
Terminus: the End of the Line for DDoS
Felipe Huici

Department of Computer Science
University College London
London, UK WC1E 6BT
Email: f.huici@cs.ucl.ac.uk

Mark Handley
Department of Computer Science

University College London
London, UK WC1E 6BT

Email: m.handley@cs.ucl.ac.uk

Abstract—Denial-of-Service attacks continue to grow despite
the fact that a large number of solutions have been proposed
in the literature. The problem is that few are actually practical
for real-world deployment and have incentives for early adopters.
We presentTerminus, a simple, effective and deployable network-
layer architecture against DoS attacks that allows receivers to
request that undesired traffic be filtered close to its source.
In addition, we describe our implementation of each of the
architecture’s elements using inexpensive off-the-shelf-hardware,
and show that we can filter very large attacks in a matter
of seconds while still sustaining a high forwarding rate even
for minimum-sized packets. We conclude by discussing initial
deployment incentives.

I. I NTRODUCTION

Over the last decade a great deal of effort has been focused
on defending against distributed denial-of-service attacks. It
is starting to become clear that, without a substantial re-
architecting of the Internet, there is no magic bullet. Although
the cost of such attacks can be very substantial, short of
cyberwarfare[16], it is unlikely that DoS attacks will be suffi-
cient to motivate radical change. Thus it behooves us to search
for minimalchanges that could actually bedeployed, with the
goal of significantlyraising the barfor DDoS attackers. Any
such changes must be economically viable, with incentives
during each phase of partial deployment.

It is also clear that to effectively defend against DDoS
attacks, malicious traffic must be blocked close to its sources.
Although OS security is improving, end-hosts themselves
are likely to remain poorly managed and insecure for the
foreseeable future, so any solution must be network-based.
Unfortunately, we cannot enlist the help of the network core;
the cost of any mechanism in core routers is significantly
greater than at the edges. Perhaps more importantly, transit
ISPs actually suffer very little from DDoS problems, so have
very little incentive to invest in new technologies. This leads
us to the inevitable conclusion that the only place where these
problems can be tackled is at the edge ISPs and networks;
only here does anyone have both the incentive and the means
to tackle the problem.

Although a number ofpro-activesolutions to DDoS have
been proposed [2], [27], [19], none can be deployed solely at
edge ISPs with no changes to hosts or to core routers. Thus it
appears that any IP-level solution that is actually realistic for
deployment must also bereactive: essentially detect problem
traffic and request that it stop.

For any DDoS filtering solution, the primary motivation
must be todo no harm. This manifests itself in two key ways:

• Such a filtering mechanism must be designed to prevent
misuse. For example, it must not be possible for spoofed
traffic to trigger a filter to be installed that blocks legiti-
mate traffic.

• The filtering mechanism itself must be robust against
DDoS. As far as possible, this implies that its control
plane should be relatively decoupled from the data for-
warding path. If, for whatever reason, the filtering control
plane were to fail, the situation must not be worse than
if the DoS solution had not been deployed.

In this paper we describeTerminus, a novel solution to DDoS
attacks which satisfies all the criteria above. The novelty
though is not in the individual mechanisms; there are after all
only so many ways to filter or to mark packets [6], [8]. Rather
our main contribution is in how very simple mechanisms can
be combined to produce a coherent and robust system, while
avoiding opening up avenues for abuse. This is not our first
attempt at such a solution [11], [13] but it is by far the
most minimal; the real art turns out to be in removing as
much mechanism as possible, but not more [7]. We have
implemented Terminus and we will demonstrate that it is
viable on inexpensive commodity hardware at gigabit speeds.

II. T ERMINUS ARCHITECTURE

We start from the assumption that the victim of an attack
can tell with reasonable accuracy which traffic is bad. For the
purpose of this paper, we refer to the detector as an intrusion
detection system (IDS), but in many cases it may be the server
itself. We then deploy filtering boxes near sources of traffic,
since the size of botnets being reported [5] means it is not
possible to defend against large flooding attacks near to the
destination, even if the victim is connected to well-provisioned
links. For the system as described so far to be viable, the
following issues must be addressed:

• Finding the right filtering box from which to request a
filter.

• Validating filtering requests to ensure spoofed requests
cannot become a channel for attack.

• Preventing spoofed traffic floods from triggering a filter
request that blocks legitimate traffic.

• Providing incentives for early adopters, and especially
providing incentives to deploy filtering boxes.

Fig. 1. Terminus architecture showing the location of its elements. C stands for client, S for server, BP for border patrol, BM for border
manager and FM for filter manager.

From the point of view of deployment, it is critical that
the mechanisms will work even when the ISP of the bot and
the ISP of the victim are remote from each other and have
no prior business relationship. The only form of contractual
arrangement that seems viable is that of pairwise service
level agreements (SLAs) between neighbouring ISPs. Thus
any architecture must assume that this is the contractual
mechanism from which end-to-end filtering services are built.
We primarily use such SLAs to distinguish spoofed traffic to
avoid the second issue listed above. The rest of this section
explains the architecture in greater detail, including solutions
to all of these issues.

A. Edge Filtering

Terminus places special control points calledborder patrols
(BPs) in ISPs, as close to the sources of traffic as possible (see
Figure 1). An ISP deploying Terminus (a “Terminus ISP” in
this paper) configures its network so that traffic from these
sources is forced through border patrols. In this way, each BP
can later be asked to install filters for traffic going through
it, and, since it is close to the sources, the total aggregate
throughput it forwards should be manageable.

