
1

Proximity Interactions with Crowdcast
Marios Constantinides, George Constantinou, Andreas Panteli, Theophilos Phokas,

Georgios Chatzimilioudis and Demetrios Zeinalipour-Yazti
{mconst02, gconst02, apante01, tphoka01}@cs.ucy.ac.cy, gchatzim@gmail.com, dzeina@cs.ucy.ac.cy

Dept. of Computer Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Abstract—We demonstrate a suite of proximity-based appli-
cations, called Crowdcast, that is build on top of our powerful
Proximity framework. Proximity, efficiently connects you to your
closest neighbors at all times, regardless of where you are and
how far your closest neighbors are. Such a service, realizes
our special operator that solves theContinuous All k-Nearest
Neighbor (CAkNN ) problem efficiently. Proximity does not re-
quire any additional infrastructure or specialized hardware and
its efficiency is mainly achieved due to the smartsearch space
sharing technique we devise.

The Crowdcast application suite demonstrates how theProx-
imity data management algorithmics can give rise to novel
proximity-based services. During the conference, we will allow
attendees to use theCrowdcast applications throughout the venue
site. They will be able to: (i) post text or vocal messages on a
neighborhood pinup wall, which will be visible to their k nearest
neighbors. For instance, an attendee might initiate a discussion
with other attendees of the same session to clarify issues about the
presentation without disturbing; (ii) extend their view or their
hearing on the conference activities using the cameras and/or
microphones of their neighbors; (iii) post local tasks in their
neighborhood as part of organizing an activity, etc.

I. I NTRODUCTION

We showcase a novel framework that extends the sensing
capability of smartphones by allowing them to identify their
geographically closest neighboring nodes, at all times, coined
Proximity[1]. We extend the problem of computing the Nearest
Neighbors for every user in the system (ANN query) to com-
puting thek Nearest Neighbors for every userContinuously
(CAkNNquery).

Applications of the neighborhood “sensing” capability gen-
erate unique opportunistic data that can unfold the full po-
tential of crowdsourcing, helping this new problem-solving
model to fully penetrated the mobile workforce. Location-
dependent crowdsourcing applications can further benefit from
adding the temporal dimension to location data in order to
exploit trajectory-related information. Similarly, theycan ben-
efit from inter-relations between location data, e.g., proximity
information. It is essential to optimize and extend location-
based search and similarity services.

In addition, classical location-based applications wouldal-
low somebody to send out SOS beacons to its geographically
closest neighbors when in a life-threatening situation. Such a
futuristic application could enhance public emergency services
like E9-1-11andNG9-1-12

1Federal Communications Commission - Enhanced 911, Jan 2011,
http://www.fcc.gov/pshs/services/911-services/enhanced911/

2Department of Transportation: Intelligent Transportation Systems New
Generation 911, Jan 2011, http://www.its.dot.gov/NG911/

u2

u1

u0

u3

u4

u5

u6

Query Processor

QP

(a)

u2

u1

u0

u3

u4

u5

u6

c

(b)

Fig. 1. (a) An instance of a smartphone network, mobile usersand
the centralized server. The 2 nearest neighbors of each userare: u0 →
{u1, u2}, u1 → {u0, u2}, u2 → {u3, u0}, u3 → {u2, u0}, u4 →
{u2, u3}, u6 → {u0, u1}. (b) The search spaceof the dotted areac is
the area inside the dashed circle. Any user inside this search space is akNN
candidate for any user insidec.

Consider a set of smartphone users moving in the plane
of a geographic region (Figure 1(a)). Let such an area be
covered by a set ofNetwork Connectivity Points(NCP) (e.g.,
cellular towers found in cellular networks, WiFi access points
found in wireless 802.11 networks etc.) EachNCP inherently
creates the notion of acell3. A mobile useru is serviced at
any given time point by oneNCP, but is also aware of the
other NCPs in its vicinity (e.g., cell-ids of other cell towers,
or MAC addresses of WiFi hot-spots in the area).

To illustrate our abstraction, consider the example network
shown in Figure 1(a), where we want to provide a micro-
blogging channel between each useru and itsk = 2 nearest
neighbors. Each user concurrently requires a different answer-
set to a globally executed query, as shown in the caption of the
figure. Notice that eachNCPhas its own communication range
and that the answer-sets are not limited within theNCP of the
querying user. Additionally, there might be areas with dense
user population and others with sparse user population. Con-
sequently, finding thek nearest neighbors of some arbitrary
useru could very likely involve a complex iterative deepening
into neighboringNCPs. Figure 1(b) shows the search space,
constructed byProximity, satisfying the query for all the users
inside cellc.

No previous work tackles the problem of continuous allk-
nearest neighbor (CAkNN) queries, except our recent work in
[1] that we aim to demonstrate through this paper. Previous

3Without loss of generality, let the cell be represented by a circular
area with an arbitrary radius. Using other geometric shapes(e.g., hexagons,
Voronoi polygons, grid-rectangles, etc.) for space partitioning would be
equally applicable.



