
QARPACK: Quadratic Arnoldi Package v.2.
User’s Guide.

Marta M. Betcke∗

July 15, 2013

1 What is QARPACK?

QARPACK is a MATLAB Toolbox for computing eigenvalues with real part
in a specified interval and the corresponding eigenvectors of a large sparse
quadratic or nonlinear eigenvalue problem (QEP/NEP).

For QEPs QARPACK uses following two forms:

(λ2M + λC +K)x = 0, x 6= 0, (1)

or
(−ω2M + iωC +K)x = 0, x 6= 0. (2)

The second form can be obtained from (1) through a substitution, λ = iω.
(1) is in general preferable when the eigenvalues λ have a dominant real part,
while (2) when λ have a dominant imaginary part, hence ω have a dominant
real part again.

From version v.1.9 QARPACK also contains NRA a solver for general non-
linear eigenvalue problems

k∑
i=1

fi(λ)Aix = 0, x 6= 0. (3)

From version v.2.0 NRA also supports multiple eigenvalues.

∗Department of Computer Science, University College London, Malet Place, London
WC1E 6BT, UK. Email: m.betcke@gmail.com

1

QARPACK implements three iterative methods which directly act on the
QEP/NEP avoiding prior linearization (and hence doubling of the problem
size in case of QEP):

QRA: Quadratic Restarted Arnoldi (M.M. Betcke, H. Voss, 2011, [1])

QARN: Q-Arnoldi for QEP (K. Meerbergen, 2001, [2])

NRA: Nonlinear Restarted Arnoldi (M.M. Betcke, H. Voss, 2011, [1])

All methods utilise local restarts to enable computation of a large number of
the eigenvalues with the real part in an interval in the interior of the spectrum
in one go. QRA accepts both QEP forms, QARN accepts only form (2) and
NRA accepts only form (3). Furthermore, as not all QEP are formulated
respecting the dominant direction in the spectrum, it may be necessary to
reformulate the QEP to obtain the desired result, as explained in Section 4.
In the essence, the methods will perform best if there is a dominant direction
in the eigenvalue distribution in the complex plain e.g. the eigenvalues have
a dominant part (real or imaginary). See the associated publications, [2, 1],
for more insight on methods in QARPACK.

2 Installation

QARPACK is hosted at

http://www.cs.ucl.ac.uk/staff/M.Betcke/codes/qarpack/

The basic functionality requires only MATLAB and should be compatible
with any reasonably recent release. The external preconditioners like e.g.
PARDISO or AMG have to be obtained and installed separately.

Untar the contents of the package into the preferred location

tar -xzf qarpack.tar.gz

This will create a top level directory ”qarpack” with the following content:

qarpack/

qarpack/qra.m

qarpack/nra.m

qarpack/qarn.m

2

http://www.cs.ucl.ac.uk/staff/M.Betcke/codes/qarpack/

qarpack/qoptions.m

qarpack/demo_qarpack_nlevp.m

qarpack/plot_ev_conv.m

qarpack/unique_ev.m

qarpack/nlevp2nep.m

qarpack/nep2str.m

qarpack/nep_a_times_fi.m

qarpack/README.txt

qarpack/COPYING.txt

qarpack/gpl-3.0.txt

qarpack/private/

qarpack/private/gmres_jd.m

qarpack/private/lline.m

qarpack/private/permschur.m

qarpack/private/precondition_AMG.m

qarpack/private/precondition_LU.m

qarpack/private/precondition_UMFPACK.m

qarpack/private/precondition_PARDISO.m

qarpack/doc/QARPACK_User_Guide.pdf

Add the full path to ”qarpack” folder to your MATLAB path.

3 Interface to external preconditioners

Apart from the MATLAB LU factorisations (LU: built-in PA = LU ,
UMFPACK: PAQ = LU), QARPACK provides interface to two external
preconditioners:

• Sparse LU factorization, PARDISO

http://www.pardiso-project.org

You will also need to download and compile PARDISO Matlab interface
by Peter Carbonetto available from the same website. Check PARDISO
User’s Guide for detailed instructions.

• MATLAB implementation of Algebraic Multigrid by Jonathan Boyle.
This code is not publicly available. If you are interested in using

3

http://www.pardiso-project.org

this AMG preconditioner please send your enquiry to David Silvester
d.silvester at manchester.ac.uk. It is however our experience that
LU decomposition performs superior to AMG for computation of the
eigenvalues in the interior of the spectrum.

You can create an interface to any other preconditioner by implementing a
function with an interface

precondition_PREC(mode, A, pole, prec_params, res)

following the included examples for LU, UMFPACK, PARDISO and AMG.
The function should implement four modes:

"init", "compute", "apply", "finalize"

4 Reformulating a QEP

The methods in QARPACK internally use the ordering the eigenvalues by
their increasing real part, when advancing through the spectrum. Thus, the
best results will be obtained if the eigenvalues of the QEP/NEP distribute
along the real axis, or at least have a dominant real part. This imposes no
restriction on what the methods can do, just it may require reformulating of
your original QEP/NEP in one of the ways described below. The quadratic
methods load the QEP directly from the provided file. QRA accepts both
forms of QEP while QARN only accepts QEP in form (2).

