and t4. In this case t3 and t4 are assigned 80% of the total effort (t3=43.8%

and t4=36.2%) which is approximately same as in case of N (N-1)/2 links and at

MMC=10 this value is again 80% (t3=45.7% and t4=34.1%). As we move along x-axis, t3

and t4 are regularly assigned 80% or more of the effort while rest of the distribution is

random. In case of t1 the effort allocation is 40, 40, 3.3, 0, 0 and 47 respectively while for

t2 it is 30, 81, 31, 111, 132 and 3 respectively. Team t5 is assigned more effort as

compared to previous case and at MMC=10, t5 is assigned an effort of 102 person days.

Figure 16: MMC versus Effort Distribution-N Strategy

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 33

Effort Distribution with Log(N) Communication

Links

0

50

100

150

200

250

300

0 2 4 6 8 10

MMC

P
e
rs
o
n
 D
a
y
s t1(3)

t2(3)

t3(7)

t4(5)

t5(2)

With Log(N) communication links (figure 17), we observe the same behaviour during

allocation of effort to teams. While teams t3 and t4 are assigned most of the effort,

allocation to the remaining teams tend to stabilize a bit and at MMC=0 and MMC=4 we

have a slightly even effort distribution.

5.2.5 Summarizing the Results

By analysing the three cases above it can be observed that size of the team plays major

role in effort allocation and teams with higher number of members are assigned more

effort. MMC variable do not seem to affect the allocation process as seen in all three

cases.

Figure 17: MMC versus Effort Distribution-Log(N) Strategy

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 34

5.2.6 Summary

The table below summarises the analysis and results discussed in this chapter. It also

compares completion time and resource allocation results of the three strategies in form

of graph.

Strategy Completion Time Resource Allocation

N(N-1)/2

N

Log (N)

Table 1: Summary of second phase testing results

CChhaapptteerr 55:: TTeessttiinngg aanndd RReessuullttss

 35

6. FUTURE WORK

Some suggestions for future work in this direction can be:

6.1 Specialization

The allocation process can be improved by incorporation of factors such as:

• Type of Work Package

• Expertise of Team

With these factors incorporated in the technique, the allocation will be more effective and

practically applicable as work packages will be allocated to relevant teams with required

expertise level.

6.2 Data Sensitivity Test

Data sensitivity test can be performed on the data to find out which work packages are

more crucial from point of view of allocation and completion. By varying the estimated

effort of work packages and analyzing its effect on project completion time, a sensitivity

analysis can be performed which will help project managers in determining the priority of

work packages.

6.3 Determination of Ideal Communication Level

The study and analysis carried out in this project can be extended to determine the ideal

communication level to be maintained among the team members throughout the project

life cycle in order to complete project on time. A more detailed analysis can be

performed to determine the ideal effort to be consumed during communication in order to

complete the project on time. With such information, project managers will have precise

value of how much effort to be consumed for communication purposes in order to

complete the allocated tasks.

CChhaapptteerr 66:: FFuuttuurree WWoorrkk

 36

7. CONCLUSION

This project addressed some of the major problems of project management and

attempted to solve those using heuristic techniques. The first problem addressed is of

tasks allocation to project teams in such a way that the project completion time is

reduced. This problem is classified as NP-Hard due to excessively large search space

and for which heuristic techniques prove to be effective.

Once the problem is defined and interpreted in technical terms, next step was to design

the algorithm which is heuristic in nature. For this purpose three techniques namely

Random, Hill Climbing and Simulated Annealing were implemented. Study showed that

Random search was least efficient while Hill Climbing and Simulated Annealing

produced almost similar results. Hill Climbing was selected for further study and

analysis.

Our study showed that the completion time achieved through the algorithm is

significantly less than the actual completion time achieved which acted as first step

towards our argument that the suggested technique outperforms human decision

making. But this cannot be claimed as our suggested technique was independent of

several factors that influence such decision making. Further study proved that the

suggested technique tend to allocated work packages and effort more uniformly as

compared to the actual allocation resulting in better utilization of human resources.

In next phase we studied the effect of Brook’s law. The algorithm was modified to cater

for work packages dependency and to calculate the effort required for internal

communication among the team members in order to complete the allocated tasks.

Three different communication schemes were studied. Once the modified algorithm was

implemented and results obtained, the coefficient for internal communication (MMC) was

varied to study the effect of communication on project completion time.

Results showed that “N(N-1)/2” strategy was most affected by increase in

communication variable (MMC) while “Log(N)” remained least effected. This study was

important from point of view of setting maximum limit for effort to be consumed in

communication among project teams in order to complete allocated tasks on time.

CChhaapptteerr 77:: CCoonncclluussiioonn

 37

Then we studied the effect of communication variable (MMC) on allocation process and

studied how change in MMC affects the allocation of work packages to team members.