With this mechanism in place, the victim of an attack
would have to know which BP the traffic came through. In a
perfect world, this would be as simple as looking at the source
IP address of the malicious traffic and deriving a mapping
between this and the correct BP. Unfortunately, because of
spoofing, this information cannot be trusted.

This is not to say that currently most sources of attack spoof;
they do not. However, this is likely to change if an effective
anti-DoS mechanism were deployed. As a result, any such
mechanism that does not deal with spoofing in some way runs
the risk of quickly becoming obsolete.

Although many ISPs perform ingress filtering to prevent
spoofing, enough do not to pose a sizable potential problem;
the difficulty lies in that a receiver cannot tell the difference
between a spoofed packet and a non-spoofed one, so may
incorrectly filter legitimate sources. All is not lost however;
the addition of one simple mechanism avoids this problem.

The idea is to use a “true source” bit in the IP header to
mark whether the source IP address field in a packet is in fact
the address of the host that originated the packet. As the packet
travels from source to destination, Terminus ISPs have their

ingress edge routers set or unset this bit depending on whether
the packet came from a peering link to a Terminus or legacy
ISP, respectively; the routers would know this through pairwise
contractual agreements. In this way, if a packet traverses only
Terminus ISPs on its way from source to destination, it will
arrive with its true source bit set, and its source IP addresscan
be trusted (our earlier work [13] used a similar concept to the
true source bit; however the rest of the Terminus architecture
is completely different and considerably simpler). Of course,
Terminus ISPs are assumed to perform ingress filtering, either
at their routers or their border patrols.

Figure 2 gives a couple of different scenarios illustrating
this mechanism. Packets originating at ISP A and going to the
server hosted by ISP G will arrive with the true source bit set.
Packets from ISP B, on the other hand, will have this bit unset
by router E2, since it knows that its link connects to a legacy
ISP. Finally, any packet from ISP C or D will arrive with the
bit unset, since router G2 knows ISP F to be a legacy ISP.

Thanks to the border patrols and the true source bit, a victim
can now know whether the source IP address in a packet is
valid or not. Naturally, the server will only be able to trustthe
source IP address field for packets that traversed a Terminus
ISP-only path, but as deployment progresses this will become
the common case.

B. Filtering Requests

We now have control points (border patrols) deployed
on outgoing paths to the rest of the Internet, and a way
for a victim to determine where a packet came from (the
combination of the true source bit and the IP source address
field). When an attack is detected, the next step is to send
filtering requests.

Although the IDS or server acting as the detector knows
what it wants to filter, it does not know where to send the
request. To avoid burdening an already busy system and to
avoid revealing the existence of an IDS, we offload this to
another system, which we will call afilter manager(FM).
The IDS is simply configured with the address of its local
FM, and sends all its filtering requests there (Figure 1).

An FM needs to map an IP address to be filtered to the ad-
dress of the border patrol handling traffic from that IP address.
There are many ways to do this, but our preferred solution is
to use a peer-to-peer flooding protocol to distribute digitally

2

Fig. 2. True source bit scenarios.

signed bindings to all FMs worldwide. This is essentially the
same robust flooding mechanism as was proposed for Push
DNS [12], and is extremely resilient to attack.

The size of this “routing” table would certainly be man-
ageable: only one entry would be required per AS, or about
20,000 entries in the current Internet. Each entry could consist
of an IP address and a set of prefixes, aggregated as much as
possible, representing the clients of the ISP that sit behind
border patrols.

Using this mapping table, the FM determines the address
of the host at the remote ISP from which it needs to request
a filter. Such a host, called aborder manager(BM), needs to
forward the filtering request to the appropriate border patrol
(in a small deployment, the BM could be the same host as the
BP; the architecture places no requirements on how this should
be implemented). To accomplish this, the ISP could install the
necessary mappings of source IP addresses to border patrols,
and update them should these change.

Once filters are installed we need a way of removing them.
Simplest is to include, along with the filtering request, infor-
mation about how a filter should expire. The BP then removes
the filter when the criteria are met (the expiration could be
time-based or even rate-based). When filters are installed and
attack traffic subsides, the victim has no obvious way to
know if the attack has actually ceased or if it is the filtering
mechanism that is being effective. The IDS could of course
request the filter be removed and measure the effects, but
perhaps a better solution is to provide a way to retrieve filter
traffic statistics from BPs. This allows the IDS to explicitly
remove unneeded filters, and provides a more flexible tool for
the IDS to use as it sees fit. The filtering protocol described
in Section IV-B supports all of these approaches.

We now have all the basic elements needed to filter an
attack. Traffic from clients traverses border patrols and arrives
at the server, where a nearby IDS detects the attack, determines
the malicious sources, and sends a filtering request to its
local filter manager. The FM, in turn, uses the mapping of
source IP address to border manager obtained via the peer-
to-peer network to send the necessary filtering requests to the
appropriate border managers. These, in turn, ensure that the
requests go to the appropriate border patrols through which
the malicious traffic flows, and where it is finally filtered.

III. PROTECTING THEARCHITECTURE

With such a powerful mechanism in place, care must taken
to make sure that the architecture is not used as a DoS tool
in its own right; protecting it from such misuse and dealing
with other forms of attacks is the topic of this section.

A. Defending Against Bots at Legacy ISPs

If Terminus were fully deployed, large DDoS attacks could
be filtered even if a few legacy ISPs remained. However,
during initial deployment legacy ISPs will be the norm rather
than the exception. Thus, we need to provide some level of
protection against attacks by sources hosted by legacy ISPs.