Transformation between QEP form (1)

λ2Mx+ λCx+Kx = 0,

and QEP form (2)
−ω2M̃x+ iωC̃x+ K̃x = 0

i <(λ) dominant ↔ <(ω) dominant:
(1) → (2): λ = ω, M̃ = M, G̃ = iG, K̃ = −K
(2) → (1): ω = λ, M = M̃, G = −iG̃, K = −K̃

ii =(λ) dominant ↔ <(ω) dominant:
(1) → (2): λ = iω, M̃ = M, G̃ = G, K̃ = K
(2) → (1): ω = −iλ, M = M̃, G = G̃, K = K̃

4

Transformation between QEP of the same form i.e. either both in form (1):

λ2Mx+ λCx+Kx = 0, with dominant =(λ)

to
ω2M̃x+ ωC̃x+ K̃x = 0, with dominant <(ω),

or both in form (2)

−λ2Mx+ iλCx+Kx = 0, with dominant =(λ)

to
−ω2M̃x+ iωC̃x+ K̃x = 0, with dominant <(ω)

iii =(λ) dominant → <(ω) dominant:
λ = iω, M̃ = M, G̃ = −iG, K̃ = −K

5 Describing NEP

The general nonlinear eigenvalue solver NRA requires a structure describing
the nonlinear eigenvalue problem (3)

nep.k: number of additive terms

nep.Ai: matrix coefficients

nep.fi: functions of eigenvalue

nep.dfi: derivative of fi

nep.pcoeff: preconditioner weights

nep.n: size of Ai

nep.type: {” = ’generic’, ’quadratic’}: type of the NEP

nep.prop: {”, ’symmetric’,’skewsymmetric’}: properties of the matrix
coefficients

5

The preconditioner weights are used to set up the preconditioner

P ≈

(
k∑

i=1

piAifi(σ)

)−1

. (4)

The type of NEP determines the solver for projected problems. If NEP
type is ’quadratic’ the linearization will be used. In general case we use the
safeguarded iteration. The properties of the coefficient matrices are used for
efficient projection.

The NEP can be reformulate from imaginary to real dominant eigenvalues
using the same transformation as for QEP λ = iω.

6 QARPACK functionality

The core of QARPACK are three iterative projection methods for computa-
tion of eigenvalues with a real part in a specified interval, NRA, its quadratic
version QRA and QARN. Furthermore some auxiliary routines are provided
including interfaces to external preconditioners and some visualisation meth-
ods.

6.1 QRA: Quadratic Restarted Arnoldi

QRA/NRA utilises the min-max characterisation the eigenvalues of the QEP
or NEP to number eigenvalues. Once numbered the eigenvalues are processed
one after another, minimising the risk of missing out eigenvalues. To be able
to handle eigenvalues in the interior of the spectrum local eigenvalue num-
bering w.r.t. a chosen anchor eigenvalue have been introduced. The local
numbering can be temporarily disturbed by spurious eigenvalues, which are
eigenvalues on their way to their appropriate place in the spectrum but out-
side of the interval corresponding to the current search subspace. QRA/NRA
has safeguards in place to recognise spurious eigenvalues and effectively drive
them out of the search subspace are restore the local numbering. QRA/NRA
will restart whenever the search subspace dimension exceeded a specified
threshold, or convergence become to slow. At the restart the anchor is reset
to one the previously computed eigenpairs, and the search continues for the
eigenvalues with the real part larger than the anchor eigenvalue building a
new search subspace.

6

[X, cosX, lambda, resvec, hit, lu_counter, lu_hit, time_comps, time_nonlins,

time_lus, flag, iter_dim, la_hist, la_hist_hit] = qra(data_file, anchor,

vanchor, up_bound, problem_type, scale, inverted, max_dim, solver, max_iter,

prec_params, opt);

Nonlinear Arnoldi/Jacobi Davidson with local restarts for the solution

of a quadratic eingevalue problem (QEP) in a form

-lambda^2*M*x + i*lambda*C*x + K*x = 0, (opt.QEP_FORM = 1)

for eigenvalues (i*lambda) i,e. with dominant imaginary part or

lambda^2*M*x + lambda*C*x + K*x = 0, (opt.QEP_FORM = 0)

for eigenvalues lambda with dominant real part.

The projected problems are solved by linerization. The residual norm

||T(lambda)x||/||x|| < RES_TOL is used as a stopping criterium.

The local restarts use a chosen eigenpair, called an anchor,

to introduce a local numbering in the subspace relatively

to the anchor. During the iteration the local numbering can be

distorted by "spurious" eigenvalues. The spurious eigenvalues

are handled by the following deliberate iteration.

The computed eigenvalues are identified in the search subspace and

the not matching values are checked if they are "spurious" or genuine

previously missed out eigenvalues by computing their residual norm.

The first found "spurious" eigenvalue is iterated i.e. its residual

is used to expand the search subspace until the subspace is cleared

from the "spurious" eigenvalues or the previously missed eigenvalue

has converged and the local numbering is restored. In this way a direct

effort is made to accelerate the convergence of a spurious eigenvalue

to drive it away from the subspace corresponding to

(anchor, nr(last computed eigenvalue)+1) or to detect it unambiguously

as a previously missed eigenvalue and include on its right position

into the search subspace.

