
Formal Verification of Communication Protocol
using Type Theory

Xingyuan Zhang, Xiren Xie
PLA University of Science and Technology,

Nanjing, China
Email: {xyzhang, xiexr}@public1.ptt.js.cn

Malcolm Munro
Department of Computer Science, University of Durham,

Science Laboratories, South Road, Durhram, DH1 3LE, U.K.
Email: Malcolm.Munro@durham.ac.uk

Mark Harman, Lin Hu
Department of Information Systems and Computing,

Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K.
Email: {Mark.Harman, Lin.Hu}@brunel.ac.uk

Abstract— In this paper, an approach is proposed to verify
communication protocol using the type theoretical proof assistant
Coq. Compared with existing methods of protocol verification,
this approach is based directly on the simple notion of event
trace. Without the burden of embedding external concurrent
languages such as process algebra, finite state machine, temporal
logic, etc., this approach leads to very efficient reasoning. The
approach is deliberately designed to exploit the computational
mechanism intrinsic to type theory so that many cases can be
proved automatically by computation.

Because of these advantages, even non-trivial protocols can be
verified within reasonable cost.

This paper shows that both safeness and liveness can be
formalized and verified using only finite event traces. A simplified
version of the sliding window protocol is used to illustrate the
approach. All the results presented in this paper have been
mechanically checked in Coq. The relevant Coq scripts are
accessible through Internet.

Keywords: Protocol Engineering, Protocol Verification

I. INTRODUCTION

Protocol verification can roughly be divided into two cat-
egories: Model Checking [1], [2], [3] and Theorem Proving
[4], [5], [6], [7]. This paper belongs to the latter category.

Mechanical support is crucial for the theorem proving ap-
proach to scale up. However, ‘which language to use’ remains
an open question. A lot of formalisms have been proposed,
Process Algebra [8], [9], I/O Automata [10], Temporal Logic
[11], [12], Statechart [13] being just a few. One problem with
these formalisms is that most of them leave the definition and
reasoning of data types to the ‘underlying mathematics’. The
consequence is that when developing mechanical support for
these languages, two languages have to be dealt with – the
language for protocol specification (protocol language) and the
language for the ‘underlying mathematics’ (mathematics lan-
guage). How to merge these two languages into one integrated
language is not yet clear.

As a practical consequence of this problem, theorem prov-
ing based protocol verification usually begins with language
embedding. The disadvantage of language embedding is that a
lot of theorem proving resources are spent on the management
of language being embedded, rather than on the verification of

the protocol itself. This problem may be alleviated by using
‘shallow embedding’.

In this paper, we go a step further – there is no embedding
at all. Communication protocol is specified and verified using
only standard mathematical notations. Since most general pur-
pose proof assistant systems are initially developed to support
mathematics, this approach is likely to be better supported.

The basic ideas of our approach are:
1) The semantics of concurrent systems is modelled as set

of event traces. The main difference from Focus is that
we deal with finite traces only. Such a simpler notion of
trace leads to efficient reasoning. It is shown that both
safeness and liveness properties can be modelled using
finite traces only.

2) Only standard mathematical language is used. In stead
of using an embedded language such as Process Algebra,
I/O Automata, Statechart or Temporal Logic, this paper
uses the language of Coq [14], [15], [16], which is
the language of constructive mathematics. Without the
burden of language embedding, the theorem proving re-
sources of Coq can be focused directly on the concurrent
system under investigation. Such a kind of ‘focus’ results
in efficient reasoning as well.

Another novelty of our work is that the approach of ‘spec-
ification by observation’ is used, where system properties
are expressed as properties of observation functions, which
are list processing functions defined using the computational
mechanism intrinsic to type theory. Such a design is deliberate
to exploit the computational mechanism of type theory so that
many cases can be proved automatically by computation.

Because of these advantages, highly efficient reasoning is
achieved, so that even non-trivial communication protocols can
be treated with reasonable cost. A simplified sliding window
protocol is chosen as an example to illustrate the ideas.
Since sliding window protocol usually serves as a benchmark
example in protocol verification, the choice makes it easier to
compare our approach with others.

The particular version of sliding window protocol, although
simplified, is still an infinite state system, which lies beyond

the reach of ordinary model checking. The formal verification
of this protocol shows the potential of our approach. It is
shown that both safeness and liveness can be treated using
our approach.

The relevant Coq scripts for this paper can be found at:
http://www.dur.ac.uk/xingyuan.zhang/sw/concCoq.zip.

The rest of this paper is organized as follows: Section
II shows how a concurrent system can be modelled as an
inductively defined set of event traces. Section III describes
the architecture of sliding window protocol and the set of
events needed to specify it. Section IV specifies the desired
behavior of the protocol. In Section V, additional observation
functions required to implement the sliding window protocol
are defined. Section VI presents the sliding window protocol
as a concurrent system SW. Section VII gives the proof of
safeness. A detailed explanation of the proof of Lemma 7.4
shows how the computational mechanism is used in proof
construction. Section VIII gives the proof of liveness. Section
IX summarizes related works and gives some discussions.
Section X is the conclusion. Auxiliary definitions used in this
paper can be found in Appendix A. Some preliminary lemmas
are given in Appendix B.