To this end, we can make use of the true source bit already
described. This not only denotes that the IP source address
is valid, but it also says that the packet originated at and has
traversed Terminus ISPs. It makes sense for a Terminus ISP
to reward other Terminus ISPs, and so we can install diffserv
classifiers at the edge routers of the destination ISP (or indeed
other Terminus ISPs on the path if they wish to do so), sending
packets that have the true source bit set to a higher priority
queue. As a result, packets from legacy ISPs will always get
lower priority and, during an attack, potentially little orno
service. It now becomes clear that although we always refer to
the true sourcebit, in reality we implement it as a newdiffserv
codepoint, so we can use the existing diffserv machinery in
all modern routers.

B. Validating Filtering Requests

As described so far, an attacker could contact a border
manager and request a malicious filter. A nonce exchange
suffices to avoid this. On receipt of a filter request, the border
manager sends a random nonce back to the filter manager, and
only installs the filter when it gets the nonce echoed back. This
serves to validate that the IP address of the FM is not spoofed
(of course this is not strictly necessary if the true source bit is
set in the filtering request, but as Internet paths are asymmetric
we cannot count on this being the case, and the extra validation
is cheap).

Validating the FM’s IP address is not sufficient though: it is
also necessary to validate that this particular FM is authorized
to request a filter for this particular destination IP address. In
essence we need the reverse mapping table from the one used
by the FM to discover the BM’s address. The same peer-to-
peer distribution of digitally signed mappings can be used to
distribute these reverse mappings too. Likely the certification
authorities for these signatures will be the Regional Internet
Registries (RIRs), as they already handle IP address allocations
to ISPs. It is worth noting that the nonce exchange will not
stop an attacker on the path between the BM and the FM;
however the additional risks are minimal as a compromised
router can already filter the traffic by simply dropping it.

With this in place, upon receiving a filtering request the
border manager will inspect its source IP address. If the
mapping between this address and the destination address of
the actual filter exists in the set of mappings distributed using
the peer-to-peer network, then the BM will issue a nonce.

3

Fig. 3. Reflector attack scenario. TS stands for true-source bit, SRC
for IP source address, EP for egress patrol and BP for border patrol.

This nonce will reach the FM, which will echo it if it had,
in fact, issued a filtering request. Finally, the BM will contact
the appropriate border patrols to block the unwanted traffic.

C. Triggering Requests Through Spoofing

Although the architecture ensures that filter requests come
from legitimate parties, it might still be possible for an attacker
to spoof client traffic to trigger a filter against an unsuspecting
legitimate client. The list of possible attack scenarios have to
do with the location of the attacker with regards to the victim.
Only five such scenarios exist:

1) The attacker is in a legacy ISP that allows spoofing.
2) The attacker is in a legacy ISP that performs ingress

filtering.
3) The attacker is in a different Terminus ISP from the real

client.
4) The attacker is in the same Terminus ISP as the real

client but behind a different BP.
5) The attacker is behind the same BP as the real client.

In the first scenario, the attacker can spoof the client’s
address. However, the attacker’s packets will arrive with their
true source bit unset. The filter manager must err on the side of
“do no harm” and only issues a filtering request when the true
source bit is set, relying on low diffserv prioritization when
the bit is not set. The next two scenarios are impossible: an
attacker from an ISP that performs ingress filtering simply
cannot spoof the address of a client in a different ISP. The
attack described in the fourth scenario is easily preventable by
either performing ingress filtering at the BPs or by ensuring
that the ISP uses the true source bit internally. In the last
scenario, the BP cannot tell traffic from the attacker and the
victim apart. In essence, the problem is a local one, and the
ISP can use ingress filtering or other local sanctions.

D. Reflection Attacks

In a reflection attack, the attacker spoofs a high rate of
requests using the victim’s IP address, and sends them to in-
nocent third-party servers; the response flood then overwhelms
the victim. A typical reflector might be a DNS server, and the
motivation is to amplify the attack as responses from the server
are larger than the requests sent by the attacker.

For the most part, reflection attacks do not trouble Terminus.
If the attacker is at a Terminus ISP, spoofing is not possible.

If the reflector is not at a Terminus ISP, or the path from the
reflector to the victim is not fully Terminus-enabled, then the
attack traffic does not have the true source bit set, getting low
priority at the ISP of the intended victim. However, there isa
single deployment combination that is problematic, as shown
in Figure 3. The issue arises when the attacker is at a legacy
ISP, so can spoof, and the reflector is at a Terminus ISP, so
traffic from the reflector to the victim arrives with the true-
source bit set. In this case the reflector has “promoted” low-
priority attack traffic to a higher priority. This scenario needs
special treatment.

The solution requires an additional system called anEgress
Patrol or EP. In practice, EPs and BPs will almost certainly
be the same systems; the difference is primarily that EPs filter
traffic outbound to customer hosts, whereas BPs filter inbound
traffic. All traffic to servers that might be used as reflectorsis
directed through an EP.

With regards to Figure 3, the process begins when an IDS
near server S detects a reflection attack (responses are coming
for requests that were never sent), and alerts S’s FM. The FM
cannot simply request that the attack is filtered, because if
it did, then the responses to any requests from S to R would
also be filtered. Thus an astute attacker might be able to cause
Terminus to block essential communications.

As inter-domain paths are frequently assymetric, S’s FM
does not know whether or not the path to ISP B is Terminus-
enabled. The appropriate response depends on knowing this,
so the FM sends a conditional filter request of the form:

if filter request packet arrives withTS = 1 then
At EP , block traffic fromS to R whereTS = 0

else
At BP , setTS = 0 on traffic fromR to S

end if
The reasoning behind this is as follows:

• If the filtering request packet arrives with TS = 1, ISP B
can use the TS bit to distinguish packets that areactually
coming from S from those coming from A. In this case,
we ask the EP to block traffic whose source IP address
is S whenever TS = 0, dropping all of the attack traffic.