Results showed that there was no significant change in allocation with increase in MMC

and teams with higher number of members were regularly allocated more work

packages irrespective of change in MMC.

In light of analysis and results obtained we conclude that the suggested technique can

assist project managers in finding a better solution to the problems addressed in this

project. While the role of human in decision making cannot be obliterated we can safely

say that this technique can help managers make better decisions at initial stage of the

project and also keep track of progress throughout the project lifecycle.

CChhaapptteerr 77:: CCoonncclluussiioonn

 38

8. REFERENCES

[1] L. Davis. Job-shop scheduling with genetic algorithms. In International

Conference on GAs, pages 136-140. Lawrence Erlbaum, 1985.

[2] E. Falkenauer. Genetic Algorithms and Grouping Problems. Wiley-Inter Science,

Wiley – NY, 1998.

[3] E. Hart, D. Corne, and P. Ross. The state of the art in evolutionary scheduling.

Genetic Programming and Evolvable Machines, 2004.

[4] Chapter 2: Mythical Man-Month, The Mythical Man-Month by Frederick Brooks.

[5] The Mythical Man-Month: Essays on Software Engineering by Frederick Brooks.

[6] Bin Packing Problem, - http://en.wikipedia.org/wiki/Bin_packing_problem.

[7] Natallia Kokash, An Introduction to Heuristic Algorithms,

http://dit.unitn.it/~kokash/documents/Heuristic_algorithms.pdf

[8] Genetic Algorithms and Evolutionary Computation by Adam Marczyk, The Talk

Origins Archive, http://www.talkorigins.org/faqs/genalg/genalg.html

[9] Chapter 1: Introduction, An Introduction to Genetic Algorithms for Scientists and

Engineers by David A. Coley.

[10] Hill Climbing–Definition and Explanation, http://en.wikipedia.org/wiki/Hill_climbing

[11] Koza, John, Martin Keane, Matthew Streeter, William Mydlowec, Jessen Yu and

Guido Lanza. Genetic Programming IV: Routine Human-Competitive Machine

Intelligence. Kluwer Academic Publishers, 2003.

[12] Haupt, Randy and Sue Ellen Haupt. Practical Genetic Algorithms. John Wiley

and Sons, 1998.

[13] Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi. Optimization by Simulated

Annealing. Science, vol. 220, p. 671-678 (1983).

CChhaapptteerr 88:: RReeffeerreenncceess

 39

9. GLOSSARY

WBS Stands for Work Breakdown Structure. It is a project management

document which consists of all the tasks in the project.

WP Stands for Work Package. It is a task or finite set of tasks derived

from Work Breakdown Structure.

Person-Months A unit of effort refers to a person working 8 hours a day 5 days a

week. The effort required to complete a task is calculated in

person days or person months.

NP-Hard NP-hard (Non-deterministic Polynomial-time hard) refers to the

class containing all problems H, such that for every decision

problem L in NP there exists a polynomial-time many-one

reduction to H, written . If H itself is in NP, then H is

called NP-complete.

White Box A testing technique where data is selected based on tester’s

knowledge of the system. The data is chosen to exercise different

paths in the code satisfying a certain criteria. The results are

compared to behaviour expected from the program.

Black Box A testing technique where the user has no knowledge of the

internal working of the program. The tester only knows the input

and what the expected output should be.

 Refers to allocation of tasks to teams. In order to complete a

project, several tasks are distributed among project teams.

Fitness Function A fitness function is a particular type of objective function that

quantifies the optimality of a solution.

Resource

Allocation

 40

10. Appendix A

10.1 Source Code

The programming language used is C-Sharp (C#) and below is the source code of both

versions of the program.

10.1.1 Version 1.0 Source Code

It is a single file named Program.cs.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.IO;

namespace SPM
{
 public class Team
 {
 public string name;
 public int members;
 public ArrayList assignedWork;
 public int fitness;
 public Team()
 {
 members = -1;
 assignedWork = new ArrayList();
 fitness = -1;
 }
 }
 public class WorkPackage
 {
 public string name;
 public int personDays;
 }
 class Program
 {
 ArrayList TList = new ArrayList();
 ArrayList WPList = new ArrayList();

 static void Main(string[] args)
 {
 Program P = new Program();
 P.ReadFromFile("c:\\input1.txt");
 P.HillClimb(Int16.MaxValue, true);
 Console.WriteLine("\n\n Now Using Min Fitness Method.");
 P.HillClimb(Int16.MaxValue, false);
 Console.ReadLine();