A. Conventions

Because type theory is proposed to formalize constructive
mathematics, we are able to present the work in standard
mathematical notation. All these standard formlæ have precise
meaning in type theory and this enables the results in this paper
to be checked mechanically by Coq.

Type theory has a notion of computation, which is used as an
definition mechanism, where the equation a

def
=⇒ b represents

a ‘computational rule’ used to expand the definition of a to b.
The equality symbol ‘=’ used in this paper is the Leibniz

equality in type theory. Let a
def

=⇒∗ b means ‘a computes to

b’, we have: (a
def

=⇒∗ b) ⇒ (a = b) but not vise versa.
Free variables in formulae are assumed to be universally

quantified, for example, n1 +n2 = n2 +n1 is an abbreviation
of ∀n1, n2. n1 + n2 = n2 + n1.

II. CONCURRENT SYSTEM

A concurrent system on event set Evt is written as CS(Evt)
and defined as a relation between event trace and event:

CS(Evt)
def
=⇒ [[Evt]] → Evt → Prop (1)

where the event set Evt is represented as a type in type theory,
event trace is represented as list of events: [[Evt]] 1. Prop is
the type of propositions in type theory. For concurrent system
cs : CS(Evt), event trace tr : [[Evt]] and event e : Evt, the
expression

cs(tr, e)

means: in concurrent system cs, e is a valid event to happen
under the state defined by the event trace tr. The execution of

1[[Evt]] is the type of lists consisting of elements from type Evt. List
operations can be found in Appendix A.2.

VT(cs, 〈〉)
vt nil

VT(cs, tr) cs(tr, e)

VT(cs, e � tr)
vt cons

Fig. 1. Definition of VT

a concurrent system cs starts with empty trace, at each step of
execution, if cs(tr, e) is true for some event e, then e could
be the next event to happen, in which case it is added to the
head of the current trace tr. Instead of defining the state of a
concurrent system as a value assignment for a certain set of
variables, we represent the state of a concurrent system as a
finite trace of events. Therefore, the state of the system changes
with the occurrence of events. The system is concurrent in the
sense that the choice between several possible valid events is
nondeterministic.

Such a notion of execution is reflected in the definition of
the relation VT(cs, tr) in Figure 1, where VT(cs, tr) means
the trace tr is a valid trace of the concurrent system cs. The
rule vt nil defines the empty trace (written as 〈〉) to be a valid
trace; and the rule vt cons says: if tr is a valid trace, and e is
a valid event to happen under tr, then e � tr (the list obtained
by adding e to the head of tr) is a valid trace.

In this way, the behavior of a concurrent system can be
represented as an inductively defined set of event traces. Most
of the lemmas verified in this paper have the form:

∀ tr .VT(cs, tr) ⇒ P (tr) (2)

where cs is the concurrent system under investigation, P is the
property we are interested in. Since Coq has comprehensive
support for structural induction, by induction on the formation
of VT(cs, tr), P can be proved conveniently. Proofs of this
kind often consist of a large number of cases. A particular
appealing aspect of our approach is that many of them can be
discharged automatically by the computational mechanism of
type theory, so that people can concentrate more on interesting
cases.

The composition of two concurrent systems cs1, cs2 :
CS(Evt) is now simply defined as:

cs1 ‖ cs2
def
=⇒ λ tr, e. cs1(tr, e) ∨ cs2(tr, e) (3)

III. SYSTEM ARCHITECTURE

Sliding window protocol is a communication protocol which
provides reliable connection between two network nodes
linked with an unreliable communication channel. It is re-
quired that all messages sent at one node will eventually be
delivered at the other node in the same order as they were
sent. The architecture of the sliding window protocol is given
in Figure 2. The set of events determined by this architecture
is given in Figure 3, where M is the type of messages, which
is not defined explicitly in this paper.

In Figure 2, the the sliding window protocol is modelled
by four event-generating entities, namely: Supplier, Sender,
Channel and Receiver. Each class of events is represented as
an arrow, from the entity which generates it, to the entity being
affected. For example, the event B[m] (generated by Supplier)

Supplier Sender Channel Receiver
B[m] [m]B

>(ch)

ct!fm

cf?fm

ct?fm

cf!fm
Fig. 2. The architecture of the sliding window protocol

Evt : Set
Evt formation

m : M

B[m] : Evt
msg in

m : M

[m]B : Evt
msg out

ch : Chan fm : Frm

ch!fm : Evt
send

ch : Chan fm : Frm

ch?fm : Evt
receive

ch : Chan

>(ch) : Evt
lost

Fig. 3. Definition of Evt

represents the creation of a message m to be transferred by
the sliding window protocol. The event [m]B (generated by
Receiver) represents the delivery of message m to the outside
world. There are two communication channels, ct is the one
from Sender to Receiver and cf is the one from Receiver to
Sender. The name of channels are defined in Figure 4 as the
inductive type Chan.

For any channel ch, the sending of frame fm over ch is
represented by the event ch!fm, the receiving of frame fm

from ch is represented by the event ch?fm. The type of frames
Frm is defined in Figure 5, where the frame data(n,m)

is used by Sender to wrap the message m before sending it
over ct and n is a sequence number managed by Sender. The
frame ack(n) is used by Receiver to send acknowledging
information back to Sender and n is the sequence number of
the message being acknowledged.