Restart can be triggered by:

1. exceeding the maximal subspace dimension, approached within a specified

margin, opt.MAX_DIM_MARG to avoid restarts while an eigenvalue is iterated

2. slow convergence rate of the residuals (see opt.CONV_RATE_TOL)

When self scheduleding of restarts is enabled the algorithm measures

the CPU time spent in average on an eigenvalue pair computation up to now

7

and registers whether the iterated eigenpair takes longer than the average

time pro eigenpair or not, by counting up or down

if too slow, toolong_counter = toolong_counter + 1,

else toolong_counter = max(toolong_counter-1, 0)

If toolong_counter exeeeds allowed number opt.TOOLONG, restart is triggered.

@Input:

datafile - name of the file with the matrices M, C (or G), K,

for QEP in the form:

-lambda^2*M*x + i*lambda*C*x + K*x = 0

for i*lambda - eigenvalues dominated by their imaginary part

(set opt.QEP_FORM = 1) or

lambda^2*M*x + lambda*C*x + K*x = 0

for lambda - eigenvalues dominated by their real part

(set QEP_FORM = 0)

anchor - a known eigenvalue (an anchor) or a lower bound on the first

wanted eigenvalue. In the latter case the first eigenpair

will be iterated to convergence and then it will be used

as an anchor. If a multiple eigenvalue is specified as

an achor, the computed eigenpairs will include none of

the eigenvectors corresponding to the (multiple) anchor

vanchor - eigenvector corresponding to the anchor, if empty the first

eigenpair (lambda, x) with real(lambda) >= anchor will be

iterated to convergence and then it will be used as an anchor.

The same measure is taken if the residual of the anchor pair

is not small enough.

up_bound - upper bound for wanted eigenvalues

problem_type - type of QEP: {’gyroscopic’, ’symmetric’, ’quadratic’}.

If no C or G exists, we set G = 0 and problem is relabelled

’linear’ but it is computationally treated as quadratic.

scale - scale the eigenvalues of the QEP:

(new eigenvalue) = scale * (old eigenvalue)

inverted - {0, 1} do not/do use the reversal of the polynomial, which

is equivalent to the problem obtained through substitution

lambda <- (-1/lambda) for opt.QEP_FORM = 1,

M*x + i*lambda*C*x - lambda^2*K*x = 0 or

M*x + lambda*C*x + lambda^2*K*x = 0

with lambda <- (1/lambda) for opt.QEP_FORM = 0

max_dim - maximal size of the searche subspace. If exeeded a restart

is triggered

8

solver - the solver used for the subspace expansion

’arn’: Residual Inverse Iteration (RII),

’iter’: RII with GMRES instead of a direct solve,

’jd’: Jacobi Davidson

max_iter - maximal iteration number, if exeeded the algorithms will

terminate regardless of its state

prec_params - preconditioner parameters structure:

type: ’LU’ (default), ’AMG’, ’PARDISO’, ’UMFPACK’

For LU, UMFPACK and PARDISO:

reorder: reordering algorithm for A, returning p

such that A(p,p), e.g. @symamd, @symrcm,

[] no reordering (default)

diag_scale: 0 - none, 1 - left, 2 - right (default)

For LU only:

tol: tolerance for LU preconditioner if Inf then LU

is used (default), otherwise an incomplete LU

with specified tolerance tol is used

For AMG (code by J. Boyle, not included):

tol: tolerance for amg_solver (default opt.RES_TOL),

diag_scale: 0 - none, 1 - left, 2 - right (default)

maxit: maximal number of iterations of the iterative solver

(default opt.JD_GMRES_MAXIT)

amg_smoother: ’PDJ’ (default), ’PGS’

amg_solver: @minres, @pcg, @gmres (default)

reuse_mg: number of times the same multi grid is reused

(default 0 do not reuse preconditioner)

restart: as in e.g. gmres, set [] for no restarts (default)

Default the complete matlab ’LU’

opt - further options for the solver, see qoptions.m

@Output:

X - eigenvectors

cosX - cosines of angles between the consecutive eigenvectors

lambda - eigenvalues, ordered by the real part

resvec - residual norm history

hit - numbers of iteration at which eigenvalues converged

lu_counter - number of (incomplete) LU factorizations

lu_hit - numbers of iteration when the preconditioner was recomputed

time_comps - computation time recorded after every converged eigenvalue,

the last entry contains total time

9

time_nonlins - time spent on solving of projected eigenvalue problems

recorded after every converged eigenvalue, reset at restart

time_lus - CPU times for computation of new preconditioners

flag - outcome of the algorithm

0 - the upper bound have been reached,

1 - iteration exited prematurely i.e. the limit of iterations

has been reached. The stopping criterium is not satisfied

but some eigenvalues converged

2 - iteration exited prematurely i.e. the limit of iterations

has been reached. The stopping criterium is not satisfied

and no eigenvalue converged so far

iter_dim - search subspace dimension at each iteration

la_hist - history of eigenvalue convergence (it records convergence of

multiple copies of the same eigenpair)

la_hist_hit - number of iterations at which an eigenpair converged (possibly

a copie of already converged value)

restart_cause - records the cause for the restart as sum of

1000: emergency restart (opt.MARG,

100 : search space dimension exeeded,

10 : slow convergence rate of the residual norms,

1 : self scheduling triggered restart (average convergence

time pro eigenpair exeeded too often)

6.2 NRA: Nonlinear Restarted Arnoldi

NRA can be applied to general nonlinear eigenvalue problems, while QRA is
an implementation limited to the quadratic case by the choice of the solver
for the projected problem.