• If, on the other hand, the filtering request packet arrives
with TS = 0, ISP B has no way to tell which packets
originated at S and which ones at A. Without adding a
lot of additional mechanism, the best that can be achieved
is to avoid promoting the attack traffic, hence the request
for a filter to clear the TS bit.

It is possible to handle the latter corner case more effectively
by resorting to tunneling, but on balance it seems better not
to add too much additional mechanism, but rather simply to
encourage wider Terminus deployment.

E. Protecting Terminus’ Components

For Terminus to be successful, all of its components must
be robust against attack. Attacking border patrols, for instance,
could deny traffic from clients from reaching a server. Under
full deployment, there will be a significant number of BPs,

4

and so DoSing a server by stopping client traffic would prove
very difficult at best. During initial deployment, however,there
might only be a few BPs deployed and the attack might be
effective. The solution is simple: do not advertise the BPs’
address prefixes externally via BGP. If they are not externally
reachable they are not susceptible to attack; EPs can be
protected in the same manner.

Border managers, on the other hand, do have to be externally
visible in order to receive filtering requests. However, these
boxes are not on the fast path, and so can devote all their
resources to the control protocol. The BM implementation
described in Section IV-B can not only service requests at
a fast rate, but also ensures that no state is held for a client
before it has responded to a nonce. In the end, overloading a
BM with requests only prevents filter installation. To allowa
bot behind a BP managed by such a BM to continue an attack
requires many bots to DoS the BM; this simply is not a good
return on investment for the attacker.

One final element of the architecture that might be targetted
is the filter manager. Again, this box is not on a fast path,
and so it can devote all its resources to filter requests. More
importantly, its traffic is constrained: there are a limited
number of IDS systems from which it should accept requests,
and the path for nonce requests from BM to FM will always be
Terminus-enabled (or we would not have requested the filter
in the first place).

IV. I MPLEMENTATION AND RESULTS

Ideally we would like the mechanisms described so far
to be implemented in hardware, perhaps as part of a router
platform. In reality, however, and especially during the early
deployment stages, it is unlikely that commercial vendors will
adopt the approach without having seen some level of real-
world deployment. Consequently, we have opted to implement
the solution using off-the-shelf hardware to show its feasibility.

As with any performance evaluation, repeatability is key,
and so using a controlled network testbed is a logical step.
However, creating realistic attack scenarios in a testbed is
problematic, since whatever scenarios are chosen, they could
never be general enough to reflect real-world diversity. De-
spite this, it is possible to test each of the components of
the architecture individually to see how they behave under
heavy load and pathological cases, and thus provide some
level of confidence with regards to the architecture’s overall
performance.

The following sections describe the implementation and per-
formance results of the various components of the architecture.
Section IV-A discusses the testbed, including the hardwareand
software used to derive the results; section IV-B illustrates the
implementation of the control plane elements, giving figures
for how quickly filters can be installed; section IV-C discusses
baseline as well as forwarding and filtering figures for the
border patrol; finally, section IV-D discusses the effects on
performance of combining the control and forwarding planes
at the border patrol.

Fig. 4. Filter installation request using the Internet Filtering Protocol.

A. Setup

The computers used to obtain the results were inexpensive
1U servers with two dual-core Intel Xeon 5150 processors
running at 2.66GHz. These CPUs have 64KB of L1 cache on
each core, with a 4MB L2 cache shared between the two cores.
The systems had two dual-port Intel Gigabit Ethernet cards on
8x PCI Express slots (results on older machines with PCI-X
buses turn out to be bus-limited). We implemented the control-
plane elements in C++ and for the forwarding plane we used
Linux 2.6.16.13, version 1.5 of the Click modular router [17]
and version 6 of the e1000 driver with polling extensions.

The kernel used was generally uni-processor, except
where otherwise stated. Whenever the term SMP appears in
forwarding-plane experiments, this means that we used two
forwarding paths, each handled by a separate thread assigned
to a separate CPU core (we assigned the remaining two cores
to the reverse path threads, which were idle). In experiments
that tested the performance of a Click element, the element
was replicated across the two paths.

B. Control Plane Performance

To transmit requests between the components of the control
plane we designed and implemented theInternet Filtering
Protocol(IFP). While the protocol supports various operations
such as filter removal and retrieving attack traffic statistics,
the results presented here focus on the most important op-
eration, filter installation. To test the worst case, we used
fine-granularity filters consisting of a source and destination
IP address pair (though the protocol supports prefix-based
and destination-only filters), and each IFP packet contained
a request with a single filter.

We tested the performance of each component individually.
The first of these, the filter manager, listens to requests from
an IDS or server. On receiving a filter install request, it
assigns a random request number to it, looks up the mapping
between the source address of the filter and the appropriate
border manager, and forwards the request to that BM. When
it receives a nonce from the BM, it echoes it along with
the filter specification, and waits for the final installation
acknowledgement from the BM (see figure 4). To test the
FM’s performance, the other components that it communicates
with must not become a bottleneck. To achieve this, we
implemented dummy versions of the IDS client and the BM

5

which do the bare minimum. With this setup, the FM was
able to sustain a rate of 75,000 requests/second. To put thisin
perspective, the largest botnet currently reported in the media
contained around 1.5 million hosts [5], although not all hosts
in such a large botnet may be used in any attack. Even for
such a large botnet and using fine-granularity src/dst IP address
filters, the FM would be able to add filters for all these bots
in only 20 seconds.