Interferences may happen to communication channels, the
effect of which is to destroy frames under transmission. The
occurrence of a single interference to channel ch is represented
by the event >(ch).

IV. SPECIFICATION BY OBSERVATION

Suppose the sliding window protocol is implemented as
a concurrent system SW. Then the desired behavior of SW

is expressed as properties of event traces generated by SW

according to the inductive definition of VT given in Figure 1.
Properties of event traces are described in terms of observation
functions, which are simply list processing functions. For
example, the list of all messages created by Supplier is defined
by the observation function msgs in:





msgs in(B[m] � tr)
def
=⇒ msgs in(tr) u m

msgs in(� tr)
def
=⇒ msgs in(tr)

msgs in(〈〉)
def
=⇒ 〈〉

(4)

where, the equation msgs in(B[m] � tr)
def
=⇒ msgs in(tr)u

m says: when an event B[m] happens, the message it carries
is appended to the end of the resulting list (u is defined in
(32)), and the equation msgs in(� tr)

def
=⇒ msgs in(tr)

says: when any other kind of event happens, the resulting list
remains unchanged, where ‘all the other events’ are written
as . Notice that the use of makes msgs in resilient to
the extension of Evt because there is no need to change the
definition when new events are added to Evt. And finally, the
equation msgs in(〈〉)

def
=⇒ 〈〉 says: the resulting list is initially

empty.
Similarly, the list of messages delivered by the the slid-

ing window protocol is defined by the observation function
msgs out:





msgs out([m]B � tr)
def
=⇒ msgs out(tr) u m

msgs out(� tr)
def
=⇒ msgs out(tr)

msgs out(〈〉)
def
=⇒ 〈〉

(5)

With these two functions, the desired behavior of SW can
be expressed by the following two lemmas:

Lemma 4.1 (Safeness):

∀tr .VT(SW, tr) ⇒

∃l. msgs in(tr) = msgs out(tr)̂ l (6)
which says: the list of messages delivered at the Receiver is a
prefix of the messages injected into the system at the Sender.

Lemma 4.2 (Liveness):

∀tr .VT(SW, tr) ⇒

∃tr′.VT(SW, tr′̂tr) ∧

msgs in(tr) = msgs out(tr′̂tr) (7)
which says: all the messages injected into the system at
the Sender will eventually be delivered at the Receiver. The
expression VT(SW, tr′̂tr) means tr′̂tr is a valid extension

Chan : Set
Chan formation

ct : Chan
chan to

cf : Chan
chan from

Fig. 4. Definition of Chan

Frm : Set
Frm formation

n : Nat m : M

data(n,m) : Frm
data

n : Nat

ack(n) : Frm
ack

Fig. 5. Definition of Frm

of tr. Lemma 4.2 guarantees that there is always a valid
extension (or future) for any valid trace tr, when the messages
delivered at the Receiver equals the messages injected at
the Sender at the moment denoted by tr. If the scheduling
mechanism is fair to all possible futures, the phenomena
described by Lemma 4.2 is guaranteed to happen.

Notice that both Lemma 4.1 and Lemma 4.2 are in the
general pattern described in (2), as most of the lemmas in this
paper.

V. MORE OBSERVATION FUNCTIONS

For the construction of SW, additional observation functions
are required. The function msg no rcvd computes the list of
sequence numbers from data frames data(n,m) observable
by the Receiver:




msg no rcvd(ct? data(n,m) � tr)
def
=⇒

n � msg no rcvd(tr)

msg no rcvd(� tr)
def
=⇒

msg no rcvd(tr)

msg no rcvd(〈〉)
def
=⇒ 〈〉

(8)
The function msgs rcvd computes a finite mapping from

sequence numbers to messages from data frames data(n,m)

observable by the Receiver (the definition of ‘finite mapping’
is given in Appendix A.3):





msgs rcvd(ct? data(n,m) � tr)
def
=⇒

msgs rcvd(tr) [m n]

msgs rcvd(� tr)
def
=⇒ msgs rcvd(tr)

msgs rcvd(〈〉)
def
=⇒ ε

(9)
The definition of msgs rcvd(tr) [m n] can be found in (38).

The function msg no acked computes the list of acknowl-
edged sequence numbers from the acknowledging frames
ack(n) observable by the Sender:





msg no acked(cf? ack(n) � tr)
def
=⇒

n � msg no acked(tr)

msg no acked(� tr)
def
=⇒ msg no acked(tr)

msg no acked(〈〉)
def
=⇒ 〈〉

(10)

Supplier(tr,B[m])
sp in

Fig. 6. Definition of Supplier

The function queue(ch, tr) computes the list of frames observ-
able by communication channel ch, waiting to be transmitted
to their destination:



queue(ch, ch!fm � tr)
def
=⇒

queue(ch, tr) u fm if ch = ch

queue(ch, ch?fm � tr)
def
=⇒ fms

if ch = ch ∧ queue(ch, tr) = fm � fms

queue(ch, >(ch) � tr)
def
=⇒ fms

if ch = ch ∧ queue(ch, tr) = fm � fms

queue(ch, � tr)
def
=⇒ queue(ch, tr)

(11)
where, when a frame fm is sent to a channel ch (represented
by the event ch!fm), if ch = ch, the frame fm is appended
to the end of the resulting list. When a frame is delivered to
destination (represented by the event ch?fm), if ch = ch and
the current value of the resulting list is fm � fms, the new
value of the resulting list becomes fms. When an interference
happens (represented by the event >(ch)), if ch = ch and the
current value of the resulting list is fm � fms, the new value
of the resulting list becomes fms. For all other cases, the
resulting list remains unchanged.

