
Using Genetic Improvement & Code Transplants
to Specialise a C++ Program to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1, and Westley Weimer2

1 University College London, London, United Kingdom
j.petke@ucl.ac.uk

2 University of Virginia, Charlottesville, Virginia, United States

Abstract. Genetic Improvement (GI) is a form of Genetic Program-
ming that improves an existing program. We use GI to evolve a faster
version of a C++ program, a Boolean satisfiability (SAT) solver called
MiniSAT, specialising it for a particular problem class, namely Combi-
natorial Interaction Testing (CIT), using automated code transplanta-
tion. Our GI-evolved solver achieves overall 17% improvement, making it
comparable with average expert human performance. Additionally, this
automatically evolved solver is faster than any of the human-improved
solvers for the CIT problem.

Keywords: genetic improvement, code transplants, code specialisation, Boolean
satisfiability

1 Introduction

Genetic improvement (GI) [14], [17, 18, 19], [23], [28, 29] seeks to automatically
improve an existing program using genetic programming. Typically, genetic im-
provement has focussed on changes using parts of the existing system. We de-
velop the idea of software transplantation [15] and introduce the idea of GI as a
means to specialise software.

To investigate and experiment with GI for a particularly challenging problem,
we selected the goal of using it to improve the execution performance of the
popular Boolean satisfiability (SAT) solver MiniSAT [9]. MiniSAT is a well-
known open-source C++ SAT solver. It implements the core technologies of
modern SAT solving, including unit propagation, conflict-driven clause learning
and watched literals [26].

Improving MiniSAT is challenging because MiniSAT has been iteratively im-
proved over many years by expert human programmers. They have addressed
the demand for more efficient SAT solvers and also responded to repeated calls
for competition entries to the MiniSAT-hack track of SAT competitions [1]. We
use the version of the solver from the first MiniSAT-hack track competition,
MiniSAT2-0707211, as our host system to be improved by GI with transplanta-
tion. Furthermore, this competition, in which humans provide modifications to
a baseline MiniSAT solver, provides a natural baseline for evaluation and source
of evolutionary material (which we call the code bank).

1 Solver available at: http://minisat.se/MiniSat.html.

MiniSAT has been repeatedly improved by human programmers, through
three iterations of the MiniSAT-hack track of SAT solving competitions, or-
ganised biannually. Although GP has been applied to evolve particular SAT
heuristics [3], [16], MiniSAT code has never previously been the subject of any
automated attempt at improvement using genetic programming.

SAT solving has recently been successfully applied to Combinatorial Interac-
tion Testing (CIT) [4], [21], allowing us to experiment with GI for specialisation
to that problem domain. CIT is an approach to software testing that produces
tests to expose faults that occur when parameters or configurations to a system
are combined [22]. CIT systematically considers all combinations of parameter
inputs or configuration options to produce a test suite. However, CIT must also
minimise the cost of that test suite. The problem of finding such minimal test
suites is NP-hard and has attracted considerable attention [7, 8], [12], [20], [24].

SAT solvers have been applied to CIT problems [4], [21], but the solution
requires repeated execution of the solver with trial test suite sizes, making solver
execution time a paramount concern. We follow the particular formulation of
CIT as a SAT problem due to Banbara et al. [4], since it has been shown to be
efficient.

The primary contribution of this paper is the introduction of multi-
donor software transplantation and the result of experiments demonstrating that
GI can evolve human-competitive versions of a program specialised for a non-
trivial problem class. We demonstrate this by improving the 2009 incarnation of
MiniSAT. Section 2 introduces our approach to GI. Section 3 presents the set
up of our experiments, the results of which are described in Section 4. Section 5
briefly outlines related work and Section 6 concludes.

