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Abstract

The 802.11 encryption standard Wired Equivalent Pri-
vacy (WEP) is still widely used today despite the numerous
discussions on its insecurity. In this paper, we present a
novel vulnerability which allows an attacker to send arbi-
trary data on a WEP network after having eavesdropped a
single data packet. Furthermore, we present techniques for
real-time decryption of data packets, which may be used
under common circumstances. Vendor produced mitiga-
tion techniques which cause frequent WEP re-keying pre-
vent traditional attacks, whereas our attack remains effec-
tive even in such scenarios.

We implemented a fully automatic version of this attack
which demonstrates its practicality and feasibility in real
networks. As even rapidly re-keyed networks can be quickly
compromised, we believe WEP must now be abandoned
rather than patched yet again.

1. Introduction

Everyone knows that the Wired Equivalent Privacy
(WEP) algorithm is broken, but only a minority manage to
recover keys successfully in practice. The reason for this
is partly because these attacks require long waiting times.
As many believe that it is unlikely for an attacker to spend
hours physically waiting around a network, people prefer
to adopt WEP rather than seeking more sophisticated and
possibly more difficult to manage security solutions. This
will no longer be the case as with the fragmentation attack
described in this paper, hours become minutes.

Although we evaluate the complexity of recovering a
WEP key, the main scope of our work is to emphasize the
threat of attacks which do not ever require the key. Some
of these attacks were introduced in the past, although they
were considered highly impractical. We provide the miss-
ing link, making these attacks even more practical (in the
short-run) than ones which recover the key.

Region WEP WPA 802.11i
London 76 20 4
Seattle region 85 14 1

Table 1. Popularity (%) of encryption
schemes used in encrypted networks.

1.1. Who Uses WEP?

There is no reason in scrutinizing WEP if it is no longer
being used. However, contrary to popular belief, WEP is
still highly deployed. To sustain our claims, we decided to
provide some evidence that WEP really is out there.

Although Wi-Fi Protected Access (WPA) [32] has been
available for some time, and 802.11i [19] is also now avail-
able, few networks use these more secure solutions. We
wrote monitoring software to assess the current situation
and conducted a survey of 400 wireless networks in Lon-
don and 2,539 networks in the Seattle region. In both cases,
about half of the networks used encryption. In London, 76%
of the encrypted networks in our sample used WEP, and in
Seattle 85% of them used WEP. Although vendors recom-
mend upgrading to to WPA or 802.11i, only a minority of
users seem to use these solutions. The complete results of
our survey are summarized in Table 1.

Care was taken to allow legacy WEP hardware to sup-
port WPA, although in practice, new cards are frequently
needed. This is especially true for WPA2 where previous
cards were not fast enough to encrypt at full link speed us-
ing AES. Perhaps this is why WEP is still used—it is the
only lowest common denominator that everyone supports.

For additional security, some vendors have recom-
mended solutions that involve using WEP and dynamically
re-keying it, in order to protect against its weaknesses. As
we will show, such workarounds do not protect against all
the attacks described in this paper. Thus, we believe that
our discoveries on WEP have practical relevance even to-
day, and should be cause for concern.

The rest of this paper is organized as follows. In the
next sections we describe the operation of WEP followed
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Figure 1. WEP encryption.

by a history of how it has been attacked. Our fragmentation
attack is described in Section 2 which details how to trans-
mit data, decrypt and ultimately recover the key. Section 3
analyzes the practical issues we needed to address to suc-
cessfully implement the attack. Results, including cracking
times, are presented in Section 4. In Section 5 we summa-
rize the lessons learnt from WEP’s history and we conclude
in Section 6.

1.2. WEP Operation

WEP is a stream cipher used to encrypt the data portion
of data packets in 802.11 networks. The 802.11 header is al-
ways in clear-text and both management and control frames
are transmitted unscrambled. WEP uses RC4 [28] and the
802.11 standard [17] specifies a 40-bit pre-shared key, al-
though 104-bit keys are commonly used today. Figure 1
shows the process of encryption. A seed is constructed by
pre-pending a 24-bit Initialization Vector (IV) to the secret
key. This seed is used to set up RC4’s state via the Key
Scheduling Algorithm. The output of RC4’s Pseudo Ran-
dom Generation Algorithm (known as a keystream) is XOR-
ed with the clear-text to produce the cipher-text. Before en-
cryption, a checksum (CRC32) of the data is appended to
the message body and encrypted with it. Decryption is sim-
ilar: the cipher-text is simply XOR-ed with the keystream,
and the CRC is checked.

The IV chosen for producing RC4’s seed is pre-pended
in clear-text in the payload being sent. Normally, each data
packet will have a different IV. In practice, implementations
tend to use a linear counter for their IV generation. This
counter increments by one, each time a packet is sent.

1.3. Keystream Details

Each different IV produces a different keystream, since
the RC4 seed will have changed. A single secret key will
therefore produce 224 different keystreams. In essence, both
WEP encryption and decryption are an XOR with one of

these keystreams. To decrypt a packet, the keystream pro-
duced from the IV specified in the packet must be XOR-ed
with the cipher-text. To encrypt a packet, the requirements
are more relaxed: XOR the clear-text with any keystream.
Although a normal station should not do so, it is possible to
know a single keystream and transmit many different pack-
ets using the same keystream and IV. Thus, by recovering
one keystream, an attacker may transmit any data and also
decrypt payloads which use that keystream.

XOR (denoted as ⊕) has the property that cipher ⊕
clear = keystream. Therefore, one way of recovering the
keystream is by knowing the cipher-text and clear-text and
by performing a XOR of the two. The cipher-text can be
obtained by eavesdropping a packet. If the keystream is re-
covered from that cipher-text, then transmission may occur
by always re-using the IV from the captured packet. That
keystream may also be used to decrypt any future pack-
ets using that IV. However, the problem in calculating the
keystream from the cipher-text is knowing the clear-text.

1.4. History of WEP Attacks

WEP has a long history of vulnerabilities and “fixes”.
Initial attacks did not seem very practical, so vendors pre-
ferred not to invest in shipping new security solutions, but
rather, they provided patches to mitigate these difficult to
achieve attacks. Attacks evolved over time, and new ones
were discovered, posing more serious threats to WEP. Once
again, the industrial response was in providing further miti-
gation techniques. In the following sections we summarize
the main problems WEP faced and how vendors responded.

1.4.1. Brute-force

The most naive attack is a brute-force which tries all pos-
sible keys until the correct one is found. The 802.11 stan-
dard specifies a 40-bit WEP key. An exhaustive search on
a single modern machine would require less than a month
to complete—not impossible, especially if the task is dis-
tributed. It was noted that many implementations had an op-
tion of entering a human readable pass-phrase which would
then be converted into a WEP key. Some of these im-
plementations made use of a conversion algorithm which
would generate keys with only 21 bits of entropy [30].
Other implementations would convert a pass-phrase into a
hex key by using the ASCII values of its characters. These
non-standard mechanisms for entering a pass-phrase often
reduced considerably the difficulty of brute-force attacks.
Perhaps, a standardized algorithm for hashing a pass-phrase
into a WEP key would have prevented simple brute-force
attacks, and would even have been useful (humans tend to
prefer passwords rather than hex digits). Vendors provided
support for 104-bit WEP which was effective against brute-
force.