VI. THE CONSTRUCTION OF SW

The sliding window protocol SW can now be defined as the
composition of four concurrent sub-systems, each correspond-
ing to an entity in Figure 2:

SW
def
=⇒ Supplier ‖ Sender ‖ Channel ‖ Receiver

The definition of Supplier is given in Figure 6. There is
only one rule for Supplier, which says: Supplier is allowed to
inject message into the system at any time.

The definition of Sender is given in Figure 7, where
the operation maxn(. . .) is defined in (41) and the oper-
ation . . . [. . .] is defined in (35). The rule sd send says:
any message injected into the system which has not yet
been acknowledged may be sent over the channel ct. The
premise maxn(msg no acked(tr)) = acked means that there
is a number ,acked, representing the maximum number ac-
knowledged at the moment tr. For any sequence numbers

maxn(msg no acked(tr)) = acked acked < n msgs in(tr)[n] = m

Sender(tr, ct! data(n,m))
sd send

mcat(msg no acked(tr)) = ⊥ msgs in(tr)[n] = m

Sender(tr, ct! data(n,m))
sd send init

Fig. 7. Definition of Sender

n (acked < n), if the message for n has been injected into
the system (specified by the premise msgs in(tr)[n] = m),
then, that massage m is allowed to be sent over ct after being
encapsuled in data(n,m) . The rule sd send init says, if
there is no acknowledgement received at all (specified by the
premise mcat(msg no rcvd(tr)) = ⊥), then, any message
injected into the system is allowed to be sent over the the
channel ct.

When defining an entity, the observation functions used
must be observable by that entity. For example, the two
observation functions msg no acked and msgs in in Figure
7 are all observable by the Sender.

The definition of Receiver is given in Figure 8, where the
operation |. . .| is defined in (33) and the operation mcat(. . .)
is defined in (42). The rule rv out says: messages stored
in the finite map msgs rcvd(tr) is allowed to be deliv-
ered sequentially. The observation function |msgs out(tr)|
records the number of messages delivered at the moment
denoted by tr, therefore, the next message to deliver must
have |msgs out(tr)| as its sequence number. If this mes-
sage is available in msgs rcvd(tr) (specified by the premise
(msgs rcvd(tr))(|msgs out(tr)|) = m), then the message can
be delivered by [m]B. The rule rv ack concerns the acknowl-
edging frame ack(rcvd) . As indicated by the premise

mcat(msg no rcvd(tr)) = rcvd

rcvd is the largest continuous number of the list of sequence
numbers which have arrived at the Receiver.

The definition of Channel is given in Figure 9, where the
rule ch out specifies that: if the list of frames waiting to be
delivered in channel ch is not empty, then the first frame in that
list is delivered to its destination. The rule ch lost specifies
that: when the list of frames waiting to be delivered in channel
ch is not empty, interference may happen to ch.

VII. PROOF OF SAFENESS

The proof of the Safeness (Lemma 4.1) consists of a series
of lemmas. The following lemma shows that: all frames
contained in channel ct are of the form data(n,m) .

Lemma 7.1:

VT(SW, tr) ⇒

fm ∈ queue(ct, tr) ⇒ ∃n,m . fm = data(n,m) (12)
The following lemma shows that all frames contained in
channel cf are of the form ack(n) .

Lemma 7.2:

VT(SW, tr) ⇒

fm ∈ queue(cf, tr) ⇒ ∃n . fm = ack(n) (13)

The following lemma shows that when the frame data(n,m)

is in channel ct, the condition msgs in(tr)[n] = m must hold.
Lemma 7.3:

VT(SW, tr) ⇒

data(n,m) ∈ queue(ct, tr) ⇒

msgs in(tr)[n] = m (14)
The following lemma shows that for all pairs (n,m) in
msgs rcvd(tr), the condition msgs in(tr)[n] = m holds.

Lemma 7.4:

VT(SW, tr) ⇒

msgs rcvd(tr)(n) = m ⇒

msgs in(tr)[n] = m (15)
A lot of proof cases in this paper are discharged automat-

ically by the computational mechanism of type theory, but
space does not allow us to explain each of them. To illustrate,
we shall explain the use of computation through the proof of
Lemma 7.4.

The proof is by induction on the structure of the
VT(SW, tr). After expanding the definition of SW, there is
one case for each rule in Figures 6 – 9. Since Lemma 7.4
concerns only msgs rcvd and msgs in, the values of which are
only affected by the occurrence of ct? data(n,m) and B[m],
all those rules which do not generate these two events have no
effect on the truth of Lemma 7.4. For these ‘irrelevant rules’,
the goal can be proved automatically by the computational
mechanism of Coq, because, after expanding the definition of
msgs rcvd and msgs in, the goal is exactly the same as the
induction hypothesis.