2

work on spatial services includes snapshot retrieval of thek-
nearest neighbors (kNN and all-kNN) [2], [4] and continuous
retrieval ofk-nearest neighbors for a single user (continuous-
kNN) [5], [3]. The former techniques require super-linear time
for their tree-structure build-up phase and in order to answer
our CAkNNqueries they would need to be updated or re-built
in every timestep, which is inefficient. The latter techniques are
mostly efficient when users are mildly mobile and in order to
answer ourCAkNNqueries they would need to run an instance
for every user, which would calculate a new search space for
every user.

We utilize a novel algorithm, calledProximity [1], to answer
all k nearest neighbor queries continuously. TheProximity
algorithm groups users of the same cell and uses the same
search space for each group (search space sharing). It covers
the complete space in a batch process by iterating over all
user locations just once, making only a minimal number of
comparisons between them.Proximity exploits a novel data
structure for dividing the search space perNCP and enabling
search space sharing among the mobile users within each
NCP. The characteristics of theProximity framework include
robustness to high mobility patterns, as it is stateless andhas
a fast construction time. Furthermore,Proximity is robust to
skewed distributions of users, as its space division technique
depends solely on the distribution and communication range
of the NCPs.

We start out by presenting the high-level algorithmics be-
hind ourProximity framework, we then present ourCrowdcast
suite that realizes this framework and finally present our-
demonstration plan that will support both interactive scenarios.

II. I NTERNAL ALGORITHMS

A. Preliminaries

Assume that there is some centralized (or cloud-like) ser-
vice, denoted asQP (Query Processor) (see Figure 1(a)),
which is accessible by all users in user setU . Allow each
useru to report its positional information toQP regularly.
These updates have the formr={u, loc(u), ncp(u),ncpvic(u)},
where loc(u) is the location of useru 4, ncp(u) is the NCP
useru is registered to andncpvic(u) is a list of NCPs in the
vicinity of u.

The problem we consider in this work is how to efficiently
compute thek nearest neighbors of all smartphones that are
connected to the network, at all times.In order to better
illustrate our definition, consider Figure 1(b), where we plot a
timestep snapshot of 7 usersu0 − u6 moving in an arbitrary
geographic region. The result for thistimestepto a k = 2
query would bekNN(u0) = {u1, u2}, kNN(u1) = {u0, u2},
kNN(u2) = {u3, u0}, kNN(u3) = {u2, u0}, kNN(u4) =
{u2, u0}, kNN(u6) = {u0, u1}.

Search space sharingis achieved when the same search
space is used by multiple users and it guarantees the correct
kNN solution for all of them. The common search spaceSc

4The location of a user can be determined either by fine-grain means (e.g.,
AGPS) or by coarse-grain means (e.g., fingerprint-based geolocation Google
Geolocation API (Jan 2011,
http://code.google.com/apis/gears/apigeolocation.html ).

for the usersUc inside cellc would be defined as the union
of the individual search spaces of every user inUc. Proximity
efficiently buildsSc with the assistance of complementary data
structures as described in [1]. In Figure 1(b), the search space
constructed by our framework for usersu0 andu6 is the big
dashed circle.

B. The Proximity Framework

The Proximity framework [1] is designed in such a way
that it is: i) Stateless, in order to cope with transient user
populations and high mobility patterns, which complicate the
retrieval of the continuouskNN answer-set. In particular,
we solve theCAkNN problem for every timestep separately
without using any previous computation or data; ii)Parameter-
free, in order to be invariant to parameters that are network-
specific (such as cell size, capacity, etc.) and specific to the
user-distribution, iii) Fast and scalable, in order to allow
massive deployment of the proposed framework.

For every timestepProximity works in two phases: In the
first phase we construct a specialized datastructure, called k+-
heap, perNCP using the location information reported from
the users. In the second phase, thek nearest neighbors for each
user are determined by scanning the respectivek+-heap and
the results are reported back to the users. Specifically, at each
timestep the serverQP initializes ourk+-heap for everyNCP
in the network. The user location reports are gathered and
inserted into thek+-heap of everyNCP. The k+-heaps are
updated with every insertion to contain only the mathematical
kNN candidates. After all location reports have been received
and inserted, eachNCP has its search space stored inside its
associatedk+-heap. After the build phase, each user scans the
k+-heap of itsNCP to find its k nearest neighbors.

The efficiency ofProximity is mainly achieved due to a
novel smart search space sharing technique.Proximity groups
users of the same cell and uses the same search space for
each group (search space sharing). Note that the search space
includes all candidatekNN users that can reside in other
near-by or even far-away cells. Using a novel data structure
it builds the complete search space in a batch process by
iterating over all user locations just once, performing minimal
number of comparisons.Proximity’s efficiency in search time
is independent ofk, scales with the number of users in realistic
traffic scenarios and outperforms its competitors by at least an
order of magnitude.

C. Running Example

We will illustrate a hypothetical execution of our algorithm
on the nodes of Figure 1.