1.4.2. Keystream re-use

Cryptanalysis on WEP demonstrated that the algorithm’s
security is independent from its key [21, 11]. Early attempts
to improve WEP’s security by increasing its key size were
therefore futile. If a keystream is recovered, it is possible
to decrypt data which uses that keystream, and to trans-
mit. The clear-text must be known in order to recover a
keystream. There was no major concern for these vulner-
abilities because it was considered impractical to know the
clear-text of data.

Mechanisms for reliably discovering a keystream were
later discovered [2, 8, 27]. The most practical relied on
Shared Key Authentication to be enabled, which was a
mechanism for preventing un-authorized access to a net-
work. In this scheme, the AP sends a clear-text challenge
to the authenticating peer. The peer authenticates by re-
sponding with the encrypted version of the challenge. By
snooping this transaction, the attacker has a cipher-text and
plain-text pair which he may XOR in order to recover a
keystream. The 802.11 standard identifies this scenario and
discourages stations for re-using the IV from this hand-
shake, since future traffic using it may be decrypted. What it
fails to mention is that an attacker may transmit indefinitely
by using that keystream.

The response to this attack was to discourage the use of
this authentication scheme and to use mechanisms such as
SSID cloaking and MAC address filters. Of course, this
approach is flawed—eavesdropping an association request
and spoofing a MAC address are both trivial. There was no
real pressure to eliminate the problem of keystream re-use.
The main argument was that a network has 224 keystreams
making the complete attack too complex. Despite the obser-
vation made that in practice clients use a limited number of
these keystreams, re-use still was not seen as a major threat.

1.4.3. Weak IV Attacks

Further study on WEP revealed that the key could be cal-
culated [13]. This attack required gathering ≈ 1, 000, 000
packets of which some used “weak” IVs. Actually, these
RC4 properties were first noted four years before WEP be-
came available [31]. A single weak IV reveals a correct key
byte 5% of the time. By gathering a high number of statis-
tics (IVs) the most probable key may be calculated. Weak
IVs were seen as a major threat to WEP, perhaps because
for the first time there was an automated tool which could
recover the key. Now even technically unskilled hackers
could compromise a network. The response was in building
hardware which would filter these weak IVs. By patching
this issue, vendors have just made the keystream re-use vul-
nerabilities more serious—there are now even fewer than
224 keystreams. The weak IV attack was nevertheless mit-
igated, since only in certain circumstances and after having

gathered a great deal of statistics, could the key be recov-
ered. It could take days.

It turned out that there were more weak IVs than the ones
originally published [15]. Vendors had to implement new
filters although the problem was already becoming obvious.
A single legacy host could compromise the entire network.
Furthermore, weak IVs which yielded correct results with
higher probability (13%) were noticed [29] although their
details were never published. Vendors could not implement
filters for IVs which were privately being exploited [5, 24]
although their only salvation was the fact that these attacks
still required long waiting times (≈500,000 packets). These
IVs were later rediscovered and made public [23].

In practice, even after the public releases of tools which
used high probability IVs, a large number of packets (≈
1, 000, 000) could still be needed to recover the key. This is
due to the fact that most hardware filters the old weak IVs,
so the attacker can only use the new IVs. The hardware pro-
tections and the discovery of the new IVs effectively can-
celed each other out. We still have not seen hardware which
filters the higher probability IVs. Perhaps, this is so because
the public implementations which exploit these IVs do not
use use filters, whereas the previous generation of tools did,
allowing vendors to simply copy the filter.

1.4.4. Modern Attacks

There are two main problems with the attacks of the past.
One is how to recover a keystream reliably and the other is
how to speed up the weak IV attack. Both have been solved.
It is possible to recover one byte of keystream after sending
at most 256 packets [22, 1] (a method will be described in
Section 2.4.2). To speed up the weak IV attack, it is possible
to replay WEP packets. If a packet which elicits a response
is replayed, traffic will be generated on the network and the
attacker no longer needs to passively wait for data—he can
actively cause traffic which may use a “weak IV”.

At this point, vendors realized that WEP was dead. A
skillful attacker can compromise a network in hours by
using these vulnerabilities. However, the mitigation pro-
cess continued as it was realized that if a WEP key is
changed often enough, it was possible to eliminate the prac-
tical threat—attackers will not have enough time to com-
promise the network. EAP based solutions which fre-
quently re-key emerged and are being recommended by
vendors [10, 9, 18].

1.4.5. Our Contribution

We discovered a novel attack which may compromise a
WEP network quickly and reliably. Our fragmentation at-
tack is still applicable against networks which re-key fre-
quently, since it may be performed almost instantly. By
publishing this work we hope it becomes obvious that WEP
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Figure 2. LLC/SNAP header contained in
practically all 802.11 data frames.

must not be used and patches to it will not solve the core
issues. Furthermore, we hope this paper serves as a case
study as to what happens in practice when things go wrong.
Even though attacks only seemed theoretical back in 2000,
serious action had to be taken immediately. Until today, ad-
vances have been made in breaking WEP but there has not
been such a push in trying to eliminate it completely.

2. The Attack

In the next sections, we describe a series of attacks which
may be used to transmit and decrypt data on a WEP net-
work. In general, transmission is simple and the complexity
of decryption is what distinguishes attacks.

We begin by presenting a further design flaw in WEP—
layer 2 fragmentation. We illustrate how it may be used on
its own in order to compromise a network. Following this,
we discuss how fragmentation can interplay with other at-
tacks. We group attacks into two classes: those that fully
compromise a network without recovering the WEP key,
and those that recover the key.

2.1. Known Plain-text in Packets

Our fragmentation attack requires knowledge of a small
portion of keystream. After that, transmission of arbi-
trary data may occur. Many keystream based attacks were
thought impractical because they required plain-text knowl-
edge. Our attack will have a different fate since such knowl-
edge can be as minimal as a couple of bytes, which turn out
to be readily available.

The initial portion of 802.11 packets is virtually con-
stant. A packet commences with an LLC header followed
by SNAP as shown in Figure 2. These two headers occupy
the first eight bytes of a packet. The only “unknown” field is
the ethertype which occurs at the end of the SNAP header.
The ethertype will normally be either ARP or IP. ARP pack-
ets are easily distinguished by their fixed size of 36 bytes
and are usually destined to a broadcast address. Some hard-
ware pads short packets to a minimum length, making ARP
packets longer. By inspecting the MAC address prefix of
the AP, one can determine the hardware being used [16] and
may judge whether or not short packets are being padded.
Since we can differentiate between IP and ARP based on
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Figure 3. Transmitting a single logical packet
in multiple 802.11 fragments.

the length of the packet, we assume that for each packet at
least the first eight bytes of plain-text is known.1

By intercepting a packet and knowing the first eight
bytes of plain-text, eight bytes of keystream may be cal-
culated by performing clear-text ⊕ cipher-text. By using
this keystream, it is now possible to send eight bytes of en-
crypted payload. The payload will be composed of four
bytes of data followed by its CRC32. Nothing practical can
be achieved by sending four data bytes since the LLC/SNAP
header alone requires eight bytes. Therefore, this result was
never considered to be an issue.

2.2. Fragmentation in 802.11

Little scrutiny has been done on how WEP interacts with
the rest of the 802.11 protocol. Most of the past attacks
focused solely on WEP’s weak cryptographic properties.
However, it is exactly in this interaction that WEP’s largest
flaw emerged—802.11 may be used against WEP.