[X, cosX, lambda, resvec, hit, lu_counter, lu_hit, time_comps, time_nonlins,

time_lus, flag, iter_dim, la_hist, la_hist_hit] = nra(nep, anchor,

vanchor, up_bound, max_dim, solver, max_iter, prec_params, opt);

Nonlinear Arnoldi/Jacobi Davidson with local restarts for the solution

of a nonlinear eingevalue problem (NEP) of a form

T(lambda) x = sum_i fi(lambda) Ai x = 0

The projected problems are solved for general problems with

safeguarded iteration and for quadratic problems with linearization.

The residual norm ||T(lambda)x||/||x|| < RES_TOL is used as a stopping criterium.

10

The local restarts use a chosen eigenpair, called an anchor,

to introduce a local numbering in the subspace relatively

to the anchor. During the iteration the local numbering can be

distorted by "spurious" eigenvalues. The spurious eigenvalues

are handled by the following deliberate iteration.

The computed eigenvalues are identified in the search subspace and

the not matching values are checked if they are "spurious" or genuine

previously missed out eigenvalues by computing their residual norm.

The first found "spurious" eigenvalue is iterated i.e. its residual

is used to expand the search subspace until the subspace is cleared

from the "spurious" eigenvalues or the previously missed eigenvalue

has converged and the local numbering is restored. In this way a direct

effort is made to accelerate the convergence of a spurious eigenvalue

to drive it away from the subspace corresponding to

(anchor, nr(last computed eigenvalue)+1) or to detect it unambiguously

as a previously missed eigenvalue and include on its right position

into the search subspace.

Restart can be triggered by:

1. exceeding the maximal subspace dimension, approached within a specified

margin, opt.MAX_DIM_MARG to avoid restarts while an eigenvalue is iterated

2. slow convergence rate of the residuals (see opt.CONV_RATE_TOL)

3. When self scheduleding of restarts is enabled the algorithm measures

the CPU time spent in average on an eigenvalue pair computation up to now

and registers whether the iterated eigenpair takes longer than the average

time pro eigenpair (multiplied by opt.ALPHA) or not, by counting up or down

if too slow, toolong_counter = toolong_counter + 1,

else toolong_counter = max(toolong_counter-1, 0)

If toolong_counter exeeeds allowed number opt.TOOLONG, restart is triggered.

This version supports multiple eigenvalues.

@Input:

nep - data structure containing matrix and function coefficients

of NEP

T(lambda)*x = sum_i nep.fi{i}(lambda)*nep.Ai{i}*x = 0

anchor - a known eigenvalue (an anchor) or a lower bound on the first

wanted eigenvalue. In the latter case the first eigenpair

will be iterated to convergence and the bound will be used

11

as an anchor. If a multiple eigenvalue is specified as

an achor, the computed eigenpairs will include all of

the eigenvectors corresponding to the (multiple) anchor

vanchor - eigenvector corresponding to the anchor, if empty the first

eigenpair (lambda, x) with real(lambda) >= anchor will be

iterated to convergence and the bound will be used as an anchor.

The same measure is taken if the residual of the anchor pair

is not small enough.

up_bound - upper bound for wanted eigenvalues

max_dim - maximal size of the searche subspace. If exeeded a restart

is triggered

solver - the solver used for the subspace expansion

’arn’: Residual Inverse Iteration (RII),

’iter’: RII with GMRES instead of a direct solve,

’jd’: Jacobi Davidson

max_iter - maximal iteration number, if exeeded the algorithms will

terminate regardless of its state

prec_params - preconditioner parameters structure:

type: ’LU’ (default), ’AMG’, ’PARDISO’, ’UMFPACK’

For LU, UMFPACK and PARDISO:

reorder: reordering algorithm for A, returning p

such that A(p,p), e.g. @symamd, @symrcm,

[] no reordering (default)

diag_scale: 0 - none, 1 - left, 2 - right (default)

For LU only:

tol: tolerance for LU preconditio ner if Inf then LU

is used (default), otherwise an incomplete LU

with specified tolerance tol is used

For AMG (code by J. Boyle, not included):

tol: tolerance for amg_solver (default opt.RES_TOL),

diag_scale: 0 - none, 1 - left, 2 - right (default)

maxit: maximal number of iterations of the iterative solver

(default opt.JD_GMRES_MAXIT)

amg_smoother: ’PDJ’ (default), ’PGS’

amg_solver: @minres, @pcg, @gmres (default)

reuse_mg: number of times the same multi grid is reused

(default 0 do not reuse preconditioner)

restart: as in e.g. gmres, set [] for no restarts (default)