Assume that the serverQP has initiated a k+-heap
for every NCP and receives the user reportsR =
r0, r1, r2, r3, r4, r5, r6, rx. Every report is inserted into every
k+-heap. For simplicity we will only follow the operation for
the k+-heap ofNCP c.

After all reports are inserted into thek+-heaps, the first
phase of theProximityAlgorithm is completed and the search
spaces are ready. For the second phase, the server scans a



3

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Screenshots fromCrowdcast, an example application implementing theProximity framework.Proximity efficiently connects you to your closest
neighbors at all times, regardless of where you are and how far they are. (b) Those neighbors can be shown in a list or on a map. On top of functionality
a whole suit of applications have been developed: (c)Helpcastto send out SOS beacons or disseminate natural disaster warnings, (d)Msgcastto post local
micro-blogging messages, (e)Eyecastto extend the view on the urban environment using the camerasof one’s neighbors, (f)Miccast to post local vocal
messages and warnings, (g)Taskcastto post local tasks in your neighborhood as part of local crowdsourcing or organizing a charity event, etc.

single k+-heap for each user. The server can scan thek+-
heap of anyNCP that covers a useru to get thek neighbors
of u, e.g. theNCP that actually services the userncp(u).

In our example in Figure 1(b), at the end of the build phase
the k+-heap ofc includes users{u6, u0, u1, u2, u3, u4, u5}.
This is the common search spaceSc for all users{u0, u6} of
c, which guarantees to include their exactk nearest neighbors.

III. C ROWDCAST SUITE

The Crowdcast5 implementation of theProximity frame-
work is developed in a generic way such that complementary
services can be integrated in a seamless manner.Proximity
efficiently connects you to your closest neighbors at all times,
regardless of where you are and how far they are. Those
neighbors can be shown in a list or on a map. On top of
functionality a whole suit of applications have been devel-
oped: (i) Helpcast, to send out SOS beacons or disseminate
natural disaster warnings; (ii)Msgcast, to post local micro-
blogging messages; (iii)Eyecast, to extend the view on the
urban environment using the cameras of one’s neighbors;
(iv) Miccast, to post local vocal messages and warnings; (v)
Taskcast, to post local tasks in your neighborhood as part of
local crowdsourcing or organizing a charity event, etc. The
server has the overall picture of the user’s whereabouts and
can compute thek nearest neighbors for each user.

Apart from our Crowdcast implementation, theProximity
framework can be used as a core function for many outdoor
location-based services. Mobile phones can be instrumen-
tal in community sharing and in vitalizing the economies
of developing countries. Consider for example the African
continent, where the rapid expansion of mobile telecom in-
frastructureis nowadays providing pervasive public utilities.
Services such as M-Pesa6, a mobile payment infrastructure of
Kenyan-origin, is facilitating monetary transactions between
individuals and boosting economic growth. Similarly, Jana7

(formerly txtEagle) is bringing mobile crowd-sourcing services
to approximately 2.1 billion people in the African continent

5Crowdcast, Available at: http://www.zegathem.com/
6M-Pesa. Available at: http://www.safaricom.co.ke/index.php?id=250
7Jana. Available at: http://jana.com/

(e.g., people fill out questionnaires that relate to blood-banks
in hospitals, translate documents, etc. in exchange for mobile
airtime).

IV. D EMO PLAN

During the demonstration participants will be able to log
in to the Crowdcastsuite by creating their own user account
or using preset accounts. Participants will be able to use a
set of smartphones, which we will hand them during the
demonstration, or use their own Windows smartphones to
install and connect to theCrowdcastsuite. The users will be
asked to move around the venue and they will be able to see
how their k nearest neighbors change as they move, using
the neighborhood map. They users will be able to choose the
values fork and see how theProximity framework is able to
identify thek nearest neighbors quickly and efficiently.

Further, the users will be asked to use any of theCrowdcast
applications to interact with their neighbors. This might inspire
the participants and open the way for discussion regarding
future uses of theProximity framework and the integration of
vital applications into theCrowdcastsuite.

Our goals in this scenario are twofold; give the participants
a better understanding of how efficiency is achieved through
search space sharing in ourProximity algorithm and illustrate
how to this framework can be used in various real-world
applications.

Acknowledgements:This work was supported by the
fourth author’s Startup Grant funded by University of Cyprus,
MTN Cyprus and Bionic Cyprus.

REFERENCES

[1] G. Chatzimilioudis, D. Zeinalipour-Yazti, W.-C. Lee, and D. M. Dikaikos.
Continuous all k-nearest neighbor querying in smartphone networks.
MDM ’12.

[2] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem.
Foundations of Computer Science, Annual IEEE Symposium on, 0:226–
232, 1983.

[3] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual parti-
tioning: an efficient method for continuous nearest neighbor monitoring.
SIGMOD ’05.

[4] P. M. Vaidya. An O(n log n) algorithm for the all nearest neighbors
problem. Discrete Computational Geometry, 4:101–115, 1989.

[5] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries
over moving objects. ICDE ’05.