The 802.11 standard specifies fragmentation at the MAC
layer and each fragment is encrypted independently. It is
possible to send multiple 802.11 fragments (up to a max-
imum of 16) each using the same keystream. By sending
payloads in eight byte fragments, it is possible to inject
4×16 = 64 bytes of data (each payload requires a CRC32).

Therefore, after snooping one data packet, the attacker is
able to recover at least eight bytes of keystream. By using
802.11 fragmentation, the attacker may immediately trans-
mit up to 64 bytes of arbitrary data. Figure 3 illustrates
802.11 fragmentation.

The 802.11i standard motivates the TKIP MIC by noting
that WEP was vulnerable to “Fragmentation attacks” [19].
We still wonder what exactly they referred to, and whether
they knew about this attack. All we know is that we in-
formed CERT about this issue back in 2003, although we
were never properly followed up.

1In reality much more is known. For example, ARP packets contain
plenty of known information, especially because MAC addresses are clear-
text in the 802.11 header.



2.3. Pure Fragmentation Attack

We now analyze how the fragmentation technique may
be used alone in attacking WEP networks connected to the
Internet. Broadly speaking, an attacker desires two things:
to be able to transmit and decrypt data. Fragmentation per-
mits both.

Transmission is trivial and does not require Internet con-
nectivity. The attacker needs to eavesdrop one data packet
and recover eight bytes of keystream. This is easily accom-
plished since the first eight bytes of clear-text are known
and the cipher-text has been intercepted. After that, the at-
tacker may use 802.11 fragmentation for transmitting data
of up to 64 bytes. IP fragmentation may be used on top for
sending larger packets.

Traffic may also be decrypted in real-time using 802.11
fragmentation, provided that the 802.11 network is con-
nected to the Internet. To do this, an attacker can use the
AP to decrypt. Suppose that the attacker has eavesdropped
an encrypted packet x and wishes to decrypt it. Clearly the
AP knows the encryption key, and if the attacker replayed
the packet, the AP would decrypt it. By itself, this would
not be useful, as the replayed packet would simply be for-
warded to its original destination. However, the attacker can
use fragmentation to simply prepend an additional IP header
to the front of the eavesdropped packet. With 802.11, only
the data portion is encrypted, and there is no sanity check in
order to ensure that what was originally a complete payload
cannot be replayed as a fragment. Upon reception, the AP
will decrypt both the new header and the original packet x,
and reassemble them into a single packet. If the new header
contains an Internet address, the AP will send the packet
there in clear-text (WEP protects only the wireless link). If
the attacker controls the Internet host the packet was sent to,
he can recover the clear-text of x.

This may be accomplished by constructing an IP header
in four byte fragments using the recovered eight bytes of a
keystream, followed by a further larger fragment containing
the entire unmodified encrypted payload x. The AP will
decrypt, de-fragment, and send off the data to the Internet
in the clear. Figure 4 illustrates this process, although for
clarity, only one fragment is drawn for the IP header. In
the following sections, we will address some of the details
regarding the decryption strategy of this attack.

2.3.1. Forwarding to the Internet

To transmit to an Internet host, two pieces of information
are required: the router’s MAC address and a source IP ad-
dress. Obtaining the router’s MAC address is not difficult,
especially since the 802.11 header which contains MAC ad-
dresses is always in clear-text. Often, the AP itself will act
as a router and its MAC address may be obtained from the

}IV
x

}Data
5138 3770

Encrypted
payload.

y IP Header x 5138 3770
IP header &
payload frags.

IP Header seib ello
De-crypt, reassemble
& send to Internet.

Figure 4. Decryption by using the AP to re-
send data in clear-text to the Internet.

802.11 header in its Beacon frames. Another possibility is
determining which MAC address seems the most popular
and infer it being an Internet gateway.

Depending on the network configuration, a correct
source IP address may not be needed for transmission.
Some public IP networks allow IP spoofing, and many
NATs translate all packets they route, regardless of their
source address. In Section 2.4.2, we present other tech-
niques for obtaining the router’s MAC address and a source
IP address.

2.3.2. Redirecting MTU Packets

Decrypting data by prepending an IP header will not work
for packets which will exceed the Maximum Transmission
Unit (MTU) size. Only packets no longer than 28 bytes less
than the MTU may be re-sent, since at least 20 bytes are
required for prepending the IP header, and the decrypted
payload will include the LLC/SNAP header. In practice,
this is not a limitation. Firstly, attackers will want to decrypt
authentication data, which is normally transmitted in short
packets (e.g. POP3 credentials). Secondly, many APs act as
routers and will IP fragment the larger than MTU payload
when forwarding it. For completeness though, we discuss
techniques which may be used to re-direct even MTU-sized
packets.

Bit-flip destination address. The first technique is to bit-
flip the destination IP address in the original payload
directly. The problem is knowing the original desti-
nation and IP checksum. For TCP flows, the attacker
could intercept the SYN (≈ 40 bytes) and redirect it to
the Internet using our technique. If the attacker has an
out-of-band reverse channel, such as GPRS, then the
original IP addresses are now known. The techniques
presented by Borisov et al. may then be used to bit-flip
the destination address of future packets [8].

It is also possible to receive this information back
using covert signaling from the attacker’s Internet
“buddy” host. Although the attacker does not know the
contents of the now-encrypted incoming messages, he



may see their length which can be used to encode data.
To do this, the attacker must choose a valid source
address—in Section 2.4.2 we will show how this too
can be achieved.

Chop-Chop. There is a mechanism by which packets may
be truncated while still keeping them valid [22]. This
proceeds a byte at a time by dropping a byte, guessing
its clear-text, and calculating the change to the payload
which yields a valid message. The payload change is
dependent only on the byte being chopped. For each
≤ 256 packets sent, the payload can be truncated by
one byte. By chopping 28 bytes from the tail of the
message, it is now possible to prepend an IP header
and a new LLC/SNAP header.

ICMP “packet too big”. With Path MTU Discovery [26],
TCP packets are sent with the Don’t Fragment bit set.
If a router with a low MTU needs to fragment such a
packet, it drops it and sends back an ICMP “packet too
big” message. The TCP sender will reduce its Maxi-
mum Segment Size to the new path-MTU as indicated
in the ICMP message and send future data in smaller
chunks.

The ICMP message contains 64 bits of the TCP header
of the packet that was too large. In theory, the sender
might check some of these bits. However, in our ex-
periments with Linux 2.6, FreeBSD 5.4, Windows XP
SP1 and MacOS X Tiger, none of the implementations
did any real sanity checking on this information, so
long as the encapsulated destination IP address was
correct. We can decrypt the IP header directly by re-
laying the small TCP SYN packet. None of the re-
maining TCP information in the ICMP message needs
to be valid.

It is therefore trivial to spoof such an ICMP message
and lower the MTU for a particular destination. Since
the victim will now transmit arbitrarily smaller packets
for that destination, an IP header may be prepended to
them allowing them to be decrypted.

2.3.3. Summary of Fragmentation-only Attack

In short, after eavesdropping a single packet, it is possible
to send arbitrary data immediately. In the case that the net-
work is connected to the Internet, and the attacker knows the
router’s MAC address and the network’s IP prefix, it is pos-
sible for the attacker to capture data and re-send it to the In-
ternet, where it will arrive in clear-text. Therefore, frequent
WEP re-keying, even on a per-minute basis, is not sufficient
to prevent this attack completely since it may be performed
in real-time. We summarize the attack as follows:

Requirements. For decryption, the network must be con-
nected to the Internet. The router’s MAC address and

a source IP address are needed. Techniques for obtain-
ing these parameters are discussed in Section 2.4.2.