 }

 41

 // This Function will asssign all the work packages to Different teams;
 public void AssignWorkPackages_Randomly()
 {
 ClearAssignedWorkPackages();
 Random Rand = new Random(System.DateTime.Now.Millisecond);
 for (int i=0;i<WPList.Count ;i++)
 ((Team)TList[Rand.Next(0, int.MaxValue)%TList.Count]).assignedWork.Add(WPList[i]);
 }
 void ClearAssignedWorkPackages()
 {
 for (int i = 0; i < TList.Count; i++)
 ((Team)TList[i]).assignedWork.Clear();
 }
 void CalcFitnessFunc()
 {
 try
 {
 ArrayList WorkPs;
 Team CurrTeam;
 for (int i = 0; i < TList.Count; i++){
 WorkPs = ((Team)TList[i]).assignedWork;
 CurrTeam = ((Team)TList[i]);
 CurrTeam.fitness = 0;
 for (int j = 0; j < WorkPs.Count; j++)
 CurrTeam.fitness+=((WorkPackage)WorkPs[j]).personDays /
((Team)TList[i]).members;
 }
 }
 catch(Exception e)
 {
 Console.WriteLine("Exception Check Input File: " +e.ToString());
 }
 }
 int MaxFit()
 {
 CalcFitnessFunc();
 int fitnessValue = -1;
 for (int i = 0; i < TList.Count; i++)
 if (fitnessValue < ((Team)TList[i]).fitness)
 fitnessValue = ((Team)TList[i]).fitness;
 return fitnessValue;
 }
 int MinFit()
 {
 CalcFitnessFunc();
 int fitnessValue = int.MaxValue;
 for (int i = 0; i < TList.Count; i++)
 if (fitnessValue > ((Team)TList[i]).fitness)
 fitnessValue = ((Team)TList[i]).fitness;
 return fitnessValue;
 }
 void DisplayConfig(string str)
 {
 Console.WriteLine(str);

 ArrayList WorkPs;

 42

 Team CurrTeam;
 for (int i = 0; i < TList.Count; i++)
 {
 Console.WriteLine();
 WorkPs = ((Team)TList[i]).assignedWork;
 CurrTeam = ((Team)TList[i]);
 Console.Write(CurrTeam.name + " (" + CurrTeam.members+") :-");
 for (int j = 0; j < WorkPs.Count; j++)
 Console.Write(" "+((WorkPackage)WorkPs[j]).name +"-
"+((WorkPackage)WorkPs[j]).personDays);
 }

 }

 /// <summary>
 /// Two approaches are Supported.
 /// 1. Max Fitness Function Which Minimize the Maximum.
 /// 2. Min Fitness Function which Maximize the Minimum.
 /// </summary>
 /// <param name="MaxTries"></param>
 /// <param name="useMaxFit"></param>
 public void HillClimb (int MaxTries, bool useMaxFit)
 {
 AssignWorkPackages_Randomly();
 int CurrValue;
 if (useMaxFit)
 {
 CurrValue = MaxFit();
 // Save Curr Configuration Here , it Should be usefull
 DisplayConfig("First Time Configuration. FitnessValue = " +CurrValue);

 for (int i = 0; i < MaxTries; i++)
 {
 AssignWorkPackages_Randomly();
 if (CurrValue > MaxFit())
 {
 CurrValue = MaxFit();
 DisplayConfig("\nFound A Better Configuration. FitnessValue = "+CurrValue);
 // Save this Configuration or Display IT
 i = -1; continue;
 }
 }
 }
 else
 {
 CurrValue = MinFit();
 // Save Curr Configuration Here , it Should be usefull
 DisplayConfig("First Time Configuration. FitnessValue = " + CurrValue);
 for (int i = 0; i < MaxTries; i++)
 {
 AssignWorkPackages_Randomly();
 if (CurrValue < MinFit())
 {
 DisplayConfig("\nFound A Better Configuration. FitnessValue = " +CurrValue);
 // Save this Configuration or Display IT
 CurrValue = MinFit();

 43

 i = -1; continue;
 }
 }
 }
 }
 private void ReadFromFile(string filename)
 {

 Team t1 = new Team();
 WorkPackage w=new WorkPackage();
 StreamReader SR;
 string S;
 SR = File.OpenText(filename);
 S = SR.ReadToEnd();
 int len = S.Length;
 char[] fl=S.ToCharArray();

 string eff = "";
 string mem = "";

 int i = 0;

 while (fl[i] != 'W' && fl[i + 1] != 'P')
 {
 t1 = new Team();
 if (fl[i] == 'T' && fl[i + 1] != 'e')
 {
 t1.name = "";
 while (fl[i] != '=')
 {
 t1.name = t1.name + fl[i].ToString();
 i++;
 }

 if (fl[i] == '=')
 {
 mem = "";
 while (!(fl[i + 1] == ',' || fl[i + 1] == '\r'))
 {

 mem = mem + fl[i + 1].ToString();
 i++;

 }
 t1.members = Convert.ToInt32(mem);
 Console.WriteLine(t1.name + "=" + mem);