The second component to test in the control plane is the
border manager. The BM listens to requests from FMs. Upon
receiving a filter request from one of these, it sends back a
nonce which is generated from the FM’s address, the request
number, the filters and a secret. When it receives a nonce
reply, the BM ensures that the FM has the authority to request
filters for the given destination IP addresses (using mappings
distributed by the peer-to-peer mechanism) and that it knows
about a BP that can filter the given source address. If both
of these checks succeed, the BM forwards the filter install
request to the relevant BP(s), waits for an ack and forwards it
to the requesting FM. To test the performance of the border
manager, we constructed dummy versions of the filter manager
and the border patrol. With this test framework the real border
manager was able to sustain a rate of 87,000 requests/second.
Again, this is sufficient to filter even the largest botnets ina
matter of seconds.

The last control plane element is the border patrol. The
BP simply receives filter installation requests, installs them
in the filtering element of the forwarding plane, and sends
and acknowledgement back to the requesting BM. Once again,
we used a simplified dummy version for this BM to ensure
the BP is the bottleneck. For this experiment the BP used an
SMP kernel, so that the control plane process and the process
representing the forwarding plane were executed on separate
CPUs. No packets were forwarded for this experiment, since
the aim was to test the performance of the control plane part
of the border patrol. Installing filters into the filtering element
of the Click router consists of writing to a ‘/proc‘ entry. To
minimize the impact from this operation we installed filtersin
batches of 100. With this in place, the BP was able to service
354,000 requests/second. Clearly this is more than sufficient
to filter any malicious sources sitting behind the BP in very
little time.

To sum up, the filter manager, border manager and border
patrol are able to handle requests at rates of 75,000, 87,000
and 345,000 requests per second respectively. While we did
not particularly optimize the performance of any of these
components, these results clearly show that the control plane
of the architecture would be able to filter even the largest
botnets in a matter of seconds.

C. Forwarding Plane

We implemented the border patrol’s forwarding plane using
Click and added some custom elements of our own. Before
testing our elements, we conducted experiments to establish
baseline performance figures for Click. Throughout this eval-
uation we focused on minimum-sized packets, since these put

the greatest strain on forwarding resulting in worst-case results
for our components. For reference, the theoretical maximum
throughput for gigabit Ethernet using minimum-sized packets
is 1,488,095 packets per second, or 681 Mb/s.

1) Baseline Performance:Before conducting any filtering
tests we had to baseline the system’s capabilities to have a
better understanding of where the bottlenecks might be. Three
of these sets of experiments below demonstrate Click’s per-
formance when generating, counting and forwarding packets.

In the case of packet generation, the topology consisted
of a single host sending packets out of multiple interfaces,
each connected to a separate host counting the packets. Using
minimum-sized packets, we were able to simultaneously satu-
rate two interfaces, for a combined rate of about 1,362 Mb/s.
With three interfaces we could not quite saturate the links,
seeing an aggregate of 1,862 Mb/s, equivalent to 91% of the
theoretical maximum. Adding a fourth interface resulted only
in a minor increase in throughput (1,905 Mb/s), suggesting we
were CPU-limited. Using an SMP kernel and multi-threaded
Click with each generating interface assigned to a separate
CPU core confirmed this: using four interfaces we were able
to generate at a rate of 2,482 Mb/s, or 91% of the maximum.

For the next set of baseline tests we concentrated on packet
counting at the traffic sink. The topology consisted of four
source hosts, each sending to one of the four interfaces on
the counting host. As with sending, using two interfaces Click
is able to count at the maximum rate. Adding a third and
fourth interface did increase this rate when using one CPU,
but switching to an SMP kernel and multi-threaded Click with
each interface handled by a separate CPU core allowed us to
count at a rate of 2,724 Mb/s, the theoretical maximum.

What about forwarding performance? The border patrol
acts more as a filtering device rather than a router, and so
it will generally have a single outgoing interface connected
to the next-hop router. Taking this into account, and using
one, two and three incoming interfaces with a standards-
compliant IP router Click configuration we were able to
saturate the outgoing link even for minimum-sized packets
(681 Mb/s). With two incoming and two outgoing interfaces,
the aggregated throughput on the outgoing links was about 680
Mb/s, showing a performance bottleneck on the Click router.

As in the previous experiments, we then switched to an
SMP kernel and multi-threaded Click to see if we were
CPU-limited, and if so, how far we could improve this rate.
When using multi-threaded Click and a router configuration,
care must be taken in the way that threads (essentially CPU
cores) are assigned to portions of the router. Maximizing
the utilization of the four CPU cores does not necessarily
maximize throughput; to have good cache performance it is
important to avoid packets switching CPUs as they travel
through the forwarding path. Since, the border patrol acts more
like a filtering box more than a router, all traffic arriving atone
interface can be statically routed to leave via a paired outgoing
interface. With four gigabit interfaces on our test machines,
this gave us two forwarding paths, which we assign to separate
CPUs. Testing this configuration and using some of Click’s

6

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Prefixes

SMP border patrol
UP border patrol

Fig. 5. IngressFilter element performance in the uni-processor (UP)
and multi-processor (SMP) cases.

optimization tools resulted in a combined rate of 1,362 Mb/s
for minimum-sized (64-byte) packets, or 86% of the theoretical
maximum. With 100-byte packets we saturated both outgoing
gigabit interfaces. Clearly this shows that adding CPU cores
increases the forwarding performance. Adding more interfaces
to the router and seeing how these rates continue to increase
is future work.