Recover Keystream. Eavesdrop a packet. If the packet’s
length is 36 bytes,2 its type is ARP, otherwise it is
IP. Recover eight bytes of keystream by performing
a XOR of the first eight bytes of cipher-text and the
known plain-text for ARP or IP (depending on the
packet’s length).

Transmit. Transmit data by sending multiple eight-byte
802.11 fragments, using the keystream recovered. If
a large IP packet needs to be sent, IP fragmentation
may be used in conjunction.

Decrypt. Eavesdrop a packet to decrypt. Send an IP
header, destined to a controlled Internet host, in multi-
ple 802.11 fragments using a known keystream. Send
the eavesdropped packet as the last fragment. The In-
ternet host will receive the payload as clear-text.

2.4. Keystream Based Attacks

The limitation of the pure fragmentation attack is that
it requires co-operation of an Internet host for decrypting
data. It is not applicable to private networks. In the fol-
lowing sections, we illustrate how fragmentation may aid
keystream based attacks. These allow compromising net-
works, even without Internet connectivity.

The basic idea is to discover either all possible
keystreams (dictionary attack) or specific ones. If a packet
is eavesdropped and the attacker knows its corresponding
keystream, he may XOR the two and obtain the plain-text.

2.4.1. Discovering Keystreams

The practical problem with past keystream based attacks is
that there was no immediate method for recovering a single
full (1500 byte) keystream. Furthermore, since a network
uses at most 224 keystreams, attacks which built a dictio-
nary of all these keystreams were considered impractical
since one would need to know 16M cipher-text and plain-
text pairs. With fragmentation, recovering a single full
keystream takes seconds. One could then use this knowl-
edge to recover other keystreams.

Consider sending a large broadcast frame in small frag-
ments. The AP will reassemble it and relay it as a single
large frame, since it has no need to fragment it. If the at-
tacker originated such a frame, the clear-text is obviously
known to him. By eavesdropping the frame relayed by the
AP, the attacker can recover the keystream for the new IV
chosen by the AP. This process is illustrated in Figure 5.

2See Section 2.1 regarding hardware which pads short packets.
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If 64 bytes of data were sent in 4-byte fragments, the AP
will relay a single 68 byte payload (4 bytes for the CRC32).
The attacker can now send 64 bytes in each of 16 fragments,
resulting in a 1028 byte relayed frame. Therefore, by send-
ing a total of 34 fragments, 1500 bytes of keystream are
recovered. Fragmentation therefore enables an attacker to
discover a 1500 byte keystream almost immediately, after
having eavesdropped a single data packet.

To recover other keystreams, the attacker can now send
1500 bytes (without needing fragmentation) and snoop the
relayed version from the AP, which will most likely use a
different IV. By sending ≈ 224 (16M) packets, a complete
IV dictionary may be built. In practice, stations initialize
their IV to zero and increment it by one for each packet
sent. Therefore, if stations remain on a network for a limited
amount of time, possessing a small number of keystreams
may enable decryption of their traffic.

2.4.2. Discovering a Specific Keystream

When building the IV dictionary via broadcasts, a new
keystream is recovered each time (since the AP chooses its
next IV when relaying). At times, it is necessary to decrypt
a specific packet. Doing so requires knowledge of a partic-
ular keystream which may not yet have been recovered.

One decryption mechanism is Chop-Chop [22] which
discovers the keystream of a packet back to front. Our ap-
proach is similar but works front to back.3 We find it more
useful, especially when seeking for data in the initial por-
tion of the payload.

The technique proceeds as follows. Suppose that an
encrypted payload which uses an unknown keystream has
been eavesdropped and needs to be decrypted. The initial
eight bytes of its keystream may be recovered, since their
plain-text is generally known (as previously described).
Therefore, a broadcast packet with eight bytes of payload

3We discovered this mechanism while implementing the fragmentation
attack. We later found out that it is very similar, if not the same, to the
attack described in [1].

Send to AP
01:00:5E:00:00:00

}Dst. MAC addr. in
802.11 header. }Keystream used to

encrypt payload.

12345678 00{

Known
Guess

01:00:5E:00:00:01 12345678 01

..
.

01:00:5E:00:00:FF 12345678 FF

AP relays valid
01:00:5E:00:00:7F 80211666 97

}Encrypted payload

{

Correct guess:
next keystream byte.

Figure 6. Expanding a specific keystream in
a linear amount of time.

which uses that keystream may be sent. The AP will relay
it since the packet is valid. One can guess the next byte of
the keystream and send a longer broadcast packet by using
the extended keystream. If the guess is correct, the AP will
relay it. After at most 256 guesses, the AP will relay one
of them. Therefore, one can determine the next keystream
byte and proceed by recovering the byte following that. Af-
ter the whole keystream has been recovered, the plain-text
of the eavesdropped packet may be revealed with a XOR
operation between the cipher-text and the newly discovered
keystream.

Instead of using a timer to determine whether or not the
AP relayed the current guess, one can exploit the fact that
MAC addresses are in the clear in the 802.11 header. All
256 guesses for the next keystream byte may be sent “in
parallel” to 256 different multicast addresses. The AP will
relay only one and the attacker can read off the correct guess
from the multicast MAC address. Therefore, after sending
at most 256× 1488 = 380, 928 packets, an arbitrary packet
may be decrypted. If the packet to decrypt is short, less
traffic needs to be generated because less keystream needs
to be recovered. Also, if a timer implementation (or hybrid)
is used, half this number of packets will be required on av-
erage. This process is illustrated in Figure 6.

The main use we found for decrypting specific packets
is for determining a source IP address in the network. ARP
packets are a particularly good candidate. Their header is
shown in Figure 7. The type field is either a request or reply.
If the packet is a broadcast, then the type is a request, else
it is a reply. The first real unknown value is the source IP



0x00 0x01{
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0x08 0x00{
Net type

0x06{
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0x04{

Net
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0x00 ??{
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Figure 7. Format of the ARP header. This
header is followed by the source MAC and IP
addresses.

address, which follows the ARP header. Decrypting the first
three bytes of the IP address will yield enough information
for obtaining a source IP address. Therefore, after sending
256×3

2 = 348 packets on average, the network address may
be obtained. In practice, heuristics for common IP address
ranges can further reduce this.

2.4.3. Summary of Keystream Attacks

Fragmentation buys us fast keystream recovery and real-
time Internet-based decryption. With fragmentation, a 1500
byte keystream may be recovered after sending 34 packets.
If fragmentation were disabled, the same length keystream
would be recovered after 256×1488

2 = 190, 464 packets on
average.

To decrypt by re-sending to the Internet, two packets
(new IP header & original payload fragments) must be sent
for each packet to be decrypted. To decrypt without Inter-
net access would require 256l

2 packets on average, where l is
the length of the packet. Thus, decrypting 1500 bytes would
require ≈ 190, 464 packets instead of two (in the case that
the AP is a router). Frequent re-keying might mitigate such
linear decryption attacks, but if fragmentation is used, real-
time decryption is possible. We present a summary of how
one might attack networks without Internet connectivity:

Requirements. Recover eight bytes of keystream. This
may be easily achieved, as discussed, by eavesdrop-
ping a data packet.