Only two nontrivial cases are left, the one for sp in and the
one for ch out. For sp in, since the occurrence of B[m] has
no effect on msgs rcvd, only msgs in gets extended at the end,
the goal can be proved easily from the induction hypothesis.
For ch out, when ch = cf, the occurrence of ch?fm has
no effect on either msgs rcvd or msgs in, the goal can be
proved directly from the induction hypothesis. When ch = ct,
according to Lemma 7.1, we have fm = data(n,m) . From
this, Lemma 7.3 and the induction hypothesis, the goal can be
proved. This ends the proof of Lemma 7.4.

(msgs rcvd(tr))(|msgs out(tr)|) = m

Receiver(tr, [m]B)
rv out

mcat(msg no rcvd(tr)) = rcvd

Receiver(tr, cf! ack(rcvd))
rv ack

Fig. 8. Definition of Receiver

queue(ch, tr) = fm � fms

Channel(tr, ch?fm)
ch out

queue(ch, tr) 6= 〈〉

Channel(tr, >(ch))
ch lost

Fig. 9. Definition of Channel

The following lemma shows that: if m is the n-th element
of msgs out(tr), (n,m) must be contained in msgs rcvd(tr).

Lemma 7.5:

VT(SW, tr) ⇒

msgs out(tr)[n] = m ⇒

msgs rcvd(tr)(n) = m (16)
Combining Lemma 7.5 and Lemma 7.4, it can be proved that:

Lemma 7.6:

VT(SW, tr) ⇒

msgs out(tr)[n] = m ⇒

msgs in(tr)[n] = m (17)
which says: the n-th elements of msgs out(tr) is also the n-th
elements of msgs in(tr).

The following lemma shows that: if for any n, the n-th
element of l1 is also the n-th element of l2, then l1 is a prefix
of l2.

Lemma 7.7:

(∀n, a. l1[n] = a ⇒ l2[n] = a) ⇒ ∃ l . l2 = l1̂ l (18)
By applying Lemma 7.7 to Lemma 7.6, Lemma 4.1 can be
proved.

VIII. PROOF OF LIVENESS

Instead of proving Liveness (Lemma 4.2) directly, we first
prove Lemma 8.1, which says: if the messages delivered by the
Receiver is less than the messages injected into the Sender at
least by m (expressed as msgs in(tr) = msgs out(tr)̂ (m �

l)), then there is a valid extension of tr which delivers the mes-
sage m (expressed as msgs out(tr′̂ tr) = msgs out(tr) u

m). Lemma 4.2 can be proved easily by repeated application
of Lemma 8.1.

Lemma 8.1 (One step liveness):

VT(SW, tr) ⇒

msgs in(tr) = msgs out(tr)̂ (m � l) ⇒

∃ tr′ . (VT(SW, tr′̂ tr) ∧

msgs out(tr′̂ tr) = msgs out(tr) u m)
Several preliminary lemmas are needed to prove this lemma.
These lemmas are explained in Appendix B.

The proof of Lemma 8.1 is: It is important to notice that:
since |msgs out(tr)| is the number of messages delivered at
the moment tr, the next message to deliver must have the

number |msgs out(tr)| (the definition of |. . .| is in (33)). The
proof is to find where this message resides and to show that
this message will eventually be delivered by the Receiver.

Depending on the value of mcat(msg no rcvd(tr)), there
are two cases:

1) When mcat(msg no rcvd(tr)) = rcvd, from
Lemma 1.4, we have:

|msgs out(tr)| ≤ rcvd + 1

Depending on the value of |msgs out(tr)|, there are two
sub-cases:

a) When |msgs out(tr)| = rcvd + 1, from this and
the premise

msgs in(tr) = msgs out(tr)̂ (m � l) (19)

it can be deduced that:

msgs in(tr)[rcvd + 1] = m (20)

The next message to be delivered must have
sequence number rcvd + 1 and this message
has not arrived at the Receiver yet. We first
search this message in queue(ct, tr). According to
Lemma 1.1, there could be two cases:

i) When

(∃hd :[[Frm]], m : M, tl : [[Frm]].
queue(ct, tr) =

(hd u data(rcvd + 1,m))̂ tl ∧

(∀fm. fm ∈ hd ⇒

fm 6= data(rcvd + 1,m)))

which means the message is in queue(ct, tr).

By applying Lemma 1.2 to this, we have:

∃ tr , nl .

VT(SW, tr̂ tr) ∧ (21a)
queue(ct, tr̂ tr) =

data(rcvd + 1,m) � tl ∧ (21b)

msg no rcvd(tr̂ tr) =

nl � msg no rcvd(tr) ∧ (21c)
¬(rcvd + 1 ∈ nl) ∧ (21d)
msgs out(tr̂ tr) = msgs out(tr) ∧

(21e)
msgs in(tr̂ tr) = msgs in(tr) (21f)

By assigning [m]B � ct? data(rcvd + 1,m) � tr

to tr′, the goal can be proved as the following:
The execution of tr moves data(rcvd + 1,m)

to the head of ct so that the event
ct? data(rcvd + 1,m) can be generated by
using the rule ch out. Since rv out is waiting
for the message numbered rcvd+1 in order to
deliver the next message, the event [m]B can
now be generated by rv out. From (21e), it
can be deduced that:

msgs out(([m]B � ct? data(rcvd + 1, m) � tr)̂ tr)