2) Border Patrol Performance:Besides forwarding packets,
the BP has essentially two functions: ingress filtering and
filtering based on requests from filter managers. To this end,
we built two Click elements,IngressFilter and HashFilter
respectively, testing their performance individually at first and
then combining them.

The IngressFilter element is quite simple, setting the diffserv
codepoint for the true-source bit on packets that match an
allowed prefix and dropping the rest. We implemented the
list of prefixes using a vector, and so we wanted to see how
the element would perform as this list got longer. For these
tests we used a router with a single incoming and single
outgoing interface, where the last entry in the list was the
prefix allowing the test packets to be forwarded so that each
packet forced a full list traversal. As shown in Figure 5, for
a uni-processor border patrol with a fairly large number of
prefixes (50), we were able to forward minimum-sized packets
at 87% of the theoretical maximum. The curve of the graph
remains relatively flat right until the 70 prefixes mark or so:we
hypothesize that before this point memory accesses are being
serviced from the L2 cache, and so additional prefixes result
in a negligible performance hit; beyond this point, the curve
begins to decline, suggesting having to access main memory
more frequently.

A back-of-the-envelope calculation shows that very few
ISPs will need more prefixes at a single BP than the 150
shown in the graph. If a BP is sized to handle a fully-
loaded 1 Gb/s upstream ethernet link, then how many prefixes
would this correspond to at a broadband ISP? With a 512
kb/s upload speed per customer and an over-subscription ratio
of 20:1 (a typical figure for ADSL) we end up with about
39,000 addresses, or about 150 prefixes for small /24 prefixes.
Normally they will be aggregated more than this, but even
in this extreme scenario, the IngressFilter element is ableto
process packets at a rate of 512 Mb/s, or 75% of the theoretical
maximum.

Using two incoming and outgoing interfaces and an SMP
kernel with multi-threaded Click resulted in a combined
throughput of 1,017 Mb/s for 50 prefixes. Even though this
figure could be improved upon using some of Click’s opti-

mization tools or by changing the way that tasks are assigned
to CPU cores, it shows that the border patrol is still able
to process over a gigabit of minimum-sized packets even
for a large number of prefixes. Figure 5 clearly shows that
throughput scales with additional processors and interfaces.

We then tested the performance of the HashFilter element.
As the name suggests, the element uses a hash to store the
filters, and so its performance is essentially bound to that of
the hash. First we decided to see the pathological effect on
forwarding of having long chains in the hash. To do so, we
tweaked the hash function so that all filters were installed in
the same chain, and each packet being forwarded forced a
full traversal of this chain (see the bottom curve in Figure
6(a)). Even for a very long chain of 100 filters, the border
patrol was able to forward at a rate of 571 Mb/s for minimum-
sized packets, or 84% of the maximum. Using an SMP kernel
and two incoming and outgoing interfaces gives a rate 946
Mb/s, showing that performance scales well with additional
interfaces and CPU cores.

Next we wanted to see the effects that different
source/destination IP pairs in the incoming packets would
have on performance. For this experiment we used a hash
in which all chains were of equal length and each of these
contained different filters. We modified the hash function so
that each incoming packet hit a different chain to force bad
cache locality. Figure 6(b) shows the results. Even for an
over-populated hash table containing chains of 10 filters each,
the border patrol forwarded packets at 586 Mb/s, 86% of the
maximum. This shows good performance even in the face of
a poor hash function or a heavily-loaded hash. In the SMP
case and using four interfaces we obtained 976 Mb/s, showing
once again scalability with regards to number of interfacesand
processors.

The final set of forwarding tests focused on testing the
border patrol’s performance when using the IngressFilter and
HashFilter elements at the same time. Using a list of 20
prefixes, 10-filter long chains on all of the hash’s buckets and
forcing each incoming packet to hit a different bucket yielded a
rate of 585 Mb/s. Even in such an extreme scenario, the border
patrol is able to forward minimum-sized packets at 86% of the
theoretical maximum. In the SMP case, we were able to bump
this rate up to 922 Mb/s.

These results show that even for a large number of prefixes
in the IngressFilter element and a heavily loaded hash in the
HashFilter element, the border patrol is still able to forward
minimum-sized packets at very high rates. Further, we have
shown that these figures scale with the number of interfaces
and cores, giving evidence about the feasibility of building
a well-performing border patrol with off-the-shelf hardware,
and demonstrating the ability to utilize tomorrow’s many-core
CPUs effectively.

D. Combining the Two Planes

For the final test, we wanted to determine how filter installa-
tion would impact the border patrol’s forwarding performance.
To do so, we used an SMP kernel but single-threaded Click.

7

 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200

 0 100 200 300 400 500

T
hr

ou
gh

pu
t (

M
bp

s)

Chain Length

SMP border patrol
UP border patrol

(a) Worst-case scenario, filters are in one chain and packetshash to it.

 600

 700

 800

 900

 1000

 1100

 1200

 0 2 4 6 8 10

T
hr

ou
gh

pu
t (

M
bp

s)

Chain Length

SMP border patrol
UP border patrol

(b) All chains are equal length and each packet hashes to a different one.
Fig. 6. HashFilter element performance.

Using batches of 100 filters we were able to install filters
at a rate of about 354,000 filters/second, while sustaining a
forwarding rate of 568 Mb/s, 83% of the maximum. This
shows that the control plane has very little impact on the
forwarding plane because they run on separate cores. Indeed,
conducting the same test on a uni-processor kernel causes the
forwarding rates to plummet to 78 Mb/s (the filter insertion
rate remained the same). These figures clearly show that the
border patrol can install filters at a very high rate without
impacting high speed forwarding, and that modern multi-core
CPUs are very well suited to this task.