Expand Keystream. Send large broadcasts in multiple
smaller 802.11 fragments. Eavesdrop the relayed
broadcast from the AP and XOR the cipher-text with
the clear-text in order to recover a larger keystream.
Repeat the process until a 1500 byte keystream is re-
covered.

Build IV Dictionary. Transmit 1500 byte broadcasts. The
AP will most likely relay the data with a new IV. Re-
cover the keystream for that IV and continue this pro-
cess until all the keystreams have been recovered.

Decrypt. If a packet uses a known IV, lookup its keystream
in the dictionary and XOR it with the cipher-text. Oth-
erwise, XOR the first eight bytes of that packet with the

known plain-text. Send 256 multicasts of nine bytes
each, using a different guess for the ninth keystream
byte. Use a different multicast address for each guess.
Read the correct guess from the relayed multicast
packet. Continue this process until the keystream for
the whole packet has been recovered. The clear-text is
obtained by a XOR with the keystream recovered.

2.5. IV Dictionary and Weak IV Attacks

The simplest way to enable receipt of arbitrary data
is to build a dictionary of IVs and their corresponding
keystreams by causing packets with known clear-text to be
forwarded by the AP or by other wireless stations. The
weak IV attack can also be performed on the gathered data
to try and recover the key. In fact, recovering the key this
way will usually take much less time than building a com-
plete dictionary, but a small IV dictionary may still be ef-
fective if there are multiple stations on the wireless network
using IVs from the same part of the IV space. Fragmenta-
tion is of no special assistance in performing either attack,
other than quickly providing a means for sending arbitrary
data.

The weak IV attack may only be performed after a large
number (≈500,000–3,000,000) of data packets have been
eavesdropped. A widespread optimization to the weak IV
attack is replaying data in the hope of generating more traf-
fic. We found that the ability to send arbitrary data can
help achieve better results. The standard replay attack has
two main problems. First, not all packets are “replayable”;
many will not generate a response. Second, transmitting
and receiving with the same wireless card is not always re-
liable, hence these attack implementations normally advise
using two cards: one for replaying and the other for eaves-
dropping.

Being able to inject arbitrary data provides better ways
for generating traffic in the network. A simple example is
generating a broadcast ICMP echo request. If the LAN has
many hosts, it is likely that our single request generates mul-
tiple replies.

If the network has Internet connectivity, an attacker
might cause a remote controlled Internet host to flood the
wireless network with UDP packets. This way, the attacker
only needs to passively receive traffic on the wireless net-
work, and can perform the attack with a single card. The
only requirement is that the attacker needs to send an ARP
and UDP packet once in a while to keep the router’s ARP
cache updated and to keep open firewall holes or the NAT (if
applicable). The fragmentation attack provides the means to
quickly bootstrap such a flood.

Another advantage is that the Internet host can flood us-
ing very small packets. The weak IV attack only uses the
first few (1–3) bytes of payload. Sending a high volume



of small packets thus speeds up the data collection process.
Without flooding, it could take weeks before enough data is
gathered—real wireless networks are often rather quiet. By
doing a simple replay attack, it is possible to recover a key
within hours. With our more elaborate flooding techniques,
the attack may be further accelerated significantly.

If flooding from the Internet is used to build an IV dictio-
nary, care must be taken with the Time To Live (TTL) field
in the incoming packets. Attackers do not normally care too
much about correctly decrypting the TTL value (and the IP
checksum which depends on it) unless they wish to send
packets with these IVs. However, should they care about
this for some reason, they could use the keystream expan-
sion technique for decrypting the TTL. Since the TTL value
for a given route is normally constant (varies upon routing
changes) an attacker needs to decrypt its value only once.
Decrypting the TTL byte will require the transmission of
≈ 128 packets. By knowing the TTL, the attacker may cal-
culate IP checksums and correctly recover the keystreams of
future flooded packets. If the attacker is concerned about the
TTL changing, he may verify it by periodically sending one
packet—a broadcast using a recently discovered keystream.
If the AP relays it, then the TTL did not change.

2.6. Summary of all Attacks

The attacks presented so far allow transmission and de-
cryption of data on a WEP network. In all cases, after
eavesdropping a single data frame, fragmentation enables
immediate arbitrary data transmission. Furthermore, if the
network has Internet connectivity, thanks to fragmentation
it is possible to decrypt traffic in real-time. This was not
possible with past attacks.

Decryption of frames, without the aid of fragmentation
or an Internet host, may be achieved in linear time (∝ packet
length). Each decrypted byte requires 128 packets to be
sent on average. Putting all these techniques together, an
attacker could attack a network in the following manner:

1. Eavesdrop a data packet.

2. Recover eight bytes of keystream by performing a
XOR operation with the known plain-text. The IP or
ARP variant of the known plain-text may be chosen
based on the length of the eavesdropped packet. At this
point, transmission of arbitrary data (up to 64 bytes) is
possible via 802.11 fragmentation. IP fragmentation
may be used for sending larger IP packets.

3. Recover 1500 bytes of keystream by sending large
broadcasts in smaller fragments (requires the transmis-
sion of 34 packets). At this point, transmission of ar-
bitrary data (of any length) is possible even without
802.11 fragmentation.

4. If an external communications channel is available, try
to obtain the network’s IP prefix and the router’s MAC
address directly. Attempt to re-send an eavesdropped
data packet to a controlled Internet host by using frag-
mentation, a random source IP address, and assuming
the AP is the router. The AP will decrypt the packet
which is then received by the remote host, and returned
to the attacker.

5. Otherwise, obtain the network’s IP prefix by decrypt-
ing the IP address in a packet by using the linear
keystream expansion technique. It requires the trans-
mission of ≈ 384 packets if an ARP packet has been
eavesdropped.

It is now possible to communicate with hosts on the
LAN.

6. Obtain the router’s MAC address. This is only neces-
sary if communication with the Internet is required:

• Try using the AP’s MAC address. Many APs are
routers.

• Try the most popular MAC address seen.
• Send an ARP request for the IP address ending

in “.1” (use heuristics). Intercept the ARP reply
(if any) and read the MAC address off the 802.11
header (in clear-text).

• Send a DHCP request and decrypt the response
(if any) by using the linear keystream expansion
technique.

It is now possible to communicate with the Internet.

7. Decrypt “interesting” data.

• If Internet connectivity has been established, re-
send data to the Internet buddy. Data packets may
now be decrypted in real-time, with an overhead
of sending two packets: an 802.11 fragment con-
taining an IP header followed by another frag-
ment with the original encrypted payload.

• If the Internet is unavailable, use the linear
keystream expansion technique. For each byte to
decrypt, the overhead is sending 128 packets on
average.

8. Generate traffic in the network. For example, instruct
the Internet buddy to flood the wireless network or
send broadcast ICMPs.

• Build an IV dictionary.
• Perform the weak IV attack.

Data which uses an IV present in the dictionary may
be decrypted without additional overhead. The weak
IV attack will eventually reveal the WEP key.



3. Implementation

Like all other WEP attacks, this particular one seems
great in theory. However, we were keen to see if it worked
in practice. The main hurdle was to determine whether the
hardware available on the market would allow the sending
of raw 802.11 frames. It is well known that many wireless
cards support the commonly called “monitor mode” which
allows the driver to read all raw 802.11 frames. It is less
obvious how to inject data.