2 Genetic Improvement with Multi-Donor
Transplantation and Specialisation

We introduce our approach to GI, which uses multiple authors’ code for trans-
plantation and specialises the genetically improved software for a specific appli-
cation domain (in this case CIT). We use a population-based GP. Our work is
based on the genetic improvement framework introduced by Langdon and Har-
man [17] with minor changes. Since we are using a different program, we update
the fitness function. We also do not target heavily-used parts of source code,
since our program is much smaller than in previous work. Finally, we modify
just one C++ file which contains the main solving algorithm. However, unlike
Langdon and Harman [17], we use multiple donors and focus on specialising the
program to improve it for a specific application domain.
Program Representation: We modify the code (in this case MiniSAT) at
the level of lines of source code. A specialised BNF grammar is used to create a
template containing all the lines from which new individuals are composed. Such
a template is created automatically and ensures that classes, types, functions and
data structures are retained. For instance, opening and closing brackets in C++
programs are ensured to stay in the same place, but the lines between them can
be modified. Moreover, initialisation lines are also left untouched. An extract of

a template for MiniSAT is shown in Figure 1. The genome used in our GP is a
list of mutations (see below). Header files and comments are not included in our
representation.

<Solver_156> ::= "{\n"

<Solver_157> ::= "Clause* c = Clause_new(ps, false);\n"

<_Solver_158>::= "clauses.push(c);"

<_Solver_159>::= "attachClause(*c);"

<Solver_160> ::= "}\n"

Fig. 1. Lines 156–160 from the Solver.C MiniSAT file represented in our specialised
BNF grammar. Lines marked with Solver can be modified.

Code Transplants: We propose to evolve one program by transplanting and
modifying lines of code from other programs [15]. Thus our GP has access to
both the host program being evolved, as well as the donor program(s). We call
all the lines of code to which GP has access the code bank. The donor code
statements are then available for mutations of the host instance, but need not be
used in the same order. For example, our search may combine the first half of an
optimisation from one version of MiniSAT with the second half of an optimisation
from another and then specialise the resulting code to CIT problems. This re-use
and improvement of existing developer expertise is critical to the success of our
technique.
Mutation Operator: A new version of a program (i.e. a new individual) is cre-
ated by making multiple changes to the original program. Each such mutation is
either a delete, replace or copy operation. The changes are made at the level
of lines of source code, with a special case for conditional statements. A delete
operation simply deletes a line of code, a replace operation replaces a line of
code with another line of code from the code bank and copy operation inserts
a line of code from the code bank into the program. In the case of conditional
statements, we focus on and modify their predicate expressions.2 For instance,
the second part of a for loop (e.g., i<0) can only be replaced by the second part
of another for loop (e.g., i<10) and any if condition can be replaced with any
other if condition. Examples of the three mutation types are shown in Figure 2.

<_Solver_159> # Delete line 159

<for3_Solver_533><for3_Solver_772> # Replace the 3rd part of the ‘for’

loop (i.e., loop variable increment)

in line 533 with the 3rd part of

the ‘for’ loop in line 772

<_Solver_806>+<_Solver_949> # Add line 949 in front of line 806

Fig. 2. Examples of the three types of mutations allowed.

Crossover Operator: We choose to represent each individual as a list of muta-
tions with respect to the original, which we call the edit list. This representation
allows our technique to apply to programs of significant size [13], since we do not

2 In the case of a delete operation we replace the predicate expression with ‘0’ to
prevent compilation errors.

keep the whole of each version of the program in memory — just a list of changes.
When creating individuals for the next generation, a crossover operation sim-
ply concatenates two individuals from the current population by appending one
list to another. The first parent is chosen based on its fitness value while the
other is chosen uniformly among those individuals that compiled, as in previous
work [17].

Fitness Function: We evaluate the fitness of an individual in terms of a combi-
nation of functional properties (those related to software correctness) and non-
functional properties (those related to performance, quality of service, etc.) by
observing its performance on SAT instances. Before the GP starts, the training
set of SAT instances is divided into five groups by difficulty, which we meassure
in required solving time. In each generation one test case is sampled uniformly
from each group (or ‘bin’ following other terminology [17]) and all individuals
are run on the selected test cases. This sampling helps to avoid overfitting. To
evaluate an individual, the corresponding list of changes is applied to the original
and the resulting source code is compiled, producing a new SAT solver that can
then be executed (individuals that fail to compile are never selected).

