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ABSTRACT

The sharing of personal data has the potential to bring substantial
benefits both to individuals and society, but these can be achieved
only if people have confidence their data will not be used inap-
propriately. As more sensitive data is considered for sharing (e.g.,
communication records and medical records), and as it is increas-
ingly used for making important decisions, there is a growing need
for effective ways to hold data processors accountable for their ac-
tions, while protecting the privacy of individuals and the integrity
of their data. We propose a system, VAMS, that allows individuals to
check accesses to their sensitive personal data, and enables auditors
to detect violations of policy. Furthermore, our system protects the
privacy of individuals and organizations, while allowing published
statistics to be publicly verified. We build two prototype systems,
one based on the Hyperledger Fabric distributed ledger and another
based on the Trillian verifiable log-backed map, and evaluate their
performance on simulated workloads based on real-world data sets.
We find that while the one based on Hyperledger Fabric may have
more favorable trust assumptions in certain settings, the one based
on Trillian is more scalable, achieving up to 102 transactions per
second, as opposed to Hyperledger’s 40.

1 INTRODUCTION

Personal data is playing an increasing role in activities where there
is a high cost of failure, such as health-care, the prevention and
detection of crime, and legal proceedings. In many important situa-
tions though, the organizations who need access to this data are
not the ones who generate or hold the data, so data must be shared
in order for it to be effectively used. Such sharing must however
be done with great care because improper sharing or modification
of sensitive data could result in harm, whether through breaches
of confidentiality or incorrect decisions as a result of tampered
data. The harm from such failures can have wider implications
than just the individuals whose data is involved – if there is wide-
spread abuse of personal data, people may become unwilling to
allow their data to be collected and processed even when it would
benefit themselves and society.

Simple restrictions on sharing of personal data can be auto-
matically enforced through access control and cryptographic pro-
tections, such as preventing unauthorized parties from accessing
databases in which personal data is held. However, other equally
important restrictions involve human interpretations of rules or
depend on information not available to the computer system enforc-
ing them. For example, access to medical records may be permitted
only when it would be in the interests of the patient or access to

communication records may be permitted only if it is necessary and
proportionate for the purposes of preventing crime. In cases such as
this, rules cannot be reliably automatically enforced in real-time so
the approach commonly taken is to keep detailed records of access
attempts and subject some or all of the actions to audit. Provided
that the audit is likely to find improper activities and violations are
harshly punished, abuse can be effectively deterred. Furthermore,
statistics published about the audit can provide confidence to soci-
ety that access to data is being controlled and organizations who
can have access to data will be held to account.

This however raises questions about who performs the audit and
how the auditor can be assured that the records they rely upon are
accurate. If individuals at risk of their personal data being misused
do not trust that the auditor is faithfully carrying out their duties
then the goal of the audit will not be achieved. However, because of
the sensitivity of the personal data and the records containing the
justification for data being processed, we cannot allow just anyone
to act as an auditor. Even if it was possible to find an organization
whose audit would be widely accepted, if the audit is based on
tampered records then it would not be reliable.

The discussion so far has focused on the confidentiality of per-
sonal data, but its integrity is also important. When actions are
taken on the basis of this data, whether making a medical treatment
decision or conducting legal proceedings, relying on tampered data
may lead to severe consequences. In some cases it may be possible
to refer back to the organization that collected the data to verify
its integrity, but if that organization no longer holds the data or
has gone out of business, such verification is not possible. Digital
signatures can provide some confidence that data is genuine, but if
the private key is compromised then any data signed by that key
is subject to doubt, even if it was created before the point of key
compromise.

In this paper we propose a system, VAMS, to verify that audits
are performed faithfully and are based on accurate records of how
personal data was accessed, while protecting the privacy of the
individuals and organizations involved. Furthermore, VAMS allows
the integrity of personal data to be verified and demonstrated, when
necessary.

1.1 Motivating scenarios

To further motivate the design for our system, we consider two
challenging scenarios: controlling the access of law-enforcement
personnel to communication records and controlling the access of
healthcare professionals to medical data.



1.1.1 Law-enforcement access to communications data. In the
UK 95% of serious and organized criminal cases make use of com-
munications data [42] – metadata stored by telecommunications
providers in their billing system about account holders or their
use of communications networks (such as phone numbers called,
address associated with an account, or location of a mobile phone).
Telecommunications providers are required to store this data for
a period of time (up to 2 years), but once this period has expired
and there is no business reason to store this personal data, they
are required to delete it. Within the period that data is stored, law-
enforcement personnel are permitted to request access, provided
that they can demonstrate that their actions are legally justified1.
At the time such a request is made, there is, however, no external
oversight. Instead, information about the request and the justifi-
cation for access are stored and made available for audit by the
Investigatory Powers Commissioner’s Office (IPCO)2. IPCO then
assess whether law enforcement make appropriate use of the pow-
ers they were given, and also publish reports with statistics of how
these powers were used [43].

Communications data plays an important role in the investiga-
tion of criminal offenses, but may also be used as evidence in legal
proceedings, whether for the purposes of prosecution or defense.
Should any question be raised about the integrity of the communi-
cations data evidence, a senior representative of the telecommuni-
cations provider will be asked to appear in court and asked to verify
the evidence against company records and attest to its accuracy. If
technical issues arise related to this evidence, one of the parties to
the case may also request that the court request specialist assistance
from an expert witness. This process of verification is expensive and
time consuming, and even impossible if the provider has deleted the
original data in between the law enforcement agency requesting
and it being required in court.