Default the complete matlab ’LU’

opt - further options for the solver, see qoptions.m

12

@Output:

X - eigenvectors

cosX - cosines of angles between the consecutive eigenvectors

lambda - eigenvalues, ordered by the real part

resvec - residual norm history

hit - numbers of iteration at which eigenvalues converged

lu_counter - number of (incomplete) LU factorizations

lu_hit - numbers of iteration when the preconditioner was recomputed

time_comps - computation time recorded after every converged eigenvalue,

the last entry contains total time

time_nonlins - time spent on solving of projected eigenvalue problems

recorded after every converged eigenvalue, reset at restart

time_lus - CPU times for computation of new preconditioners

flag - outcome of the algorithm

0 - the upper bound have been reached,

1 - iteration exited prematurely i.e. the limit of iterations

has been reached. The stopping criterium is not satisfied

but some eigenvalues converged

2 - iteration exited prematurely i.e. the limit of iterations

has been reached. The stopping criterium is not satisfied

and no eigenvalue converged so far

iter_dim - search subspace dimension at each iteration

la_hist - history of eigenvalue convergence (it records convergence of

multiple copies of the same eigenpair)

la_hist_hit - number of iterations at which an eigenpair converged (possibly

a copie of already converged value)

restart_cause - records the cause for the restart as sum of

1000: emergency restart (opt.MARG,

100 : search space dimension exeeded,

10 : slow convergence rate of the residual norms,

1 : self scheduling triggered restart (average convergence

time pro eigenpair exeeded too often)

6.3 QARN: Quadratic Arnoldi

QARN utilises the partial Schur form of the linearization of the QEP to lock
the converged eigenvalues thereby preventing repeated convergence of the
same eigenvalues. It does so without doubling the size of the problem, since
all the computations are directly executed on the original QEP matrices.

13

Traversing of the complex plane is achieved by choosing a new pole with a
larger real part then the current one, which lets the algorithm systematically
work through the interval containing the real part of the wanted eigenval-
ues. QARN will restart whenever, the search subspace becomes to large.
If the restart subspace is not large enough to accommodate all the wanted
eigenvalues, some of the locked eigenvalues will have to be purged. To this
end the partial Schur form is rearranged, locking the eigenvalues closest to
the current pole, and purging the eigenvalues farther away. This systematic
motion of the pole in the interval, makes the algorithm progress through the
spectrum along the real axis. However, there is no guarantee that the eigen-
value will not converge multiple times or that it will not be missed out if the
new pole has been chosen to far from the current one.

QARN is limited to quadratic eigenvalue problems.

[X, lambda, resvec, hit, lu_counter, poles, hit_poles, time_comps,

time_nonlins, time_lus, flag] = qarn(data_file, sigma, start_vector,

stop_crit, problem_type, scale, inverted, max_subspace, restart_sub,

solver, max_iter, prec_params, opt, noisy);

Solves the quadratic eigenvalue problem (QEP):

Q(lambda)x = 0 with Q(lambda) = -lambda^2*M + i*lambda*C + K.

using Q-Arnoldi method (Meerbergen, 2001) for nr_ev_wanted eigenvalues

nearest to the pole sigma or eigenvalues smaller than a given upper bound.

This QEP form is particularly suited for problems with eigenvalues

with dominant imaginary part and can be obtrained from a standard

T(omega) = omega^2*M + omega*C + K

through a substitution: omega <- i*lambda.

Notice, that after the reformulation the eigenvalues of Q(lambda)

have a dominant real part.

Local restarts are implemented to enable the algorithm to compute

all wanted eigenvalues with the real part in an interval

in the spectrum in one go.

The algorithm uses partial Schur form of the symmetric linearization

to lock and purge eigenvalues. If the dimension of the restart subspace

is not large enough to accomodate all the wanted eigenvalues, some of

the computed eigenvalues will have to be purged from the local Schur

form at the restart.

14

Every opt.POLE_CHANGE iterations (see qoptions.m for more details),

the algorithm will select a new pole with a real part larger than

this of the current pole. Thus the algorithm works its way from

the left to the right along the real axis. Therefore, if a large

number of eigenvalues is required, the initial pole should be chosen

close to the left end of the interval containing the wanted eigenvalues.

Whenever, a new pole is computed the local Schur form is reordered,

so that the eigenvalues closest to the pole are in the left upper corner.

The eigenvalues closest to the current pole (see opt.LOCK_TYPE for

definitions of closeness) are kept in the subspace after restart.

It makes sense to let the restarts coincide with the pole change

and the preconditioner change i.e. to choose

k*opt.POLE_CHANGE = max_subspace = j*opt.PREC_CHANGE,

with k,j integer multiples.

As with iterative algorithms in general, eigenvalues may be overlooked.

@Input:

data_file - name of file with the matrices K, G (or C), M

of the QEP in form:

-lambda^2*M*x + i*lambda*C*x + K*x = 0, or

-lambda^2*M*x + i*lambda*G*x + K*x = 0

sigma - initial pole value (pick on the lower end of

the real part of the spectrum)

start_vector - initial vector, if empty a random vector is used

stop_crit - number of wanted eigenvalues or an upper bound

on the real part of the eigenvalues as specified

by opt.STOP_COND, {0: number, 1: upper bound}

problem_type - structure of the QEP: {’quadratic’, ’gyroscopic’,

’symmetric’}. The structure in only enforced

at Q(alpha) times vector product. This is

not rigorous, and can slow down convergence.