 }
 i++;
 TList.Add(t1);
 }
 i++;
 }
 //**

 44

 while (fl[i] != 'T')
 {
 if (fl[i] == 'W' && fl[i + 1] != 'P')
 {
 w = new WorkPackage();
 w.name = "";
 while (fl[i] != '=')
 {
 w.name = w.name + fl[i].ToString();
 i++;
 }
 if (fl[i] == '=')
 {
 eff = "";
 while (!(fl[i + 1] == ',' || fl[i + 1] == '\r'))
 {

 eff = eff + fl[i + 1].ToString();
 i++;

 }
 Console.WriteLine(w.name + "=" + eff);
 w.personDays = Convert.ToInt32(eff);
 }
 WPList.Add(w);
 }
 i++;
 }

 }
 }
}

 45

10.1.2 Version 2.0 Source Code

The file name is Program.cs.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Threading;

namespace fyp
{
 public class Team
 {
 public string name;
 public int members;
 public ArrayList assignedWork;
 public float fitness;
 public float MythicalManMonth;
 public Team()
 {
 members = -1;
 assignedWork = new ArrayList();
 fitness = -1;
 MythicalManMonth = 0;
 }
 }

 public class WorkPackage
 {
 public string name;
 public int personDays;
 public ArrayList Dependency;

 public short teamNo;
 public short assignedPosition;
 public double workdays;
 public double totalWorkdays;
 public bool asignedToTeam;

 public WorkPackage()
 {
 Dependency = new ArrayList();
 teamNo = -1;
 assignedPosition = -1;
 asignedToTeam = false;
 workdays = -1;
 totalWorkdays = -1;
 }
 }
 class Program
 {
 ArrayList TList = new ArrayList();
 ArrayList WPList = new ArrayList();
 ArrayList SampleSpace = new ArrayList();

 46

 string output;
 double MMC;
 // Set 1 for n(n-1)/2
 // Set 2 for n
 // Set 3 for log(n)

 int MythicalManMonthtype=3;

 static void Main(string[] args)
 {
 Program P = new Program();

 P.ReadFromFile("c:\\input2.txt");
 P.DisplayLoadedData();
 P.HillClimb(Int16.MaxValue * 20, true);
 //Console.WriteLine("\n\nNow Using Min Fitness Method.");
 //P.HillClimb(Int16.MaxValue * 10, false);
 Console.WriteLine("\nfinished searching");
 Console.ReadLine();
 // File.WriteAllText("c:\\output.txt",P.output);
 //Console.ReadLine();
 //P.FinalMax();

 }
 public void FinalMax ()
 {
 float CurrValue = MaxFit();
 DisplayConfig("Final Max. FitnessValue = " + CurrValue);

 CurrValue = MinFit();
 DisplayConfig("Final Min. FitnessValue = " + CurrValue);
 }
 private int[] RandomizeArray (int Size)
 {
 int[] RandArray = new int[Size];
 int Swap1, Swap2,temp;

 Random Rand = new Random(System.DateTime.Now.Millisecond);

 for(int i =0;i<Size; i++)
 RandArray[i]=i;

 for (int i = 0; i < Size; i++)
 {
 Swap1 = Rand.Next(0, int.MaxValue) % Size;
 Swap2 = Rand.Next(0, int.MaxValue) % Size;

 temp = RandArray[Swap1];
 RandArray[Swap1] = RandArray[Swap2];
 RandArray[Swap2] = temp;
 }

 return RandArray;

 47

 }
 private void DisplayLoadedData()
 {
 for (int i = 0; i < WPList.Count; i++)
 {
 Console.Write(((WorkPackage)WPList[i]).name + ":" +
((WorkPackage)WPList[i]).personDays + "Dep -> ");
 for (int j = 0; j < ((WorkPackage)WPList[i]).Dependency.Count; j++)
 {
 Console.Write(" "+
((WorkPackage)WPList[(int)(((WorkPackage)WPList[i]).Dependency[j])]).name);
 }
 Console.WriteLine();
 }
 }

 // This Function will assign all the work packages to Different teams;
 public void AssignWorkPackages_Randomly(Boolean ConsiderDependencies)
 {
 ClearAssignedWorkPackages();
 if(ConsiderDependencies)
 {
 // add random package selection
 int[] Packages = RandomizeArray(WPList.Count);