= msgs out(tr) u m

(22)
From (19), (21f) and (22), it can be proved
that m = m. From this, the specialized goal:
msgs out(([m]B � ct? data(rcvd + 1, m) � tr)̂ tr)

= msgs out(tr) u m

can be proved from (22).
ii) When

(∀fm. fm ∈ queue(ct, tr) ⇒

(∀m. fm 6= data(rcvd + 1,m))) (23)

which means the message is not in ct.
We are going to show that the event
ct! data(rcvd + 1,m) will eventually happen,
which sends the message numbered rcvd + 1
over channel ct. Therefore, by the same argu-
ment as Case 1(a)i, the goal can be proved.
The rules capable of generating this event are
sd send and sd send init. Depending on the
value of maxn(msg no acked(tr)), there are
two sub-cases:

A) When maxn(msg no acked(tr)) = ackd,
from Lemma 1.3, it can be derived that
ackd ≤ rcvd. Therefore, we have

ackd < rcvd + 1 (24)

Now, the event ct! data(rcvd + 1,m) can
be generated by applying sd send to (24)
and (20).

B) When maxn(msg no acked(tr)) = ⊥, by
applying sd send init to this and (20), the
event ct! data(rcvd + 1,m) is generated.

b) When |msgs out(tr)| ≤ rcvd, since rcvd is the
largest continuous sequence number observed by
the Receiver, all messages less or equal to rcvd

have already received by the Receiver. Therefore,
we have:

∃m . msgs rcvd(tr)(|msgs out(tr)|) = m (25)

which makes the rule rv out applicable. The goal
can be proved easily.

2) When mcat(msg no rcvd(tr)) = ⊥, which means there
is no largest continuous sequence number in all the
frames observed by the Receiver. Therefore, it can be
deduced that the message with sequence number 0 has
not been observed by the Receiver. From Lemma 1.4,
it can be deduced that |msgs out(tr)| = 0. Therefore,
a frame data(0,m) must arrive for the Receiver to
deliver the next message.

a) When data(0,m) is already in ct, a similar
argument to Case 1(a)i can be used to prove the
goal.

b) When data(0,m) is not in ct. By applying
Lemma 1.3 to the fact that

mcat(msg no rcvd(tr)) = ⊥

it can be deduced that:

maxn(msg no acked(tr)) = ⊥ (26)

By a similar argument to (20), we have:

∃m . msgs in(tr)[0] = m (27)

By applying sd send init to (26) and (27), the
event ct! data(0,m) is generated. After the oc-
currence of this event, a similar argument to Case
1(a)i can be used to prove the goal.

This ends the proof of Lemma 8.1.

IX. RELATED WORK AND DISCUSSION

Similar approach has been used by Paulson to verify secu-
rity protocols [17], [18]. Our work differs from Paulson’s in
the following sense:

• In section II, a formal notion of concurrent systems
and their parallel composition is proposed, which is not
present in Paulson’s work. We believe, this makes the
conception much more clearer.

• While Paulson’s approach mainly deals security proto-
cols, our approach is proposed as a general approach for
protocol verification. To serve this purpose, a method to

specify and treat liveness is proposed in this paper, which
is absent in Paulson’s work as well.

As summarized in [19], a lot of experiments have been
carried out in Focus, which, similar to our approach, is based
on event traces and standard mathematics notation as well.
However, the Focus allows infinite event traces, which is
treated using denotational approach. The work in this paper
shows that: the additional complexity of infinite traces is not
strictly necessary.

In [20], Yodaiken proposed using basic mathematical lan-
guages directly. Our approach is much of the same spirit as
theirs, but with more stress on mechanical support. Addition-
ally, the notion of ‘Specification by Observation’ in this paper
is absent in [20].

Gimenez [21] verified Alternate Bit Protocol using Coq
co-inductive type, Bezem and Groote [22] verified the same
protocol using an axiomatic approach. Both these two work
are done using Coq, and both are using language embedding
of process algebras. Therefore, despite the fact that we are
using the same proof assistant as theirs, our approach is quite
different from theirs.

X. CONCLUSION

This paper proposes a approach of protocol verification in
type theoretical proof assistant Coq. We believe that this ap-
proach is applicable to other type theory based proof assistants
as well. A simplified version of sliding window protocol is
used as an illustrating example. It shows that both safeness
and liveness can be formalized and reasoned about by using
only finite traces. Such a simplified notion of trace leads to
efficient reasoning, so that the overall verification of a non-
trivial protocol can be carried out within reasonable cost. The
approach of ‘specification by observation’ is used so that many
cases can be proved automatically by using the computational
mechanism intrinsic to type theory.

APPENDIX

A. Auxiliary Definitions
1) Exceptional Set: For A : Set, exceptional set M(A) is

defined as:
A : Set

⊥ : M(A)
bottom value

A : Set a : A

return(a) : M(A)
normal value

(28)

Intuitively, M(A) represents the type obtained from A by
adding a special element ⊥ to represent undefined value. A
normal element a of the original type A is represented as
return(a) in exceptional set M(A). However, the return is
usually omitted in the sequel, unless there is possibility of
confusion.

For el : M(A), f : A → M(B), the operation el < f is
used to compute a value in M(B), which is defined as:

{
return(a) < f

def
=⇒ f(a)

⊥ < f
def
=⇒ ⊥

(29)

2) List: In the type theory of Coq, data types used in
concrete reasoning usually reside in the universe Set. So, the
assertion ‘A is a data types’ is written as A : Set.