In the latter case disregard the structure

and revert to the general unstructured problem

choosing ’quadratic’

If no C or G exists, we set C = 0 and the problem

is relabeled ’linear’ but still computationally

treated as quadratic, see eigs.m for linear solver

15

scale - scale the eigenvalues:

(new eigenvalue) = scale * (old eigenvalue)

i.e. solve.

Q(lambda) = -lambda^2*M + i*lambda*scale*C + scale^2*K

If scale is empty, the quotient of 1-norms

of K and M is used

inverted - {0, 1} do not/do compute with the inverted problem,

obtained through a substitution: lambda<-(-1/lambda),

resulting in:

M*x + i*lambda*C*x - lambda^2*K*x = 0.

The invertion is carried out after scaling.

max_subspace - maximal subspace dimension, if exeeded the restart

is triggered

restart_sub - size of the subspace after restart. The search subspace

at restart has to contain restart_sub vectors:

restart_sub = opt.NOT_CONV_VEC_NR (not converged)

+ CONV_VEC_NR (locked).

If restart_sub is large enough to accomodate all

the wanted eigenvalues, no computed eigenvalues

will be purged at restart. Otherwise,

CONV_VEC_NR <= restart_sub locked vectors in addition

to opt.NOT_CONV_VEC_NR not converge vectors closest

to the pole will be kept in at restart and the rest

will be purged

solver - the solver used for the subspace expansion

{’arn’ (LU), ’iter’ (GMRES),

’jd’ (Jacobi Davidson with GMRES)}

max_iter - maximal iteration number, if exeeded the algorithm

will terminate regardless of its state

prec_params - For ’iter’ and ’jd’: preconditioner, leave empty for

no preconditioning

For ’arn’: subspace expansion operator, leave empty

for the default Matlab LU direct solver.

Preconditioner parameters structure:

type: ’LU’ (default), ’AMG’, ’PARDISO’ , ’UMFPACK’

For LU, UMFPACK and PARDISO:

reorder: reordering algorithm for A, returning p

such that A(p,p), e.g. @symamd, @symrcm,

[] no reordering (default)

diag_scale: 0 - none, 1 - left, 2 - right (default)

16

For LU only:

tol: tolerance for LU preconditioner if Inf then LU

is used (default), otherwise an incomplete LU

with specified tolerance tol is used

For AMG (code by J. Boyle, not included):

tol: tolerance for amg_solver (default opt.RES_TOL),

diag_scale: 0 - none, 1 - left, 2 - right (default)

maxit: maximal number of iterations of the iterative solver

(default opt.JD_GMRES_MAXIT)

amg_smoother: ’PDJ’ (default), ’PGS’

amg_solver: @minres, @pcg, @gmres (default)

reuse_mg: number of times the same multi grid is reused

(default 0 do not reuse preconditioner)

restart: as in e.g. gmres, set [] for no restarts (default)

Default the complete matlab ’LU’

opt - further options for the solver, see also qoptions.m

noisy - switch on the debbuging output. Set noisy

{0 .. nr_ev_wanted eigenvalue},

to debug from noisy-th eigenvalue

@Output:

X - eigenvectors

lamda - eigenvalues, in the order of convergence

resvec - residual norm history. At each iteration it contains

the residual of either if any vector convereged,

the last converged Schur vector, or the of first

not converged Schur vector

hit - for each eigenvalue it records the iteration at which

the eigenvalue converged

lu_counter - number of times the preconditioner was recomputed

(e.g. LU factorizations)

poles - poles used throughout the computation. The method

for choosing a new pole is specified by opt.POLE_TYPE

hit_poles - records the iteration number at which the pole has

changed

time_comps - total computation time recorded for every converged

eigenvalue

time_nonlins - computational time taken by Schur factorization and

reordering, recorded for every converged eigenvalue

time_lus - time for recomputing the preconditioner, recorded at

17

every preconditioner change

flag - 0 - the upper bound has been reached or the number

of wanted eigenvalues have been computed

1 - iteration exited prematurely i.e. the limit of

iterations has been reached. The stopping criterium

is not satisfied but some eigenvalues converged

2 - iteration exited prematurely i.e. the limit of

iterations has been reached. The stopping criterium

is not satisfied and no eigenvalue converged so far

6.4 Default Solver Options

Routine qoptions.m will generate a default set of parameters for each of the
solvers.

opt = qoptions(solver, varargin)

@Input:

solver: choose the solver from {’nra’,’qarn’} for which

the parameters are needed. Each of the solvers requires

different subset of the parameters

varargin: the default values of the parameters can be overwritten

qoptions(’nra’, ’res_tol’, 1e-8)

overwrites the default opt.res_tol value, and sets

opt.res_tol = 1e-8

@Output:

opt: structure containing the QEP solver parameters

@Default solver parameters:

Common parameters:

Tolerance threshold for reorthogonalization

ORTH_TOL = 1e-1;

Residual norm tolerance

RES_TOL = 1e-4;

Relative threshold for the elimination of the imaginary part

due to the roundoff error

IMAG_TOL = 1e4*eps;

Minimal relative gap between two (not multiple) eigenvalues.