 for (int i = 0; i < Packages.Length; i++)
 {
 AssignWorkPackage(Packages[i]);
 }
 }
 else
 {
 Random Rand = new Random(System.DateTime.Now.Millisecond);
 for (int i = 0; i < WPList.Count; i++)
 ((Team)TList[Rand.Next(0, int.MaxValue) %
TList.Count]).assignedWork.Add(WPList[i]);
 }
 }
 void CalculateWorkday(int WorkPaID, int TeamNo)
 {
 // also add functionality to add mythical man month
 if (((Team)TList[TeamNo]).members > 1)
 {
 // Set 1 for n(n-1)/2
 if(MythicalManMonthtype==1)
 ((WorkPackage)WPList[WorkPaID]).workdays =
(((double)((WorkPackage)WPList[WorkPaID]).personDays * MMC) *
(((((Team)TList[TeamNo]).members - 1) * ((Team)TList[TeamNo]).members) / 2) +
(double)(((WorkPackage)WPList[WorkPaID]).personDays));// ((Team)TList[TeamNo]).members;
 // Set 2 for n
 if (MythicalManMonthtype == 2)
 ((WorkPackage)WPList[WorkPaID]).workdays =
(((double)((WorkPackage)WPList[WorkPaID]).personDays * MMC) *
((Team)TList[TeamNo]).members +
(double)(((WorkPackage)WPList[WorkPaID]).personDays));// ((Team)TList[TeamNo]).members;
 // Set 3 for log(n)

 48

 if (MythicalManMonthtype == 3)
 ((WorkPackage)WPList[WorkPaID]).workdays =
(((double)((WorkPackage)WPList[WorkPaID]).personDays * MMC) *
Math.Log10(((Team)TList[TeamNo]).members) +
(double)(((WorkPackage)WPList[WorkPaID]).personDays));// ((Team)TList[TeamNo]).members;

 }
 else
 ((WorkPackage)WPList[WorkPaID]).workdays =
(double)(((WorkPackage)WPList[WorkPaID]).personDays);
 }
 void AssignWorkPackage(int WorkID)
 {
 byte[] b;
 int RandTeamNo;
 if (((WorkPackage)WPList[WorkID]).asignedToTeam)
 return;
 if (((WorkPackage)WPList[WorkID]).Dependency.Count == 0)
 {
 b = Guid.NewGuid().ToByteArray();
 RandTeamNo = System.Convert.ToInt32(b[0]) % TList.Count;

 ((Team)TList[RandTeamNo]).assignedWork.Add(WPList[WorkID]);

 // Calculate Workday using Mythical man month
 CalculateWorkday(WorkID,RandTeamNo);

 // also add TotalWorkdays'
 if (((Team)TList[RandTeamNo]).assignedWork.Count > 1)
 ((WorkPackage)WPList[WorkID]).totalWorkdays =
(short)(((WorkPackage)WPList[WorkID]).workdays +
((WorkPackage)((Team)TList[RandTeamNo]).assignedWork[((Team)TList[RandTeamNo]).assign
edWork.Count - 2]).totalWorkdays);
 else
 ((WorkPackage)WPList[WorkID]).totalWorkdays =
((WorkPackage)WPList[WorkID]).workdays;

 ((WorkPackage)WPList[WorkID]).assignedPosition =
(short)(((Team)TList[RandTeamNo]).assignedWork.Count - 1);
 ((WorkPackage)WPList[WorkID]).teamNo = (short)RandTeamNo;
 ((WorkPackage)WPList[WorkID]).asignedToTeam=true;
 return;
 }

 for (int i = 0; i < ((WorkPackage)WPList[WorkID]).Dependency.Count; i++)
 AssignWorkPackage((int)((WorkPackage)WPList[WorkID]).Dependency[i]);

 while(true)
 {
 b = Guid.NewGuid().ToByteArray();
 RandTeamNo = System.Convert.ToInt32(b[0]) % TList.Count;

 for (int j = 0; j < ((WorkPackage)WPList[WorkID]).Dependency.Count; j++)
 {
 if (((Team)TList[RandTeamNo]).assignedWork.Count == 0)
 break;

 49

 if (((WorkPackage)
((Team)TList[RandTeamNo]).assignedWork[((Team)TList[RandTeamNo]).assignedWork.Count-
1]).totalWorkdays <
((WorkPackage)((Team)TList[((WorkPackage)WPList[((int)((WorkPackage)WPList[WorkID]).Dep
endency[j])]).teamNo]).assignedWork[((WorkPackage)WPList[((int)((WorkPackage)WPList[WorkI
D]).Dependency[j])]).assignedPosition]).totalWorkdays)
 break;
 if (j == ((WorkPackage)WPList[WorkID]).Dependency.Count - 1)
 {// Found add

 ((Team)TList[RandTeamNo]).assignedWork.Add(WPList[WorkID]);

 // Calculate WorkDAy uing Mythical man month
 CalculateWorkday(WorkID,RandTeamNo);

 // also add TotalWorkdays'
 if (((Team)TList[RandTeamNo]).assignedWork.Count > 1)
 ((WorkPackage)WPList[WorkID]).totalWorkdays =
(short)(((WorkPackage)WPList[WorkID]).workdays +
((WorkPackage)((Team)TList[RandTeamNo]).assignedWork[((Team)TList[RandTeamNo]).assign
edWork.Count - 2]).totalWorkdays);
 else
 ((WorkPackage)WPList[WorkID]).totalWorkdays =
((WorkPackage)WPList[WorkID]).workdays;