For any data types type A : Set, another data types [[A]] is
defined for the lists made of elements from A:

A : Set

〈〉 : [[A]]
nil value

A : Set a : A l : [[A]]

a � l : [[A]]
cons value

(30)

Intuitively, 〈〉 is the empty list, and the operator � is used to
put a : A (an element of A) to the head of l : [[A]] (an element
of [[A]]).

The append operation l1̂ l2 is defined as:
{

〈〉̂ l2
def
=⇒ l2

(a � l1)̂ l2
def
=⇒ a � (l1̂ l2)

(31)

The operation l u a is used to append element a to the end
of l:

l u a
def
=⇒ l̂(a � 〈〉) (32)

The operation |l| is used to compute the length of a list, which
is defined as: {

|a � l|
def
=⇒ |l| + 1

|〈〉|
def
=⇒ 0

(33)

The relation i ∈ l means i is contained in list l, which is
define as:

{
i ∈ (i � l)

def
=⇒ i = i ∨ (i ∈ l)

i ∈ 〈〉
def
=⇒ False

(34)

The operation l[n] is used to select the n-th elements of l.
It is defined as:





a � l[0]
def
=⇒ a

a � l[n + 1]
def
=⇒ l[n]

〈〉[n]
def
=⇒ ⊥

(35)

3) Finite Mapping: Given any two type A and B, A ⇀ B

is the type of finite mappings from A to B, which is defined
as:

A ⇀ B
def
=⇒ A → M(B) (36)

The empty mapping, which does not map anything, is written
as ε, and is defined as:

ε
def
=⇒ λa : A.⊥ (37)

Intuitively, for finite map χ : A ⇀ B, a : A, b : B, the
assertion χ(a) = b means: the mapping χ maps a to b.

The operation χ [b a] is used to add a new map ‘a to b’ to χ,
overriding the original maps for a in χ, it is formally defined
as: {

χ [b a] (a)
def
=⇒ b if a = a

χ [b a] (a)
def
=⇒ χ(a) otherwise

(38)

4) Largest Continuous Number: Suppose nl is a list of
natural numbers, if n is the largest number in nl such that
all natural numbers less or equal to n are also in nl, then n

is called the ‘largest continuous number’ in nl. This concept
is used in our construction of the sliding window protocol.

To define largest continuous number constructively, we first
need to define the concept of continuous number, if n is in
nl and all the natural numbers less or equal to n are also in
nl, then n is a continuous number in nl. This conception is
captured by (|nl|)0...n, which is defined as:

{
(|nl|)0...0

def
=⇒ 0 ∈ nl

(|nl|)0...(n+1)
def
=⇒ (n + 1) ∈ nl ∧ (|nl|)0...n

(39)

The operation (|nl|)[nl] is defined to compute the list of natural
numbers in nl which are continuous in nl:





(|nl|)[n � nl]
def
=⇒ n � (|nl|)[nl] if (|nl|)0...n

(|nl|)[n � nl]
def
=⇒ (|nl|)[nl] if ¬(|nl|)0...n

(|nl|)[〈〉]
def
=⇒ 〈〉

(40)

The operation maxn(nl) is defined to compute the largest
natural number in nl:




maxn(n � nl)
def
=⇒

maxn(nl) < λn. if n < n then n else n

maxn(〈〉)
def
=⇒ ⊥

(41)
With all these preliminary definitions, the largest continuous

natural number in nl can be computed with mcat(nl), which
is defined as:

mcat(nl)
def
=⇒ maxn((|nl|)[nl]) (42)

B. Lemmas used in the proof of Lemma 8.1

The following lemma is about searching for frame
data(n,m) with sequence number n in a list of frames l.

It shows that: there could be only two cases: either such a
frame is found, or there is not such a frame in l at all.

Lemma 1.1:
∀ l : [[Frm]] , n .

(∃hd :[[Frm]], m : M, tl : [[Frm]].

l = (hd u data(n,m))̂ tl ∧

(∀fm. fm ∈ hd ⇒ fm 6= data(n,m))) ∨

(∀fm. fm ∈ l ⇒ (∀m. fm 6= data(n,m)))

The list hd is the list of frames ahead of data(n,m) , which
contains no frames with sequence number n, tl is the list of
frames behind data(n,m) .

The following lemma shows that: if data(n,m) is in
queue(ct, tr), there is a valid execution tr′ extending tr,
which delivers all frames ahead of data(n,m) . Additionally,
the extension does not change the values of msgs out and
msgs in.

Lemma 1.2:

VT(SW, tr) ⇒

queue(ct, tr) = (hd u data(n,m))̂ tl) ⇒

(∀fm. fm ∈ hd ⇒ fm 6= data(n,m)) ⇒

∃ tr′, nl .