It is needed for finding spurious ev’s.

18

RGAP_TOL = 1e-5;

Maximal number of iterations of GMRES used by ’jd’, ’iter’ (NRA)

JD_GMRES_MAXIT = 15;

No of GMRES iterations before restart, used with ’jd’ (QARN), ’iter’

GMRES_RESTART = 30;

QRA/NRA parameters:

Tolerance for the ratio of the last two residual norms. If it is

not met a restart will be triggered.

CONV_RATE_TOL = 0.5;

Number of eigenvectors (corresponding to the eigenvalues closest

to the anchor) which will be included into the search subspace V

after the restart.

LOCKED_VEC_NR = 0;

The algorithm will try to restart whenever the subspace size

reached max_dim - MAX_DIM_MARG to avoid restarts while

an eigenpair converges. Then the restart is triggered immediately

after an eigenvalue converged or after MAX_DIM_MARG iteration

in any case.

MAX_DIM_MARG = 5;

Initial tolerance for the residual in JD algorithm. It will

decrease during the iteration as: JD_TOL_FACT*JD_TOL

JD_INIT_TOL = 0.5;

JD_TOL_FACT = 0.75;

Factor which modifies the RES_TOL when the relative distance

of two computed eigenvalues is close to RGAP_TOL

MULT_EV_RES_FACT = 50;

Parameters for self scheduling of restarts:

How often the average time pro eigenvalue in the entire cycle

(multiplied by factor ALPHA) can be exceeded by the CPU time

necessary for the current eigenvalue.

Set TOOLONG large to disable self scheduling of restarts.

TOOLONG = 1e4;

ALPHA = 1;

19

Choose solver for projected problem, linearization type:

{’L1’, ’L2’}

PLIN = ’L2’;

Choose the form of the QEP: {0,1}

0: Q(sigma) = sigma^2*M+sigma*G+K,

for eigenvalues with dominant real part

1: Q(sigma) = -sigma^2*M+i*sigma*G+K,

for eigenvalues with dominant imaginary part

QEP_FORM = 1;

Choose if the projected QEP is solved by QR or QZ algorithm

{’QR’, ’QZ’}

PSOLVER = ’QZ’;

NRA only:

Choose if the safeguarded iteration solves the EP: Tm(lambda) y = 0

or the GEP: Tm(lambda) y = mu Tm’(lambda) y = 0. If set the GEP will

be solved.

SG_DERIV = 1;

QARN parameters:

Choose stopping criterion from

0: eigenvalue number,

1: upper bound on the real part of the eigenvalue

STOP_COND = 1;

Tolerance for the iterative solver

ITER_TOL = 1e-2;

Maximal number of consecutive failures of the iterative

solver used by ’jd’. Every time the solver fails new pole

will be set to the current iterate, S(q+1,q+1). After

MAX_FAIL_ITER-1 consecutive failures the tolerance

ITER_TOL will be reduced to sqrt(ITER_TOL). If this does

not help either the algorithm will terminate with an error

message.

MAX_FAIL_ITER = 3;

20

Keep the pole for this many iterations in the initial

phase. It has to be larger then 1. If no pole change wanted,

set to max_iter

INIT_POLE_KEEP = 40;

Relative distance wrt the largest distance to the pole

in the search subspace. It is needed for POLE_TYPE = ’far_pole’

POLE_DIST = 1.2;

For direct solve this is how frequently the LU of Q(sigma)

is recomputed. For iterative solve this refers to

the preconditioner. We use LU of real(K - sigma^2M)

in both cases. For real K, M it is real anyway since we use

real poles.

Req: PREC_CHANGE >= POLE_CHANGE

PREC_CHANGE = 80;

How frequently the pole is adjusted for both direct

and iterative solves.

POLE_CHANGE = 20;

In case no of wanted ev’s exceeds the restart subspace size some

eigenvalues will be purged. NOT_CONV_VEC_NR specifies how many of

the not converged vectors are kept after the pole has been changed.

Hence, restart_sub-NOT_CONV_VEC_NR converged vectors are kept

NOT_CONV_VEC_NR = 1;

Strategy for the change of the pole

{’far_pole’, ’next_ev’, ’none’}

In each case the new pole has to be larger then the current one.

The poles are real. If the choice of pole is not possible some

fall-back values are used dependent on the chosen strategy.

’far_pole’: the pole is chosen between the not converged Schur

values, at the distance at least POLE_DIST*(maximal

distance among the locked vectors to the current pole)

’next_ev’ : the pole is chosen between the last converged value

and the first not converged value.

’none’ : do not change the pole

POLE_TYPE = ’next_ev’;

Choose type of locking:

’sigma’: works through the Schur values closest to the pole,

21

locking the converged pairs. It stops when it

encounters the first not converged pair. In general

the absolute distance to the pole is used however,

if in addition POLE_TYPE = ’next_ev’ it works through

the Schur pairs from the closest to the pole

in the increasing real part direction first, followed

by the decreasing real part direction until

it encounters an unconverged pair.