To guide the GP search toward a more efficient version of the program, our
fitness function takes into account both solution quality and program speed.
For internal fitness calculations, efficiency is measured in terms of lines of code
executed based on simple counter-based program instrumentation. The use of
line counts (instead of CPU or wall-clock times) avoids environmental bias and
provides a deterministic fitness signal. For the final presentation of our empirical
results, timing measurements in seconds are also presented (see Section 4).

Selection: The GP process is run for a fixed number of generations (in our
case 20) with a fixed population size (in our case 100). In the initial population
each individual consists of a single mutation applied to the original program.
After the fitness of each of the individuals is calculated, the fittest half of the
population is chosen, filtered to include only those individuals that exceed a
threshold fitness value. We focus on exploiting high-quality solutions, and thus
our fitness threshold is set to select those individuals that either (1) return the
correct answer in all cases, or (2) return the correct answer in all but one case
and take no more than twice as long as the original solver.

Next, a set of offspring individuals is created using crossover on those se-
lected from the current population. Also a new mutation is added to each of the
parent individuals selected to create offspring. Both crossover and mutation are
applied with 50% probability. If mutation is chosen, one of the three operations
(i.e. replace, copy and delete) is selected with equal probability. If muta-
tion and crossover do not create a sufficient number of individuals for the next
generation, new individuals are created consisting of one mutation (in practice,
this occurs 38% of the time). Finally, the fitness of the newly-created individ-
uals is calculated, as described previously, and the process continues until the
generation limit is reached.

Filtering: We have observed that many program optimisations are independent
and synergistic. As a result, we propose a final step that combines all muta-

tions from the fittest individuals evolved and retains all synergistic edits. This
post-processing step is simplified by our edit list representation and helps to
ensure that our final output benefits from more of the search space exploration
conducted by the GP. Exploring all subsets of edits is infeasible. Our prototype
implementation uses a greedy algorithm. Each mutation from the best individu-
als from all of our experiments is considered separately. We apply each operation
to the original program and evaluate its fitness. Next, we order the mutations by
their fitness value3 and iteratively consider these adding only those edits that do
not decrease fitness. Other efficient techniques, such as constructing a 1-minimal
subset of edits [30], are possible.

3 Experimental Setup

The main hypothesis investigated in this paper is:

Genetic improvement with transplantation finds faster CIT-specialised
MiniSAT versions than any developed by expert human programmers.

Host & Donor Programs: We evolve MiniSAT2-070721, in particular the
C++ file containing its main solving algorithm. This version was used as a ref-
erence solver in the first MiniSAT-hack competition, organised in 2009. Unless
otherwise noted, we use MiniSAT and MiniSAT2-070721 interchangeably. The
main solver algorithm involves 478 of the 2419 lines in MiniSAT. For our ex-
periments we use two donor programs, which altogether provide 104 new lines
of source code. The first donor is the winner of the MiniSAT-hack competition
from 2009, called “MiniSAT 09z”. We refer to this solver as MiniSAT-best09.
The second donor program is the “MiniSat2hack” solver, the best performing
solver from the competition when run on our CIT-specific benchmarks. Thus we
refer to this solver as MiniSAT-bestCIT. We also added all the donor code to
MiniSAT and ran this hybrid solver for comparison. We refer to this solver as
MiniSAT-best09+bestCIT.
Test Cases: Real-world SAT instances from the combinatorial interaction test-
ing area can take hours or even days to run. Thus we evaluate MiniSAT perfor-
mance on a set of synthetic CIT benchmarks. Using the encoding of Banbara
et al. [4], we translated 130 CIT benchmarks into SAT instances4. We kept the
number of values for each of the parameters the same in every instance. This
allows us to verify observed results against public catalogues of best known re-
sults [8]. We use one-third of these CIT benchmarks in the training set (which
is divided into five groups, as discussed in Section 25) and the rest in the ver-
ification set. We use execution time to define instance difficulty and divide the

3 Note that since each individual is represented by a list of edits (or mutations) and
at the filtering stage we consider one mutation in turn, we use the word ‘mutation’
and ‘individual’ interchangeably.