3.1. Prism2-based cards

The first attempt was made using Intersil Prism2
cards [20]. These have a mode for creating an AP in
software. The kernel is responsible for sending manage-
ment frames and encapsulating data frames—exactly what
is needed for this attack. The airjack [25] driver for
Linux uses this mode to allow a user to inject raw 802.11
frames and receive traffic concurrently. Unfortunately, after
experimentation, it became clear that the Prism2 firmware
changes some fields in the 802.11 header before transmis-
sion, including the sequence and fragment number.

There is, however, a work-around for this problem, men-
tioned briefly by Bellardo et al. [4]. Prism2 cards have an
auxiliary (AUX) debug port which provides raw access to
the card’s memory. The basic idea is to queue the packet
in the normal way for transmission and locate its header via
the AUX port. Just after instructing the card to transmit, one
can busy wait reading a header byte (such as the duration)
through the AUX port until it is modified. At that point, the
firmware has done its processing and is about to send the
packet off to the radio. Just before it is able to transmit the
packet physically, the modified packet header bytes can be
re-written via the AUX port. This is a race condition which
is virtually always won in practice.

Our implementation was for the FreeBSD wi driver. We
implemented the airjack functionality and also the AUX
overwriting. There were also other subtle aspects which
were encountered and needed to be resolved. For example,
the More Fragments bit needs to be set only when the over-
write is performed and not when the packet is first queued.
Another issue is that when the WEP bit is set, it is cleared
after the firmware processing although the packet does in-
deed get transmitted using WEP. However, it is important
not to set the WEP bit when performing the re-write or
the card will not transmit. Obviously none of this is doc-
umented which caused the authors to have great fun.

The main limitation with our Prism2 implementation has
to do with the fact that reception is difficult immediately
after transmission. For example it is not possible to receive
the 802.11 ACKs after each fragment is sent, reducing the
reliability of the attack in noisy environments.

3.2. Atheros-based cards

Atheros [3] cards are mostly software radios, making
them ideal for packet injection. We modified the FreeBSD
ath driver in order to allow the sending and reception of
raw frames. Reception is easily achieved by simply chang-
ing the RX filter to accept all frames, including control
frames. Control frames turn out to be very useful since the
card is able to see ACKs for data being sent, making it pos-
sible to implement re-transmissions in the attack.

Atheros will readily send out WEP fragments. It does
mangle the fragment and sequence number, but the fix is
simpler than with Prism2—the packet needs to be queued
with a type of ‘2’ (which indicates PS-Poll frames). In or-
der to eliminate re-transmissions from the firmware, a flag
indicating that the packet requires no ACKs exists.

The only limitation with our Atheros implementation is
its inability to send ACKs in time. The temporary work-
around is to connect another wireless card and use its MAC
address while performing the attack. Its firmware will auto-
matically respond to data packets with ACKs.

3.3. Proof of Concept: wesside

We implemented a proof-of-concept tool called
wesside [6]. Its main purpose is to recover the WEP
key, since we felt that was the long-term objective of most
attackers, although we have already demonstrated that it is
possible to decrypt traffic even without such knowledge.
The tool will therefore use the fragmentation attack for
generating a high volume of traffic in order to speed up the
weak IV attack. When launched with no command line
arguments, it does the following:

1. Channel hops looking for a WEP network.

2. It then tries to authenticate and associate. If authenti-
cation fails, it attempts to find a MAC address to spoof
by eavesdropping associated clients.

3. After it eavesdrops a single data packet, it discovers
at least 128 bytes of keystream by sending out larger
broadcasts and intercepting the relayed packets.

4. After it eavesdrops an ARP request, it decrypts the
IP address by guessing the next four bytes of the
keystream using multicast frames.

5. It floods the network with ARP requests for the de-
crypted IP address.

6. It launches aircrack [12] (v2.1) every 100,000
packets captured for one minute and attempts to de-
crypt the key. If 3,000,000 packets have been captured
so far, the cracking time is increased to ten minutes and
cracking is started every 1,000,000 packets.



The tool could be much smarter, and it is, but only when
launched with at least one command line argument: the IP
address of an Internet host. The tool acts as described pre-
viously but with the following differences.

First, the address of the router is discovered. After the IP
network address is decrypted, an ARP request for the IP ad-
dress terminating with “.1” is sent and the reply is waited
for (the tool assumes this will be the router). Although
the ARP response is encrypted, the MAC address of the
router is all we need, and this is in clear-text in the 802.11
header. The IP address ending in “.123” is assigned to the
attacker. A full “product” could use smarter heuristics, but
these are sufficient for a proof-of-concept and actually work
in most cases. As he can send traffic, the dedicated attacker
might send a DHCP request and decrypt the response via
the keystream expansion technique.

Next, a pathway into the network from outside is opened.
After the MAC address of the router is obtained, a UDP
packet to the Internet host is sent every five seconds to open
a hole in any firewall or NAT. ARP requests also continue to
be sent to maintain the attacker’s IP address in the router’s
ARP cache. This allows IP traffic to be forwarded back to
the attacker. Finally, depending on the attacker’s choice, the
Internet host may either send short packets to perform the
weak IV key attack, or it may send long packets to build a
keystream dictionary.

The tool also binds to a TAP interface in order to imple-
ment the dictionary attack. A TAP interface is a virtual net-
work interface, normally used by VPN software. If the user
transmits via the TAP interface, wesside will encrypt the
data using a known keystream and transmit it to the wire-
less network. If data with a known IV (an IV which has
an entry in the dictionary) traverses the network, our tool
will decrypt the packet and originate it from the TAP inter-
face. This mechanism allows the attacker to use the wireless
network (without knowing the key) as if it were connected
via the TAP network interface. Transmission will always
be possible although decryption is limited by the number of
entries in the IV dictionary and their popularity.

3.3.1. Missing Enhancements

Only a limited subset of the attacks we described have been
implemented in wesside. Our primary goal was to ex-
plore the complexity of building a fully automatic tool and
its efficiency in recovering the key of a WEP network.

In fact, the attacks we believe to be the most dangerous
and cunning are missing. For example there is no built-
in support for decrypting data by re-sending it to the Inter-
net. We tested this attack separately. An implementation
could be built once again by using TAP interfaces. Trans-
mission is achieved just like in wesside. For decryption,
all data packets (or those which match a filter) on the wire-

less network may be re-sent to the Internet. If the attacker
has an external Internet connection, his buddy may forward
the data back to him. The data may then be originated from
the TAP interface, just as if it were decrypted by using the
IV dictionary. The TAP interface will look exactly like a
normal wireless interface, although no WEP key is required.

The other main attack which is not directly available to
the user is decryption via keystream expansion, although
there is an API for it, as wesside uses it internally. Be-
cause of the nature of the attack (≈ 128 packets sent per
byte decrypted) filters are necessary in order to decrypt only
very specific data packets which look “interesting”. De-
cryption using this technique takes under five minutes per
packet.

The only keystream based attack implemented is the dic-
tionary attack. The main reason for including this attack
was to explore how usable its implementation would be.
Thanks to TAP interfaces and making wesside act in a
similar way to a VPN client, the resulting implementation
turned out to be very simple to use.