’residual’: locks all newly converged Schur vectors. The systematic

moving through the spectrum is not forced.

LOCK_TYPE = ’residual’;

For JD: Choose Q projector type {’Z*R’, ’P*R’}. The first one

is an oblique and less stable projector. The second is an orthogonal

projector but it requires an extra reorthogonalization of the residual.

Q_TYPE = ’Z*R’;

For JD: Choose from {’omega’, sigma}.

’omega’: after initial INIT_POLE_KEEP iterations sigma

in the Jacobi Davidson correction equation will be set

to the current approximation.

’sigma’: sigma in the Jacobi Davidson correction equation

will be chosen as the pole.

SIGMA_TYPE = ’omega’;

6.5 Filtering out multiple copies of an eigenvalue

QARN can find multiple copies of the same eigenvalue. A routine unique en.m

is provided to identify eigenvalues equal up to a given tolerance. See also
demo qarpack nlevp.m for examples how to use the function.

[ulambda, iulambda, ifirst_conv] = unique_ev(lambda, TOL)

Returns a vector of unique eigenvalues extracted from "lambda".

The uniqueness is understood up to the specified "TOL".

Two eigenvalues lambda1 and lambda2 are considered equal if

abs(real(lambda2)-real(lambda1))/abs(lambda1) < TOL and

abs(imag(lambda2)-imag(lambda1))/abs(lambda1) < TOL

The vector of unique complex values "ulambda" is sorted by

the real part first and within identical real part by

22

the imaginary part.

"iulambda" gives the indices of the eigenvalues "lambda"

in "ulambda" i.e. it holds: ulambda(iulambda) = lambda,

up to the given tolerance TOL.

Assuming that lambda is entered in their convergence order,

"ifirst_conv" contains the indices of the first converged

copy of each of the unique eigenvalues in "lambda" i.e.

lambda(ifirst_conv) returns the first converged copies in lambda.

6.6 Visualisation

For the visualisation of the performance of the methods the routine plot ev conv.m

is provided. See demo qarpack nlevp.m for examples of how to use this func-
tion.

plot_ev_conv(experiment, fig, REAL_FLAG)

Plot eigenvalue and residual norm convergence history

from results stored in the "experiment" file, into figures

with numbers in "fig" (1x4 array).

"REAL_FLAG" specifies which part of the spectrum

is dominant, real (1) or imaginary (0).

The file "experiment" has to contain the following outputs

from one or both the methods with names precisely as below:

QRA:

lambda, la_hist, la_hist_hit, anchor_lambda, lu_hit, resvec,

hit, restart_cause, optQRA

NRA:

lambda_n, la_hist_n, la_hist_hit_n, anchor_lambda_n, lu_hit_n, resvec_n,

hit_n, restart_cause_n, optNRA

QARN:

lambda_q, poles_q, hit_poles_q, resvec_q, hit_q, optQARN

7 Acknowledgements and Credits

Almost all of the code in QARPACK was written by Marta M. Betcke with
the exception of

23

• permschur.m Schur form reordering, based on an M-File swapschur.m,
which origin could not be determined

QARPACK is released under the GNU Public License, as follows:

QARPACK is a MATLAB implementation of two methods for solution of large

sparse quadratic eigenvalue problems:

NRA: Nonlinear Restarted Arnoldi (M.M. Betcke, H. Voss, 2011).

QARN: Q-Arnoldi method (K. Meerbergen, 2001)

Copyright (C) 2010 Marta M. Betcke

QARPACK is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

QARPACK is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

If QARPACK helped you to generate results, please cite: [3, 1]

References

[1] M M Betcke and H Voss. Nonlinear Restarted Arnoldi: Interior
Eigenvalue Computation. Institute of Numerical Simulation, Technical
Report 157, 2011, https://www.mat.tu-harburg.de/ins/forschung/

rep/rep157.pdf

[2] K Meerbergen. Locking and Restarting Quadratic Eigenvalue Solvers.
SIAM Journal on Scientific Computing. 22 (5) pp. 1814-1839, 2001.

[3] M M Betcke. QARPACK: Quadratic Arnoldi Package. User’s Guide. UCL,
2011, http://www.cs.ucl.ac.uk/staff/M.Betcke/codes/qarpack/

QARPACK_User_Guide.pdf

24

https://www.mat.tu-harburg.de/ins/forschung/rep/rep157.pdf
https://www.mat.tu-harburg.de/ins/forschung/rep/rep157.pdf
http://www.cs.ucl.ac.uk/staff/M.Betcke/codes/qarpack/QARPACK_User_Guide.pdf
http://www.cs.ucl.ac.uk/staff/M.Betcke/codes/qarpack/QARPACK_User_Guide.pdf

	What is QARPACK?
	Installation
	Interface to external preconditioners
	Reformulating a QEP
	Describing NEP
	QARPACK functionality
	QRA/NRA: Quadratic/Nonlinear Restarted Arnoldi
	QARN: Quadratic Arnoldi
	Default Solver Options
	Filtering out multiple copies of an eigenvalue
	Visualisation

	Acknowledgements and Credits