4 Benchmarks as well as the different MiniSAT versions are available by e-mail from
Justyna Petke at j.petke@ucl.ac.uk.

5 The first two groups contain the fastest running instances, while those that require
the longest time are in group five. Additionally, the second and fourth group contain
unsatisfiable instances only, while the first and third only satisfiable ones.

training set into five groups based on that measure. The largest instances con-
tain over 1 million SAT clauses and MiniSAT is able to produce an answer for
each of these within 30 seconds.
Code Transplants: In our experiments the seeds of high-level human optimi-
sations targeting a generic benchmark set serve as donor code and are selected
and recombined with novel changes to produce a specialised host SAT solver.6

We conduct three sets of experiments, varying the code bank while holding the
rest of the GI process constant. The donor code is selected in turn from:

1. MiniSAT-best09;
2. MiniSAT-bestCIT;
3. MiniSAT-best09 and MiniSAT-bestCIT.

We compare our evolved solver with both the host and donor programs in each
of the experiments. We call our evolved solver MiniSAT-gp. Finally, we refer to
the solver that results from our postprocessing filtering step (see Section 2) as
MINISAT-gp-combined.

4 Results

To evaluate the efficacy of our technique, we evolve improved and specialised
versions of MiniSAT and compare them to human-improved SAT solvers in terms
of both runtime cost and solution quality. While internal fitness calculations are
measured in terms of lines of code executed, all final results are presented in
terms of CPU time data based on runs on a 1.6GHZ Lenovo 3000 N200 laptop
with an Intel Core 2 Duo processor and 2GB of RAM. The GP was run with a
population size of 100 and 20 generations.

In all experiments the compilation rate (using MiniSAT’s provided Makefile)
was high, between 79% and 81%. This high compilation rate results from our use
of a specialised BNF grammar for edits, preventing most syntax errors. Runtime
data reported in Table 1 is an average of 20 runs of each solver. The number of
lines of code executed in each of the runs stayed the same, while time variation
was less than 3%.

4.1 Transplanting from MiniSAT-best09

When the code bank included lines from the original as well as the overall best
version of the solver from the MiniSAT-hack competition, GP produced a mu-
tated version of MiniSAT that was, on average, over 5% faster than the original
solver on CIT instances (see Table 1). None of the new code from MiniSAT-
best09 was selected by GP in the improved individual. We observe that the best
solver from the competition — which evaluated on a general, non-CIT bench-
mark suite — was not the most efficient one on the instances from the CIT
domain. In fact, the original MiniSAT without modifications was even faster

6 Adding a donor statement X to the code bank is equivalent, in terms of the search
space explored, to adding if (0) X to the input program in a preprocessing step.

Table 1. Normalized runtime comparison of MiniSAT versions, based on averages over
20 runs. The first four solvers are human written, the last four were evolved by our
technique. The “Donor” column indicates the source of the donor code available in
the code bank. “Lines” indicates lines of code executed, “Time” indicates CPU time
executed (lower is better, all measurements normalized to original MiniSAT).

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00
MiniSAT-best09 — 1.46 1.76
MiniSAT-bestCIT — 0.72 0.87
MiniSAT-best09+bestCIT — 1.26 1.63

MiniSAT-gp best09 0.93 0.95
MiniSAT-gp bestCIT 0.72 0.87
MiniSAT-gp best09+bestCIT 0.94 0.96

MiniSAT-gp-combined best09+bestCIT 0.54 0.83

than the winner of the 2009 competition in this domain. It is thus not surpris-
ing that using donor code from MiniSAT-best09 did not admit the evolution of
efficient solvers specialised to the CIT domain.

Evolution achieved runtime improvement by switching off if and for loop
conditions. Also, execution times of certain for loops were decreased using re-
place operations. Table 2 shows all the mutations made in the fastest evolved
version of MiniSAT.