V. DEPLOYMENT INCENTIVES

Under full deployment, Terminus would clearly provide sig-
nificant protection against DoS attacks for all hosts. However,
this “common good” argument is not enough on its own to
motivate early adopters, since entities on the Internet generally
act only in their own self-interest. To bring about change, a
solution must provide incentives even for those early adopters,
or it will never see any important level of deployment.

ISPs hosting potential victims have the clearest incentive,
since they can charge for the protection they provide. Alter-
natively, such an ISP could provide this protection for free,
attracting customers from ISPs that do not provide this service.
Deploying our solution at the ISP is simple: set up a box to
act as the filter manager, configure it to receive the source
IP prefix to BM mappings from the peer-to-peer network,
obtain a certificate from the local RIR to sign its prefix-to-FM
mapping, and install a diffserv rule at the edge routers so that
packets with their true source bit set receive higher priority.
Evidently we would expect ISPs deploying these mechanisms
to also deploy border managers and border patrols, but it is
not required.

A source ISP has less incentive, since it is not directly
affected by attacks. However, deploying Terminus will result in
its customers receiving priority in the destination ISP, avoiding
delays during normal operation and actually receiving service
during an attack. Perhaps more importantly, deployment might
reduce technical support costs. Since the filtering mechanism

has no false positives (traffic is only filtered if the receiver
does not want it), the ISP can rely on the automatic filtering
mechanism rather than having to handle this manually, as
is currently the case. The actual deployment would entail
installing a border manager and a border patrol, setting the
BM to receive the mappings between destination address and
filter managers, and obtaining a certificate from the local RIR
to sign its prefix-to-BM mapping.

What about transit ISPs? They have the weakest incentive,
but may be persuaded to deploy by a client ISP (either a
source or destination ISP) that has deployed Terminus. The
transit ISP’s reputation might also motivate it to implement the
scheme. Fortunately the changes needed are minimal requiring
no additional hardware: just configure border routers to unset
the true source diffserv codepoint if a packet came from a
legacy ISP.

VI. RELATED WORK

The rise in DoS attack activity in recent years has resulted
in many proposed solutions from the research community.
One type of approach relies on building an overlay of nodes
to protect victims [15], [18], [10]. While they have their
merits, these solutions generally operate above the network
layer, and so other mechanisms are needed to protect this
layer. Other approaches rely on so-calledcapabilities[2], [27],
[19], whereby a host must ask permission to send from the
receiver before actually sending any traffic, and include a
token in subsequent packets. These solutions tend to rely on
the network to police packets so that only those with valid
tokens are allowed through, presenting a difficult deployment
hurdle. Pushback [14] aims at filtering aggregates by having
routers ask upstream neighbours to filter traffic. However, to
be effective, this needs paths where every single router hasthe
scheme deployed, and it can only defend against large attacks
if these deployed routers are close to the sources of malicious
traffic. Traceback solutions [4], [23], [26], [21], as theirname
suggests, focus on determining where packets come from. The
true-source bit described in this paper solves this problemwith
much less mechanism.

One of the more recent solutions [25] provides application-
layer protection against DoS, and so it would nicely com-
plement the solution we presented. Another proposal called
dFence[20] mitigates DoS attacks at the network layer by
dynamically inserting middlebox devices in front of a victim
when an attack takes place. However, these boxes are deployed
near the victim, and so it is unclear how well they would
be able to cope with large attacks. InPRIMED [24], the
authors present a proactive approach to mitigation based
on communities of interest (COIs), using them to capture
the collective past behavior of remote network entities and
to predict future behavior. Despite its merits, attackers will
eventually outsmart the heuristics used in the solution. In
addition, PRIMED’s analysis may be vulnerable to spoofing
attacks trying to incriminate members of a good COI.

Like the solution presented in this paper, there have been
others put forth that aimed at filtering malicious traffic near its

8

sources.AITF [3] is one such approach, but it faced deploy-
ment hurdles because of changes required to core network
nodes: it relies upon the core of the network to perform
the filtering during the initial deployment stages, and uses
a variant of IP route record to mark where packets came
from. In Firebreak [8], the authors also place filtering boxes
near the edges. However, it suffers from several shortcomings,
including complications arising from the fact that these boxes
use IP anycast to advertise their addresses: not only is large-
scale IP anycast not well understood nor widely deployed,
but advertising in this manner is likely to present scalability
problems.

Another solution [22] aims at filtering traffic on a per-
customer basis, but relies on BGP to relay filtering requests
from AS to AS, focusing on the economic feasibility of its
deployment. In [1] the authors present a scheme to prevent
congestion collapse and unfairness by adding mechanism to
edge routers. While the authors use the term border patrol,
these modified routers differ from our approach in both their
placement in the network (they are placed even at edges
between networks) and their functionality (they police flows
based on their rates). Further, all border patrols must periodi-
cally exchange flow information, presenting serious scalability
problems.

A QoS-based solution is presented in [9] that also aims
at deploying special boxes called QoS regulators near edges.
However, each of these relies on the server telling it which
share of the total load to allow, and it is not clear how the
server can arrive at such a figure when these regulators are
distributed throughout the Internet. In addition, depending on
the type of traffic to limit, the regulators must perform some
level of deep-packet inspection and keep state, resulting in
performance problems.

In [6] and in previous work [13], a diffserv code point
was used to differentiate traffic originating from well-managed
sites and from sites that supported the proposed filtering
scheme, respectively. The solution we presented in this paper
also uses a code point, but to signal the validity of the source
IP address field in the packet.