4. Evaluation

In this section, we show the performance that may be
achieved when using wesside. This is important, as it
establishes the degree to which real networks will be vul-
nerable. The extent to which the fragmentation attack is a
serious threat in practice will be evident from the results.

Our tests use common everyday hardware. The setup for
all the experiments uses a Linksys WRT54G AP. The “at-
tacking” host is a Pentium IV 2.4GHz laptop with 512MB
RAM and an Atheros 802.11g card. The “Internet” host is
an old Celeron 400MHz laptop with 200MB RAM. This
setup is best-case in terms of connectivity with the “In-
ternet” since the flood host is connected via Ethernet to
the WAN port, effectively having a 100Mbit/s connection.
When presenting the results, we will calculate how much
bandwidth is actually being used in order to demonstrate
that this throughput could be achieved on most real Internet
links.

In all cases, once the wesside tool is started, a single
ARP request is generated by a host attached to the LAN
port of the AP. This is the requirement to bootstrap the
fragmentation attack. Although any packet type will allow
keystream determination, IP discovery has only been imple-
mented on ARP packets and for that reason such a packet
is generated. This requirement does not distort results too
much, as IP packet headers (and thus the source address)
may be decrypted in the same way as ARP packets, without
taking too long. Also, the tool could force a wireless client
to disconnect by spoofing a de-authentication management
frame. When the client (automatically) re-associates, it will
most likely send an ARP request for its router.



The efficiency of wesside is measured in two stages.
The first stage is bootstrapping, which involves recovering
a keystream and determining the network parameters and
configuration before flooding may commence. The metric
used in this stage is time—the quicker the better.

The second part of the attack either involves cracking
the key, building a dictionary, or both. In all cases, the more
data packets received, the better. For this part of the attack,
the metric used is packets received per second.

4.1. Bootstrap speed

The bootstrap of the attack includes determining a
keystream, determining an IP and determining the router’s
MAC address. All of this is independent of the key size and
its complexity, since no attacks are being performed on the
key scheduling algorithm. Thus, the metric obtained for the
bootstrapping procedure should be very similar across all
networks and configurations.

The results are as follows. From when the first data
packet is eavesdropped, it takes one second to determine
144 bytes of keystream (using the broadcast-relay tech-
nique with fragments) for the IV the AP used in relaying
the packet. For revealing 1500 bytes of keystream, it takes
less than two seconds. It takes about six seconds to decrypt
a single byte of the IP address in a packet which uses an
unknown IV (using the multicast-guess technique) and less
than 30 seconds to decrypt the whole IP address. Finally,
determining the router’s MAC address takes less than a sec-
ond if it has an IP address ending with “.1”. This will work
in many cases. Another way of instantly forwarding packets
would be to use the AP’s MAC address as a destination—
often APs are also routers.

In short, after having eavesdropped a single ARP packet,
it takes less than a minute for an attacker to be able to trans-
mit any data and determine an IP address on a WEP wireless
network. This metric is quite network independent as no as-
sumptions are being made about the WEP key. In the next
section, we describe how much traffic we were able to gen-
erate on a network after the bootstrap of the fragmentation
attack has been completed.

4.2. Flood rate

The are two main ways in which a network may be
flooded. First, we can send ARP requests. This emulates
the simple ARP replay attack, which is good for establish-
ing a baseline for comparison. Alternatively, we can flood
from an Internet-connected host, which this tool makes pos-
sible. From an Internet host, we have the choice of flooding
using short packets, which is useful for the weak IV attack,
or flooding using MTU sized packets, which are useful for
both building a dictionary and for weak IV attacks. How-

Traffic source ≈ p/s
Local 802.11b client FTP download. 150
ARP replay-like attack. 350
Internet flood (short packets). 1200
Internet flood (MTU sized packets). 250

Table 2. Approximate packet rates reached
with different traffic sources.

ever, the packet rate will be lower with larger packets. The
results of our experiments, summarized in Table 2, are as
follows.

• The simple replay attack can generate ≈ 350 unique
(no re-transmissions) packets per second.

• When Internet-flooding using small packets, the maxi-
mum sustainable rate was ≈ 1200 p/s. These are UDP
packets with 5 bytes of data, so each packet will be be
47 bytes in size (including Ethernet header). Thus the
Internet traffic required to support this rate is approx-
imately 440 Kb/s, which is an achievable downstream
on a typical ADSL link.

• When Internet-flooding using MTU-sized packets for
populating the dictionary, we can sustain a rate of
≈ 250 p/s. This corresponds to a data rate of 2.8 Mb/s,
which is not always feasible. Such a data rate would
yield a full dictionary in ≈ 17 hours. Lower link
speeds would increase the time to construct the dic-
tionary proportionately.

If the Internet link is slow, it may still be possible to ob-
tain high flood rates. For example, the Internet host may
send ICMP echo requests to a client on the wireless LAN.
This will amplify the traffic by a factor of three—the AP
relays the request to the client, the client replies and the
AP relays the client’s reply. Another technique would be
sending broadcast or multicast ICMP echo requests on the
local network. A single request can cause many replies, es-
pecially on large networks. Simple replay attacks cannot
benefit from these methods.

4.3. Cracking time

Although key cracking using the weak IV attack is not
the main purpose of this work, some results are presented
here. Initially, all cracking is run for less than one minute
and with the default “fudge” factor (the breadth with which
the key is searched amongst the possible candidates) of two.
Cracking is attempted every 100,000 packets captured. Af-
ter three million packets have been captured, the cracking
time is increased to ten minutes and cracking occurs every
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Figure 8. Cumulative distribution of packets required for cracking 40 bit (left plot) and 104 bit keys.

million packets because, as the number of packets increases,
the time to load the cracking process and perform the cal-
culations increases. Therefore, it is not sensible to crack for
only one minute when a very large number of packets had
to be processed.

To obtain a larger data set, we developed a simulator. It
generates packets with IVs starting at zero, and initiates key
cracking periodically as described earlier. For the results to
be realistic, the simulator had to perform weak IV filtering
just as our test AP did. After some experimentation, we
discovered that the Linksys AP skips IVs according to the
filter present in BSD airtools [14].

The results of these simulations are displayed in Fig-
ure 8, with label “Linear IV generator”. With 40-bit keys,
the median number of packets required to crack the key is
one million. With two million packets, 80% of the 40-bit
keys could be obtained. When cracking 104-bit keys, one
would expect to need five million packets, with 80% of the
104-bit keys obtainable after ten million packets received.
The plot for 104-bit keys contains evident steps after three
million packets. This is because we model wesside’s be-
havior of initially attempting to crack the key every 100,000
packets, but after three million packets have been received,
only attempting to crack the key every million packets.

The attack time (top axis) is estimated by dividing the
number of packets required by the 1200 p/s flood rate figure.
The key cracking time is also included in this value—ten
minutes when more than three million packets are needed,
one minute otherwise. According to the simulator, 50% of
the 40-bit keys are obtained in under 15 minutes, and half
of the 104-bit keys are recovered in less than 80 minutes.

An interesting result emerged when we changed the sim-
ulator to explore the behavior if IVs are chosen randomly,
which might have been a potential workaround for the dic-
tionary attack. This is shown in Figure 8, under the label
“Random IV generator”. It is clear that choosing random
IVs greatly assists the cracking process. This is because
weak IVs are scattered in clusters across the IV space, and
so a random strategy provides more varied usable statistics
than an incremental strategy.