 ((WorkPackage)WPList[WorkID]).assignedPosition =
(short)(((Team)TList[RandTeamNo]).assignedWork.Count - 1);
 ((WorkPackage)WPList[WorkID]).teamNo = (short)RandTeamNo;
 ((WorkPackage)WPList[WorkID]).asignedToTeam = true;

 return;
 }
 }
 }
 }

 void ClearAssignedWorkPackages()
 {
 for (int i = 0; i < TList.Count; i++)
 ((Team)TList[i]).assignedWork.Clear();
 for (int i = 0; i < WPList.Count; i++)
 {
 ((WorkPackage)WPList[i]).asignedToTeam = false;
 ((WorkPackage)WPList[i]).assignedPosition = -1;
 ((WorkPackage)WPList[i]).teamNo = -1;
 ((WorkPackage)WPList[i]).totalWorkdays = -1;
 ((WorkPackage)WPList[i]).workdays = -1;
 }
 }
 void CalcFitnessFunc()
 {
 try
 {
 ArrayList WorkPs;
 Team CurrTeam;
 for (int i = 0; i < TList.Count; i++)

 50

 {
 WorkPs = ((Team)TList[i]).assignedWork;
 CurrTeam = ((Team)TList[i]);
 CurrTeam.fitness = 0;
 for (int j = 0; j < WorkPs.Count; j++)
 CurrTeam.fitness += (float)(((WorkPackage)WorkPs[j]).workdays /
((Team)TList[i]).members);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception Check Input File: " + e.ToString());
 }
 }
 float MaxFit()
 {
 CalcFitnessFunc();
 float fitnessValue = -1;
 for (int i = 0; i < TList.Count; i++)
 if (fitnessValue < ((Team)TList[i]).fitness)
 fitnessValue = ((Team)TList[i]).fitness;
 return fitnessValue;
 }
 float MinFit()
 {
 CalcFitnessFunc();
 float fitnessValue = int.MaxValue;
 for (int i = 0; i < TList.Count; i++)
 if (fitnessValue > ((Team)TList[i]).fitness)
 fitnessValue = ((Team)TList[i]).fitness;
 return fitnessValue;
 }
 void DisplayConfig(string str)
 {
 Console.WriteLine(str);

 ArrayList WorkPs;
 Team CurrTeam;
 for (int i = 0; i < TList.Count; i++)
 {
 Console.WriteLine();
 WorkPs = ((Team)TList[i]).assignedWork;
 CurrTeam = ((Team)TList[i]);
 output += "\n" + CurrTeam.name + " (" + CurrTeam.members + ") :-";
 Console.Write(CurrTeam.name + " (" + CurrTeam.members.ToString() + ") :-");
 for (int j = 0; j < WorkPs.Count; j++)
 {
 Console.Write(" " + ((WorkPackage)WorkPs[j]).name + "-" +
((WorkPackage)WorkPs[j]).personDays);
 output += "\n" + ((WorkPackage)WorkPs[j]).name + "-" +
((WorkPackage)WorkPs[j]).personDays.ToString();
 }
 }
 //**
 /*ArrayList WorkPs;
 Team CurrTeam;

 51

 for (int i = 0; i < TList.Count; i++)
 {
 Console.WriteLine();
 WorkPs = ((Team)TList[i]).assignedWork;
 CurrTeam = ((Team)TList[i]);
 output += "\n" + CurrTeam.name + " (" + CurrTeam.members + ") :-";
 Console.Write(CurrTeam.name + " (" + CurrTeam.members.ToString() + ") :-");
 if (WorkPs.Count != 0)
 {
 Console.Write(((WorkPackage)WorkPs[WorkPs.Count - 1]).totalWorkdays);
 output += ((WorkPackage)WorkPs[WorkPs.Count - 1]).totalWorkdays;
 }
 }
 */

 }

 /// <summary>
 /// Climbing The Hill.
 /// Two approaches are Supported.
 /// 1. Max Fitness Function Which Minimize the Maximum.
 /// 2. Min Fitness Function which Maximize the Minimum.
 /// </summary>
 /// <param name="MaxTries"></param>
 /// <param name="useMaxFit"></param>
 public void HillClimb(int MaxTries, bool useMaxFit)
 {
 //StreamWriter sw = new StreamWriter("c:\\testing.txt");
 if (useMaxFit) AssignWorkPackages_Randomly(true);
 float CurrValue;

 if (useMaxFit)
 {
 CurrValue = MaxFit();
 // Save Curr Configuration Here , it Should be useful
 DisplayConfig("First Time Configuration. FitnessValue = " + CurrValue);

 for (int i = 0; i < MaxTries; i++)
 {
 //sw.WriteLine(CurrValue); //storing fitness value in file
 //sw.WriteLine("-" + (i + 1));
 AssignWorkPackages_Randomly(true);
 if (CurrValue > MaxFit())
 {
 CurrValue = MaxFit();
 //sw.Write(CurrValue); //storing fitness value in file
 //sw.WriteLine("-" + (i + 2));
 DisplayConfig("\nFound A Better Configuration at iteration number " + i + ".
FitnessValue = " + CurrValue);
 // Save this Configuration or Display IT
 i = -1; continue;
 }
 }
 }