Table 2. Mutations in the genetically improved solver (with best09 as donor).

mutation mutated code changes

delete if statement condition 5
delete line of code 8
replace for loop condition 7
replace if statement condition 2
copy line of code 1

total 23

Among the evolved changes, an addition operation on a variable used solely
for statistical purposes was deleted, as were three assertions. The evolved changes
specialised MiniSAT to the CIT instances tested, but did not retain functionality
for instances from other domains. For example, one deletion removed a memory
optimisation function, potentially increasing solver’s chance of running into an
out-of-memory error for larger instances.

4.2 Transplanting from MiniSAT-bestCIT

In the next experiment the GP code bank contained source code both from the
original MiniSAT solver as well as MiniSAT-bestCIT. The evolved version of
MiniSAT is, on average, 13% faster than the original solver (see Table 1). Given
that it usually takes hours or even days to run a SAT solver on real-world CIT
instances, such a performance improvement could have a noticeable impact.

The human-written MiniSAT-bestCIT solver also provides similar runtime
results — in fact, the performance of our evolved version and the human-written
version are not different in a statistically significant sense. The similarities can
be explained by the changes made by the GP process, shown in Table 3.

Table 3. Mutations occurring in the genetically improved solver.

mutation mutated code changes

delete line of code 1
replace if statement condition 1

total 2

By replacing the if statement condition, the GP enabled a function that
contained 95% of the ‘new’ human-written lines from MiniSAT-bestCIT. The
other one-line deletion simply removed an assertion.

4.3 Transplanting from MiniSAT-best09 and MiniSAT-bestCIT

Finally, we allowed evolution to inject code from both MiniSAT-best09 and
MiniSAT-bestCIT. Runtime results are presented in Table 1: the best evolved
program achieved 4% runtime improvement over the original solver.

Table 4 shows the set of changes produced by genetic improvement. Lines
involved in about half of the mutations were never executed in the fastest ge-
netically modified program. Thus, GP essentially removed dead code. Moreover,
five assertions were removed as well as three updates to statistical variables.
In four cases parts of code were replaced with semantically-equivalent (but not
necessarily equally expensive) computations.

Table 4. Mutations occurring in the genetically improved solver.

mutation mutated code changes

delete if statement condition 10
delete line of code 30
delete for loop condition 10
replace for loop condition 10
replace if statement condition 4
replace line of code 6
copy line of code 5

total 75

4.4 Combining Results

In the previous experiment the GP identified a ‘good change’: a one-line modifi-
cation that allowed 95% of the donor code to be executed. Even though the GP
process produced individuals containing such a change, other mutations within
all such individuals caused slower runtime or compilation errors. Our approach
based on filtering holds out the promise of combining the best parts of all variants
discovered.

We started with the individual composed of one mutation (see Section 2)
with the best runtime performance, and iteratively added mutations from the
next performant individual. Only changes that do not reduce performance or
correctness are retained. The resulting ‘combined’ solver performs 17% faster
than the original MiniSAT and outperforms all other human-written solvers
considered by at least 4% (this difference is statistically significant, see Table 1).

In total, this version involved 56 evolved mutations. Eight among these were
one-line assertion removals. Details of all the mutations selected are presented
in Table 5.

Table 5. Mutations occurring in the combination of the fastest genetically improved
solvers.

mutation mutated code number of changes

delete if statement condition 9
delete line of code 22
delete for loop condition 6
replace for loop condition 8
replace if statement condition 3
replace line of code 4
copy line of code 4

total 56

By combining the synergistic optimisations found in the three best evolved
individuals, our approach produced the fastest specialised SAT solver for CIT
among all solvers developed by expert human programmers that were entered
into the 2009 MiniSAT-hack competition. On the 130 benchmark instances this
automatically-constructed solver performed better in 128 instances (in terms of
lines of code executed). In the other two cases it was only slightly worse.

However, since small benchmarks were chosen for the training set, the evolved
individual might not scale to larger problems. Manual inspection suggests that
optimisations relevant to large instances may not be retained, but a systematic
evaluation on separate instances is left to future work. However, we note that
the evolved individual retained required functionality on the two-thirds of the
instances that were held out for verification, even though it was only exposed to
the other third for testing.