We believe it should be possible to exploit this effect by
causing both the AP and the clients to generate traffic. As-
suming that the IV counters of the stations are at different
phases, the packets generated will cover a larger distribution
of IVs and speed up the cracking process. From a key re-
covery perspective, the most effective way of flooding may
be generating local ICMP echos to broadcast or multicast
addresses—all stations should generate a reply. Therefore,
the distribution of packets required for recovering a key in
practice probably lies somewhere between the two curves
generated by our simulator, posing even a greater threat than
the results we are presenting.

To validate our simulation results, we cracked real keys
on our AP using wesside. The curves with labels “real
life” in Figure 8 show the results, which indeed closely fol-
low the simulation curves. From the 128-bit plot, it is ev-
ident that cracking keys in real-life requires fewer packets.
We believe that this difference is due in part to packet loss—
wesside sees more of the IV space for the same number
of packets received than the simulator sees. Covering more
IV space, even with missing packets, is a better strategy be-
cause of the clustering of weak IVs. Also the x-axis under
reports slightly in the real-world case, as some additional
packets are received while the cracking process loads data.

4.4. IP Redirection Experience

We also separately implemented decryption using the AP
to graft a new IP header onto the front of an eavesdropped
packet. The AP successfully decrypts the eavesdropped
data, allowing the now clear-text packet to be forwarded to
an Internet host. This technique works perfectly. In fact, we
expected we might also have to add a TCP, UDP or ICMP
header in the first fragment to satisfy the NAT in the AP,
but this proved unnecessary with the WRT54G base station,
which happily forwarded the packets anyway. A proper ex-
ternal firewall might restrict such traffic at some corporate
sites, necessitating the addition of extra transport headers to
allow this attack to succeed.

As IP redirection is performed without needing to know-



ing either the WEP key or the keystream for a specific IV, it
may occur immediately. Thus, solutions which frequently
re-key WEP are still vulnerable. This is the most serious
threat that the fragmentation attack poses to WEP. Even
though a 104-bit WEP key can be recovered in a couple
of hours, a dedicated attacker may be able to decrypt traffic
immediately.

5. Lessons

The WEP fiasco is a good example of how things can
go wrong in the real world when the guidelines that the-
ory teaches us are not followed. For example, preventing
keystream re-use really does matter. If it is not prevented,
it is possible to build a dictionary of keystreams and de-
crypt future traffic. Furthermore, it might be possible to use
such a keystream to inject data. If a keystream could not be
re-used in WEP, all the keystream based attacks presented
would not apply, and it would not be possible to replay data.

It is well known that a strong message integrity check
is a must, in order to avoid the possibility of forging mes-
sages [7]. The keystream expansion techniques would not
be feasible if WEP messages included such a check rather
than the simple 32-bit CRC.

Fragmentation is used in three ways in our attacks:
to transmit arbitrary data, to expand few bytes of known
keystream into an entire MTU, and to graft a new header
onto an eavesdropped packet while using the AP to decrypt
it. Preventing keystream re-use would prevent all of these.
However, relying on a single defense is never ideal, as it
only takes one oversight for the entire system to fail. A
message integrity check that depends on the key as well as
the fragment contents would also be effective against these
specific attacks. However there might still be a risk of re-
play attacks that spliced together replayed fragments from
different packets. Thus, an integrity check used to bind frag-
ments together into a packet would also be needed. This too
should be obvious though—it is the integrity of a packet that
matters, not of an isolated fragment.

Finally, the key lesson is that the security of a proto-
col must be designed in the context of the protocol itself.
We showed how a networking property of the 802.11 proto-
col, namely fragmentation, could be used to break 802.11’s
cryptography. The system must be seen as a whole—its se-
curity must not be designed in an isolated manner.

WEP is also a good example of how attacks evolve and
mature over time. If the threat was eliminated when early
researchers discovered WEP’s flaws, there would not be is-
sues today. Instead, because of the perceived impracticality
of early attacks, WEP remained widespread. Getting rid of
it now is much more difficult than it was in 2000, simply
because there are many more networks today.

Walker’s and Simon’s attacks on keystream re-use were

never considered a threat. A year later, Arbaugh, and
Borisov et al. resurrected those attacks by noting the vul-
nerability in Shared Key authentication. With the weak IV
attack, Fluhrer et al. resurrected Wagner’s weak RC4 keys
of 1995. In 2004, the high probability weak IVs went public
and resurrected the Fluhrer et al. attack. Today, we resurrect
the 2000 keystream re-use attacks once more. What will
happen? Will vendors disable fragmentation? We presented
a linear keystream expansion technique which is indepen-
dent of fragmentation. Will vendors disable short packets?
Chop-chop can be performed by decrypting from the tail of
the packet. There may well be other approaches, perhaps
already in use but not publicized. WEP is fundamentally
flawed and needs to be totally abandoned rather trying to
win a cat and mouse chase.

6. Conclusions

The fragmentation attack proves to be highly practical.
From the point where an encrypted packet is eavesdropped,
it takes less than a minute to bootstrap to the point where an
attacker can send MTU-sized packets and know the IP ad-
dress range for the local subnet. From this moment, he can
redirect encrypted traffic to a host on the Internet, using the
AP to decrypt the traffic. From the point of view of secrecy,
the wireless network is already completely compromised.

If the ability to receive traffic via the network is also
needed, active attacks bootstrapped using the fragmentation
attack will recover 40-bit WEP keys in perhaps fifteen min-
utes and 104-bit WEP keys in an hour or two. WEP net-
works with low traffic were considered to be “safe” since
it would require an attacker to wait many hours, perhaps
days, before the key could be recovered. Similarly, solu-
tions which frequently re-key WEP were thought sufficient
since the attacker does not have enough time, even by re-
playing data, to recover the key before it changes. With our
attack however, even in such conditions, traffic may still be
injected and redirected almost instantly after a single data
packet traverses the network. We believe that the fragmen-
tation attack was the final missing link in providing an effi-
cient and practical mechanism for breaking WEP.

Many lessons have already been learned from WEP’s
problems. For example, WPA’s Message Integrity Check, a
cryptographic hash function which depends on the key and
payload, and its mandatory use of the IV as a sequence num-
ber provide improved protection against the sort of packet
modification and replay attacks used in the fragmentation
attack. In WPA, keystreams may not be re-used even when
the IV space wraps, since a re-key will occur in that mo-
ment.

However, the interaction between fragmentation and en-
cryption has not been widely discussed. In particular, some
simple changes to WEP would have made this attack much



more difficult, despite WEP’s flawed design. A wireless AP
is especially helpful to an attacker when it relays broadcast
packets. There is no good reason why the AP needs to relay
these packets in any other form than that in which they were
received:

• By de-fragmenting before relaying, the AP unnec-
essarily allows an attacker to bootstrap from a little
knowledge to knowing an entire keystream.

• By relaying with a different IV from that generated by
the attacker, the AP permits the attacker to expand his
knowledge from one keystream to many.

• By de-fragmenting two fragments with unrelated IVs,
the AP allows the attacker to use it to decrypt packets
and relay them to arbitrary destinations.

Of course, WEP would still have been a flawed design with-
out these elementary errors. However, we note that the first
two errors are preserved in WPA. At least for now, no-one
seems to have found a way to exploit them.
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