 52

 else
 {
 CurrValue = MinFit();
 // Save Curr Configuration Here , it Should be usefull
 DisplayConfig("First Time Configuration. FitnessValue = " + CurrValue);
 for (int i = 0; i < MaxTries; i++)
 {
 AssignWorkPackages_Randomly(true);
 if (CurrValue < MinFit())
 {
 DisplayConfig("\nFound A Better Configuration at iteration number " + i + ".
FitnessValue = " + CurrValue);
 // Save this Configuration or Display IT
 CurrValue = MinFit();
 i = -1; continue;
 }
 }
 }
 //sw.Close();
 }

 private void ReadFromFile(string filename)
 {

 Team t1 ;
 WorkPackage w ;

 StreamReader SR;
 SR = File.OpenText(filename);
 #region MyRegion

 /*int len = S.Length;
 char[] fl = S.ToCharArray();

 string eff = "";
 string mem = "";

 int i = 0;

 while (fl[i] != 'W' && fl[i + 1] != 'P')
 {
 t1 = new Team();
 if (fl[i] == 'T' && fl[i + 1] != 'e')
 {
 t1.name = "";
 while (fl[i] != '=')
 {
 t1.name = t1.name + fl[i].ToString();
 i++;
 }

 if (fl[i] == '=')
 {
 mem = "";
 while (!(fl[i + 1] == ',' || fl[i + 1] == '\r'))

 53

 {

 mem = mem + fl[i + 1].ToString();
 i++;

 }
 t1.members = Convert.ToInt32(mem);
 Console.WriteLine(t1.name + "=" + mem);

 }
 i++;
 TList.Add(t1);
 }
 i++;
 }
 //**

 while (fl[i] != 'T')
 {
 if (fl[i] == 'W' && fl[i + 1] != 'P')
 {
 w = new WorkPackage();
 w.name = "";
 while (fl[i] != '=')
 {
 w.name = w.name + fl[i].ToString();
 i++;
 }
 if (fl[i] == '=')
 {
 eff = "";
 while (!(fl[i + 1] == ',' || fl[i + 1] == '\r'))
 {

 eff = eff + fl[i + 1].ToString();
 i++;

 }
 Console.WriteLine(w.name + "=" + eff);
 w.personDays = Convert.ToInt32(eff);
 }
 WPList.Add(w);
 }
 i++;
 }*/
 #endregion

 try
 {
 while (!SR.EndOfStream)
 {
 string str = SR.ReadLine();
 str = RemoveSpaces(str);
 if (str.StartsWith("Team:"))
 {
 str = str.Replace("Team:", "");

 54

 string[] TeamsList = str.Split(",=".ToCharArray());

 for (int i = 0; i < TeamsList.Length; i++,i++)
 {
 t1 = new Team();
 t1.name = TeamsList[i];
 t1.members = System.Convert.ToInt32(TeamsList[i + 1]);
 TList.Add(t1);
 //Console.WriteLine(t1.name + "=" + t1.members);
 }
 }
 else if (str.StartsWith("WP"))
 {
 str = str.Replace("WP:", "");
 string[] WorkList = str.Split(",=".ToCharArray());

 for (int i = 0; i < WorkList.Length; i++, i++)
 {
 w = new WorkPackage();
 w.name = WorkList[i];
 w.personDays= System.Convert.ToInt32(WorkList[i + 1]);
 WPList.Add(w);
 //Console.WriteLine(w.name + "=" + w.personDays);
 }
 }
 else if (str.StartsWith("Dependencies"))
 {
 str = str.Replace("Dependencies:", "");
 string[] DepList = str.Split(",>".ToCharArray());

 for (int i = 0; i < DepList.Length; i++, i++)

((WorkPackage)WPList[FindWPIndex(DepList[i])]).Dependency.Add(FindWPIndex(DepList[i+1]));
 }
 else if (str.StartsWith("MMc:"))
 {
 str = str.Replace("MMc:", "");
 str = str.Replace("%", "");

 MMC = System.Convert.ToDouble(str)/100;
 }
 else
 { Console.WriteLine("Unrecognized Line, Format not correct"); }
 }
 }
 catch
 {
 Console.WriteLine("Unrecognized Line, Format not correct");
 }
 }

 private String RemoveSpaces(String str)
 {
 for (int i = 0; i < str.Length; i++)
 if (str[i] == ' ')
 { str = str.Remove(i, 1); i--; }

 55

 return str;
 }

 private int FindWPIndex(string name)
 {
 for (int i = 0; i < WPList.Count; i++)
 if (((WorkPackage)WPList[i]).name.Equals(name))
 return i;
 return -1;
 }
 }
}

 56

11. Appendix B

11.1 Program Output

Output of the program is the configuration of work packages allocated to teams. The

program displays the configuration at each step, whenever a better solution is achieved

i.e. the algorithm moves to the next step, the configuration is displayed alongwith fitness

value of that configuration. This helps in analyzing the behaviour of the program.