VT(SW, tr′̂ tr) ∧

queue(ct, tr′̂ tr) = data(n,m) � tl ∧

msg no rcvd(tr′̂ tr) = nl � msg no rcvd(tr) ∧
¬(n ∈ nl) ∧
msgs out(tr′̂ tr) = msgs out(tr) ∧
msgs in(tr′̂ tr) = msgs in(tr)

The following lemma shows: if there exists a maximum
acknowledged sequence number ackd at the Sender side, there
must be a largest continuous received sequence number rcvd

at the Receiver side. Additionally, we have ackd ≤ rcvd.
Lemma 1.3:

VT(SW, tr) ⇒ maxn(msg no acked(tr)) = ackd ⇒

∃ rcvd .

mcat(msg no rcvd(tr)) = rcvd ∧ ackd ≤ rcvd

The following lemmas shows: if there is a largest continuous
received sequence number rcvd at the Receiver side, the
number of messages delivered by Receiver is less than or equal
to rcvd + 1; Otherwise, the number of messages delivered by
Receiver is 0.

Lemma 1.4:

VT(SW, tr) ⇒
(mcat(msg no rcvd(tr)) = rcvd ⇒

|msgs out(tr)| ≤ rcvd + 1) ∧
(mcat(msg no rcvd(tr)) = ⊥ ⇒ |msgs out(tr)| = 0)

REFERENCES

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite state concurrent systems using temporal logic specifications,”
Austin, Tech. Rep., 1985.

[2] G. J. Holzmann, Design and Validation of Computer Protocols. Prentice
Hall, 1990.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and
Computation, vol. 98, no. 2, pp. 142–170, June 1992.

[4] K. M. Chandy and J. Misra, Parallel Program Design : a Foundation.
Reading, Mass.: Addison-Wesley, 1988.

[5] A. U. Shankar and S. S. Lam, “A stepwise refinement heuristic for
protocol construction,” ACM Transactions on Programming Languages
and Systems, vol. 14, no. 3, pp. 417–461, July 1992.

[6] M. Abadi and L. Lamport, “The existence of refinement
mappings,” DEC Research Center, Palo Alto, CA, Tech. Rep. 29,
1988. [Online]. Available: ftp://ftp.digital.com/pub/DEC/SRC/research-
reports/SRC-029.pdf

[7] ——, “Composing Specifications,” in Stepwise Refinement of Distributed
Systems - Models, Formalisms, Correctness, ser. LNCS, J. W.
de Bakker, W.-P. de Roever, and G. Rozenberg, Eds., vol. 430.
Berlin, Germany: Springer-Verlag, 1989, pp. 1–41. [Online]. Available:
ftp://ftp.digital.com/pub/DEC/SRC/research-reports/SRC-066.pdf

[8] C. A. R. Hoare, Communicating Sequential Processes. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[9] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.

[10] N. Lynch and M. Tuttle, “An introduction to Input/Output automata,”
CWI-Quarterly, vol. 2, no. 3, pp. 219–246, 1989.

[11] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. New York: Springer, 1992.

[12] L. Lamport, “The Temporal Logic of Actions,” Digital Equipment
Corporation, Systems Research Centre, Tech. Rep. 79, Dec.
1991. [Online]. Available: ftp://ftp.digital.com/pub/DEC/SRC/research-
reports/SRC-079.pdf

[13] D. Harel, “Statecharts: a visual approach to complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[14] G. Huet, G. Kahn, and C. Paulin-Mohring, “The Coq proof assistant,
A tutorial, version 5.10,” Inria, Institut National de Recherche en
Informatique et en Automatique, Technical Report RT-0178, 1995.

[15] E. Gimenez, “A tutorial on recursive types in Coq,” Inria, Institut
National de Recherche en Informatique et en Automatique, Technical
Report RT-0221, 1998.

[16] C. Cornes, J. Courant, J. Filliatre, G. Huet, P. Manoury, C. Munoz,
C. Murthy, Christine, A. Saibi, and B. Werner, “The Coq proof assistant,
reference manual, version 7.0,” INRIA (Institut National de Recherche
en Informatique et en Automatique), Technical Report RT-0177, 2001.

[17] L. Paulson, “Proving properties of security protocols by induction,”
in 10th IEEE Computer Security Foundations Workshop (CSFW ’97).
Washington - Brussels - Tokyo: IEEE, June 1997, pp. 70–83.

[18] ——, “Proving security protocols correct,” in 14th Symposium on Logic
in Computer Science (LICS’99). Washington - Brussels - Tokyo: IEEE,
July 1999, pp. 370–383.

[19] M. Broy, M. Breitling, B. Schtz, and K. Spies, “Summary of case
studies in Focus - Part II,” Technische Univerität München, Tech.
Rep. TUM-I9740, 1997. [Online]. Available: http://www4.informatik.tu-
muenchen.de/reports/TUM-I9740.html

[20] V. Yodaiken and K. Ramamritham, “Verification of a reliable net
protocol,” in Symp. on Formal Techniques in Real-Time and Fault
Tolerant Systems, 1992, pp. 194–215.

[21] M. A. Bezem and J. F. Groote, “A formal verification of the alternating
bit protocol in the calculus of constructions,” Dept. of Philosophy,
Utrecht University, Logic Group Preprint Series 88, Mar. 1993.

[22] E. Giménez, “Co-inductive types in Coq: An experiment with
the alternating bit protocol,” Laboratoire de l’Informatique du
Parallélisme, Ecole Normale Supérieure de Lyon, Research
report RR 95-38, June 1995. [Online]. Available: ftp://ftp.ens-
lyon.fr/pub/LIP/Rapports/RR/RR95/RR95-38.ps.Z