5 Summary of Related Work

Genetic improvement has been successfully used to automate the process of
bug fixing [19]. GI has also been used to improve non-functional properties of
relatively small laboratory programs [23], [27,28,29], as well as larger real world
systems [17]. It has also been used to automatically migrate a system from one
platform to another [18].

In this previous work on genetic improvement, GP was concerned with a
single program; the program to be improved. Code is extracted, perhaps modified
and then reinserted back into the program at a different location. The focus of
the present paper on transplantation from multiple programs therefore denotes

an important departure from this previous literature. As a result of multiple
transplantation, GP is no longer concerned with a single program to be improved,
but multiple donor programs, from which code can be extracted to help guide
genetic improvement.

The idea of code transplantation using GP was proposed by Harman et
al. [15], but it has not hitherto been implemented, nor has it previously been
demonstrated to be useful in practice. We are the first to use GP to implement
and evaluate transplantation for genetic improvement.

The goal of improvement adopted by the present paper also differs from
that of previous work on genetic improvement, which focused on improving
non-functional properties, such as execution time [17], [23] and power consump-
tion [28]. It has also been used to migrate code [18] and to improve functional
properties (by fixing bugs) [2], [10], [13], [19]. In all of these scenarios, the full
functionality of the original program is to be retained; part of the fitness function
specifically checks for the absence of regression faults.

Instead we aim to specialise a program using genetic improvement; the full
functionality of the original program therefore need not be retained. In this way,
this specialisation-oriented genetic improvement is reminiscent of partial evalu-
ation [5, 6], [11], which also seeks to achieve automated program specialisation.
However, whereas partial evaluation uses meaning-preserving transformation to
‘hard wire’ parameter choices into code (thereby specialising it to those parame-
ter choices), we use genetic programming to search for transplants that specialise
a program to a class of inputs.

In preliminary experiments with MiniSAT [25] a varied set of instances from
SAT competitions were used. However, this approach led to only very modest
runtime improvements (up to 2%). We have significantly improved on this pre-
liminary work using multi-donor transplantation to achieve a human-competitive
17% improvement.

6 Conclusions

We evolved a specialised version of a C++ program using genetic improvement
with transplants. Previously, genetic programming has successfully been applied
to improve software behaviour of various systems leading to significant speed-
ups. We investigated whether this could be achieved on a well-known software
system that has been engineered by many expert human programmers. We spe-
cialised this program for a particular hard problem class and used a novel idea
of code transplantation.

For our experiments we chose MiniSAT, a very popular Boolean satisfiabil-
ity (SAT) solver that has been thoroughly studied. The MiniSAT-hack track of
SAT competitions is specifically designed to encourage humans to make minor
changes to MiniSAT code that could lead to significant runtime improvements,
and hence lead to new insights into SAT solving technology. Thus this com-
petition provides a natural source of genetic material for code transplants, as
well as a natural baseline for assessing human-competitive results. We evaluated

how our automated approach applies to a particular application domain, namely
Combinatorial Interaction Testing.

Our fastest evolved MiniSAT version achieved 13% runtime improvement
over the original solver, similar to the best version of MiniSAT for CIT. By
combining the synergistic optimisations from our individuals we achieved a 17%
runtime improvement. For the CIT domain our evolved solver outperforms all
of the human-written solvers entered into that competition.

References

1. MiniSAT-hack track of SAT competition (2009), http://www.satcompetition.

org/2009/, In 2009 this was part of the 12th International Conference on Theory
and Applications of Satisfiability Testing

2. Arcuri, A., Yao, X.: A Novel Co-evolutionary Approach to Automatic Software
Bug Fixing. In: Proceedings of the IEEE Congress on Evolutionary Computation
(CEC ’08). pp. 162–168. IEEE Computer Society, Hong Kong, China (1-6 June
2008)