11.1.1 Version 1.0 Output

Figure B1 shows the output produced by program version 1.0. At each step the

allocation of work packages to each team is displayed alongwith fitness value of that

particular configuration.

Figure B1: Program Version 1.0 Output

 57

11.1.2 Version 2.0 Output

Figure B2 shows the output produced from program version 2.0. There is not much

difference in the output as compared to version 1.0 except that the number of work

packages has increased. The pattern is same with fitness value appearing at top of each

configuration.

 Figure B2: Program Version 2.0 Output

 58

12. APPENDIX C

12.1 Input File Version 1.0

This input file is required to run version 1.0 of the program. This is simple form of input

provided to the program. The input file consists of following in information:

• Number of Teams

• Members in Each Team

• Number of Work Packages

• Effort Required to Complete Each Work Package

Figure C1 shows the snapshot of input file version 1.0

For simplicity purpose, the dependent work packages are combined together to form a

single work package, thus resulting work packages are independent of each other. As a

result we have fewer number of work packages.

Figure C1: Input File Version 1.0 Snapshot

 59

12.2 Input File Version 2.0

This input file is required to execute version 2.0 of the program. This file contains

additional information alongwith the information present in version 1.0. The work

packages are not combined and dependency structure is also included in the file. The

value of communication variable MMC is also included in the file.

Figure C2 shows the snapshot of input file version 2.0

Figure C2: Input File Version 2.0 Snapshot

 60

13. APPENDIX D

13.1 Test Data

For confidentiality purpose, the names of work packages have been changed.

• Number Teams = 5

• Number of Members in Team 1 = 3

• Number of Members in Team 2 = 3

• Number of Members in Team 3 = 7

• Number of Members in Team 4 = 5

• Number of Members in Team 5 = 2

Detail of work packages is given in table below:

WWoorrkk PPaacckkaaggee EEffffoorrtt RReeqquuiirreedd

((iinn ppeerrssoonn ddaayyss))

DDeeppeennddeenntt OOnn

W1 60 -

W2 4 W1

W3 10 W2

W4 3 W3

W5 7 -

W6 7 W5

W7 2 W6

W8 2 W7

W9 14 W8

W10 2 W9

W11 14 W4

W12 5 W11

W13 10 W1

W14 5 W11

W15 6 W10

W16 16

W17 1 W16

W18 2 W16

 61

W19 5 W18

W20 5 W19

W21 4 W20

W22 6 W21

W23 8 W22

W24 3 W22

W25 3 W24

W26 3 W25

W27 3 W26

W28 2 W7

W29 10 W28

W30 2 W29

W31 6 W27

W32 5 W27

W33 9 W32

W34 10 W33

W35 4 W17

W36 10 W27

W37 4 W36

W38 4 W19

W39 5 W38

W40 4 W39

W41 6 W40

W42 5 W41

W43 5 W41

W44 4 W41

W45 4 W41

W46 2 W45

W47 4 W27

W48 5 W45

W49 1 W31

W50 1 W49

W51 3 W41

 62

W52 2 W48

W53 2 W14

W54 1 W34

W55 3 W48

W56 3 -

W57 5 W56

W58 4 W57

W59 4 W57

W60 5 W59

W61 5 W34

W62 3 W36

W63 10 W57

W64 1 W63

W65 5 W8

W66 19 -

W67 5 W66

W68 2 W66

W69 2 W66

W70 2 W66

W71 2 W49

W72 2 W71

W73 1 W72

W74 1 W73

W75 4 W74

W76 4 W75

W77 1 W76

W78 4 W77

W79 1 W78

W80 1 W79

W81 1 W80

W82 1 W49

W83 1 W49

W84 1 W49

 63

W85 2 W84

W86 5 W75

W87 1 -

W88 2 W87

W89 5 W88

W90 5 W89

W91 10 W90

W92 4 W91

W93 3 W92

W94 1 W93

W95 1 W94

W96 1 W49

W97 1 W96

W98 2 W7

W99 5 W47

W100 10 W14

W101 9 W66

W102 1 W101

W103 1 W102

W104 1 W97

W105 2 W54

W106 3 W77

W107 0 W80

W108 16 W81

Figure D1: Work Packages-Effort and Dependency

