

Who was there?

Chatham House Rule:

I can share the information presented and discussed, but I can't attribute it to anyone or tell you who was there.

What sort of people were there? About 50 people: Ten ISPs: several large, several medium size (somewhat UK centric), major internet exchange point, cellular operator. Several "victims": online gambling, major bank. Major network equipment vendors. Major OS vendors (desktop and mobile). Several vendors in anti-DoS space. Telecoms Regulator. Police. Intelligence Community. Academics in networking and public policy. CII members. 16 presentations representing almost all these communities

<section-header><section-header><section-header><section-header><text><text><text><section-header><section-header><text>

ISP's view of the problem

Major security vendor:

- Lack of data encourages speculation, confusion and hyperbole....
- But trends are worrying:
 - □ DoS attacks greater than 10Gbps aggregate.
 - Of 1127 customer-impacting DDoS attacks seen in 2004 on a large network, only 4 employed source address spoofing.
 - □ 80K+ node botnet largest seen this year.
 - DoS attack vectors are changing (eg application level, Ack with simulated sequence numbers)

Profile of attackers today

- Asia-Pacific and South America are main sources.
 - □ Not just Eastern Europe and Russia anymore.
 - Mostly poor countries, where a few hundred/thousand dollars is a year's salary.
 - □ Usually good education, but in a country with high unemployment.
- Groups communicate mostly in-band (Internet).
 - But most ISPs don't have the resources to analyze TBs/day of IRC logs in many languages.
- Many groups are well organized and highly skilled.
 Mostly not for fun on free time anymore.

Potential Perpetrators

- "Traditional" hackers
- Script kiddies
- Spammers
- Organized crime
- Terror Groups
- Hostile States

Bots and Botnets Bot application that performs some action on behalf of a remote controller installed on a victim machine (zombie) modular (plug in your own functionality/exploit/payload) Botnets Linkage of "Owned" machines into centrally controlled armies literally roBOT NETworks Control channel Method for communicating with an army Herder Owns control channel, commands botnet army

What are the effects?

Application-Level Attacks:

- Use expected behaviour of protocols to cause victim to spend resources.
- Difficult to filter looks like real transactions or requests.
- □ Load prevents victim from processing real requests.

Attack	Resource Threshold	Requests/bot	Bots needed to exhaust
static http GET	60,000/sec	93 requests/sec at 250 bytes/request	645
dynamic http GET	3,000/sec	93 requests/sec at 250 bytes/request	40
SSL handshake	600/sec	10 requests/sec	60

What are the effects?

Flooding Attacks:

- □ SYN flood: attacker sends TCP connect requests faster than victim can process them.
- \Box Victim responds then waits for confirmation.
- □ Victim's connection table fills up, new connections ignored

Attack	Resource Threshold	Requests/bot	Bots needed to exhaust
SYN flood	18,000/sec	450 SYNs/sec	40
SYN flood, tuned server	200,000/sec	450 SYNs/sec	440
SYN flood, dedicated hardware	1,000,000/sec	450 SYNs/sec	2,200

What are the effects?

Bandwidth Attacks:

- □ Attacker fills the pipe to the victim with high volume of traffic.
- Downlink to victim: must be filtered upstream, and tailored to the specific attack.
- □ Uplink from victim: small requests causing large responses.

Attack	Resource Threshold	Requests/bot	Bots needed to exhaust
Downlink T1 flood	1.54Mb/s	186Kb/s	8
Downlink T3 flood	43Mb/s	186Kb/s	231
Uplink T1 flood	1.54Mb/s	450Kb/s	3.4
Uplink T3 flood	43Mb/s	450Kb/s	3.95

Architectural Ossification

- The net is already hard to change in the core.
- IP Options virtually useless for extension.
 - $\hfill\square$ Slow-path processed in fast hardware routers.
- NATs make it hard to deploy many new applications.
- Firewalls make it make to deploy anything new.
 But the alternative seems to be worse.
- Now consider the effect of DoS mitigation solutions....

The Big Challenges

- How can we mitigate DoS attacks and other security threats without sacrificing the future?
 - □ How to enable application innovation?
 - How to provide robust network services in the face of attack?

Extrapolation of current trends does not bode well....

Architectural Solutions

Steps towards a DoS-resistant Internet architecture. Mark Handley, Adam Greenhalgh, UCL and CII http://www.cs.ucl.ac.uk/staff/M.Handley/papers/

Downstream Knowledge Upstream: Re-Feedback Bob Briscoe, BT Research and CII http://nrg.cs.ucl.ac.uk/mjh/tmp/refeedback.pdf

Steps towards a DoS-resistant Internet architecture.

General strategy: To solve a problem at the IP level, you need IPbased solutions. *Addressing is the main handle*.

- □ Separate address space into "client" and "server" addresses. Can only initiate a connection from a client to a server.
- Client addresses are not globally unique, but built up along the path.
 - Similar to the assymetry introduced by NAT, but makes it an explicit part of the architecture.
- Provide ways to enable client-to-client communication only when both clients simultaneously consent.

General strategy:

- □ Tackle flooding attacks as part of a larger incentive framework.
- Routers provide explicit information about congestion levels by decrementing a congestion field in packets.
 - Feedback explicit information about downstream congestion to the data sender.
 - Data sender-reinserts this feedback information into the packets.
 - Goal is for the sender to set the field correctly so the remaining value is zero at the receiver.
- Policy at ingress and egress to provide incentive for sender to send at the correct rate for the network congestion level.

Feedback

"Good session" "Good mix of parties" "Perhaps more time for discussion... " "What next ?"

Have volunteers for co-chairs.

Next Steps

- No doubt about the level of interest in this space.
- What can CII do to make a difference?

Three timescales:

- □ Short: information sharing
- □ *Medium:* work with people on the front line to avoid too much collateral damage from "solutions"
- \Box Long: push for architectural change.