3. Bader-El-Den, M.B., Poli, R.: Generating SAT local-search heuristics using a GP
hyper-heuristic framework. In: Monmarché, N., Talbi, E.G., Collet, P., Schoenauer,
M., Lutton, E. (eds.) Artificial Evolution. Lecture Notes in Computer Science, vol.
4926, pp. 37–49. Springer (2007)

4. Banbara, M., Matsunaka, H., Tamura, N., Inoue, K.: Generating combinatorial
test cases by efficient SAT encodings suitable for CDCL SAT solvers. In: 17th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Yogyakarta, India. pp. 112–126 (2010)

5. Beckman, L., Haraldson, A., Oskarsson, O., , Sandewall, E.: A partial evaluator,
and its use as a programming tool. Artificial Intelligence 7(4), 319–357 (1976)

6. Binkley, D., Danicic, S., Harman, M., Howroyd, J., Ouarbya, L.: A formal relation-
ship between program slicing and partial evaluation. Formal Aspects of Computing
18(2), 103–119 (2006)

7. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on Software
Engineering 23(7), 437–444 (1997)

8. Colbourn, C.: Covering Array Tables. http://www.public.asu.edu/~ccolbou/

src/tabby/catable.html (2013)
9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and applications of

satisfiability testing. pp. 502–518. Springer (2004)
10. Fry, Z.P., Landau, B., Weimer, W.: A human study of patch maintainability. In: In-

ternational Symposium on Software Testing and Analysis (ISSTA’12). Minneapolis,
Minnesota, USA (July 2012)

11. Futamura, Y.: Partial evaluation of computation process – an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 721–728 (Aug 1971)

12. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Software Engineering
16(1), 61–102 (2011)

13. Goues, C.L., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In: International
Conference on Software Engineering (ICSE 2012). Zurich, Switzerland (2012)

14. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: 27th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2012). Essen, Ger-
many (September 2012)

15. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse en-
gineering. In: Oliveto, R., Robbes, R. (eds.) 20th Working Conference on Reverse
Engineering (WCRE 2013). IEEE, Koblenz, Germany (14-17 October 2013)

16. Kibria, R.H., Li, Y.: Optimizing the initialization of dynamic decision heuristics
in DPLL SAT solvers using genetic programming. In: Collet, P., Tomassini, M.,
Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP. Lecture Notes in Computer
Science, vol. 3905, pp. 331–340. Springer (2006)

17. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation To appear

18. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: IEEE Congress on Evolutionary Computation. pp. 1–8. IEEE (2010)

19. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software Quality Journal 21(3), 421–443 (2013)

20. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG/IPOG-D: efficient
test generation for multi-way combinatorial testing. Softw. Test., Verif. Reliab.
18(3), 125–148 (2008)

21. Nanba, T., Tsuchiya, T., Kikuno, T.: Constructing test sets for pairwise testing:
A SAT-based approach. In: ICNC. pp. 271–274. IEEE Computer Society (2011)

22. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Computing Surveys
43(2), 11:1 – 11:29 (2011)

23. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Transactions Evolutionary Computation 15(2), 166–182 (2011)

24. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Efficiency and early fault detec-
tion with lower and higher strength combinatorial interaction testing. In: Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE’13. pp. 26–36. ACM, Saint
Petersburg, Russian Federation (August 2013)

25. Petke, J., Langdon, W.B., Harman, M.: Applying genetic improvement to Min-
iSAT. In: Proceedings of the 5th International Symposium on Search Based Soft-
ware Engineering (SSBSE ’13). vol. 8084, pp. 257–262. Springer, St. Petersburg,
Russia (24-26 August 2013)

26. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS
Press (2009)

27. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM Trans. Graph. 30(6), 152 (2011)

28. White, D.R., Clark, J., Jacob, J., Poulding, S.: Searching for resource-efficient pro-
grams: Low-power pseudorandom number generators. In: 2008 Genetic and Evo-
lutionary Computation Conference (GECCO 2008). pp. 1775–1782. ACM Press,
Atlanta, USA (Jul 2008)

29. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE
Transactions on Evolutionary Computation 15(4), 515–538 (2011)

30. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: Founda-
tions of Software Engineering. pp. 253–267 (1999)