VII. C ONCLUSIONS

We presented Terminus, a new architecture that can filter
even the largest Denial-of-Service attacks while providing
clear incentives to early adopters. Terminus is well suited
to being implemented in fast routing hardware, but in the
early stages of deployment this is unlikely to be the case.
Because of this, we have shown that these elements can also be
built using inexpensive off-the-shelf hardware while still being
able to cope with the largest attacks, both in terms of filter
installation rates and forwarding rates even for minimum-sized
packets. Optimizing the current implementation and takingfull
advantage of all the CPU cores in the hardware used would
improve these figures even further.

REFERENCES

[1] Celio Albuquerque, Brett J. Vickers, and Tatsuya Suda. Network border
patrol: preventing congestion collapse and promoting fairness in the
internet. IEEE/ACM Trans. Netw., 12(1):173–186, 2004.

[2] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial-
of-Service with Capabilities. InProc. ACM SIGCOMM 2nd Workshop
on Hot Topics in Networks, November 2003.

[3] K. Argyraki and D. Cheriton. Active Internet Traffic Filtering: Real-
Time Response to Denial-of-Service Attacks. InUsenix Annual Techical
Conference. Usenix, April 2005.

[4] S. Bellovin, M. Leech, and T. Taylor. The ICMP traceback message,
Oct 2001.

[5] CNET. Bot herders may have controlled 1.5 million pcs, October 2005.
[6] S. Crocker. Protecting the Internet from distributed denial-of-service

attacks: a proposal.Proceedings of the IEEE, 92(9), September 2004.
[7] Albert Einstein. ”Everything should be made as simple aspossible, but

not simpler”, quote from Readers Digest, October 1977.
[8] Paul Francis. Firebreak: An IP Perimeter Defense Architecture. 2004.
[9] A. Garg and A. Reddy. Mitigation of dos attacks through qos regulation.

In Proceedings of IEEE International Workshop on Quality of Service
(IWQoS), 2002.

[10] R. Govindan, A. Hussain, R. Lindell, J. Mehringer, and C. Papadopou-
los. COSSACK: Coordinated suppression of simultaneous attacks. In
Proceedings of IEEE DISCEX Conference, April 2003.

[11] Mark Handley and Adam Greenhalgh. Steps towards a DoS-resistant
Internet architecture. InWorkshop on Future Directions in Network
Architecture (FDNA 2004).ACM SIGCOMM, September 2004.

[12] Mark Handley and Adam Greenhalgh. The case for pushing DNS. In
Proc. ACM HotNets IV, November 2005.

[13] Felipe Huici and Mark Handley. An edge-to-edge filtering architecture
against DoS.SIGCOMM Comput. Commun. Rev., 37(2):39–50, 2007.

[14] John Ioannidis and Steven M. Bellovin. Implementing pushback: Router-
based defense against DDoS attacks. InProc. Network and Distributed
System Security Symposium, San Diego. ISOC, Reston, VA., February
2002.

[15] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Overlay
Services. InProceedings of ACM SIGCOMM, August 2002.

[16] Jeremy Kirk. Russian gov’t not behind estonia DDoS attacks. Network
World, June 2007.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. The Click
modular router. ACM Trans. on Computer Systems, 18(3):263–297,
August 2000.

[18] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. Taming IP
packet flooding attacks. InProceedings of the 2005 HotNets Workshop,
2003.

[19] W. Lee and J. Xu. Sustaining availability of web services under
distributed denial of service attacks.IEEE Transactions on Computers,
52(3):195–208, 2003.

[20] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. dFence:
Transparent Network-based Deniall of Service Mitigation.In 4th
USENIX NSDI, Cambridge, MA, Apr 2007.

[21] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical net-
work support for IP traceback.SIGCOMM Comput. Commun. Rev.,
30(4):295–306, 2000.

[22] D. Simon, S. Agarwal, and D. Maltz. AS-Based Accountability as a
Cost-effective DDoS Defense. InUSENIX First Hotbots Workshop,
Cambridge, MA, April 2007.

[23] A. Snoeren, C. Partridge, A. Sanchez, Jones C., F. Tchakountio, S. Kent,
and T. Strayer. Hash-based IP traceback. InProceedings of the 2001
ACM SIGCOMM Conference, 2001.

[24] P. Verkaik, O. Spatscheck, J. Van der Merwe, and A. Snoeren. PRIMED:
Community-of-Interest-Based DDoS Mitigation. InACM SIGCOMM
LSAD Workshop, Pisa, Italy, September 2006.

[25] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, andS. Shenker.
DDoS Defense by Offense. InACM SIGCOMM 2006, Pisa, Italy, Sept
2006.

[26] A. Yaar, A. Perrig, and D. Song. Pi: A path identificationmechanism to
defend against DDoS attacks. InSP ’03: Proceedings of the 2003 IEEE
Symposium on Security and Privacy, page 93. IEEE Computer Society,
2003.

[27] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless internet flow filter
to mitigate DDoS flooding attacks. InProceedings of the IEEE Security
and Privacy Symposium, May 2004.

9

	Introduction
	Terminus Architecture
	Edge Filtering
	Filtering Requests

	Protecting the Architecture
	Defending Against Bots at Legacy ISPs
	Validating Filtering Requests
	Triggering Requests Through Spoofing
	Reflection Attacks
	Protecting Terminus' Components

	Implementation and Results
	Setup
	Control Plane Performance
	Forwarding Plane
	Baseline Performance
	Border Patrol Performance

	Combining the Two Planes

	Deployment Incentives
	Related Work
	Conclusions
	References