In order to improve the process, industry standards allow for
providers to sign or hash communications data when it is provided
in response to a request from law enforcement. Someone who needs
to verify an item of data can compare the hash to the one stored
by the provider, or verify the digital signature using the provider’s
public key [30]. However, if the provider’s private key or hash
database is compromised, any evidence presented subsequent to
the compromise will be brought into doubt, even if the evidence
was generated before the time of compromise.

Our system can be applied in this scenario, allowing the integrity
of communications data evidence to be demonstrated, even if the
communications provider which produced the data no longer ex-
ists or has been compromised. Furthermore, the system will give
assurance to the auditor that records of requests to access commu-
nications data have not been tampered with, and assure society
that reported statistics have not been improperly manipulated by
the auditor. We also show how the system protects the privacy of
individuals whose data is requested, and also protects the confiden-
tiality of ongoing law-enforcement investigations.

1Similar legal powers are available in the US through the use of administrative sub-
poenas, but as there are no publicly available statistics for their use and there is no
centralized oversight, we focus on the UK case.
2Prior to September 2017 this role of IPCO was the responsibility of the Interception
of Communications Commissioner’s Office (IOCCO).

1.1.2 Access to healthcare records. In our second scenario we
consider how to empower individuals by giving them control over
how their medical records are used and shared.

In a healthcare system, once consent has been given by a patient,
various actors should be able to access various records associated
with that patient; e.g., their general practitioner should be able to
access scans that were run at a hospital, and researchers running
academic studies or clinical trials in which the patient has enrolled
should be able to access records relevant to the study. Currently
patients can only give permission for broad types of activities and so
they may legitimately have concerns that their information is being
used inappropriately. Conversely, patients with serious diseases
(cancer, motor neuron disease, etc.) often have trouble getting the
treatment they need, as universities conducting academic studies
are legally blocked from contacting them, and patients are unaware
that such studies are going on.

Opening up access to medical databases may fulfill the needs of
some patients but would also open up the potential for abuse, so
it is important for patients to have visibility into how their data is
being used in order to understand the implications of their consent.
For clinical practice, the default could be that patients opt in to
sharing their data, although they can always opt out if they wish.
For academic studies and clinical trials the default should be that
they are opted out, but can opt in. They can even choose at some
granular level (for example according to location or type of study)
to which studies they want to opt in.

One issue with having patients opt in individually is that, for
some studies, this process may simply not result in a large enough
sample. Equally, if patients are deluged with requests for consent,
they are likely to resort to some default behavior (“click-through
syndrome”) without really understandingwhat they have consented
to. As such, patients could outsource these decisions to data brokers;
i.e., organizations that pay attention to the studies being conducted
and are authorized to provide consent on behalf of any patients
registered with them.

We will show how our system can be applied to allow patients
to share their data in such a way to protect their privacy, while en-
suring that unauthorized parties are prevented from having access
and that authorized parties abusing their access can be detected.

1.2 Our contributions

We present the first system,VAMS, to provide a range of auditability,
privacy and verifiability guarantees across the whole timeline of
requesting access to data, auditing such requests and verifying the
statistics produced by auditors.

In more detail, VAMS uses append-only logs of data access
requests, which are instantiated as either blockchain-based dis-
tributed ledgers or verifiable log-backed maps. These allow users
to examine the log in order to discover requests relevant to them,
while auditors can do so in order to detect any misuse or errors in
the requests. The integrity properties of the log mean that logged
requests may be used as evidence. Requests on the log are unlink-
able to each other and to users, and a scheme based on ThreeBallot
and association rule learning makes it possible to compute pub-
licly verifiable statistics from the log data without revealing any
information but the statistics.



Two sample implementations using Hyperledger Fabric and Tril-
lian are presented, with an evaluation of performance and security
trade-offs. We find that, while Hyperledger Fabric provides more
flexible policies and offers a wider variety of trust assumptions, Tril-
lian is more scalable and a system based on it would be much easier
to deploy today. We also evaluate our privacy scheme, measuring
accuracy and privacy loss in different scenarios.

2 RELATEDWORK AND BACKGROUND

This section examines existing prior work in the area and discusses
how this paper compares to it. We also introduce the building blocks
of our system: Hyperledger Fabric, Trillian, and the ThreeBallot
voting scheme.

2.1 Verifiable computation

Verifiable computation schemes aim to allow clients to verify the
correctness of an outsourced computation. Many existing verifi-
able computation schemes for general classes of programs rely
on advanced cryptographic techniques, such as fully homomor-
phic encryption or succinct zero-knowledge proofs [9, 14, 21, 25,
33, 35, 62, 78]. These protocols require a logarithmic (or higher)
number of messages to be exchanged between the prover and veri-
fier [17, 20, 65, 66, 76], while alternatives built on interactive pro-
tocols assume the existence of random oracles. As a result, using
these schemes comes at a significant cost [79], which we consider
to be too high for our proposed system and use cases.

2.2 Data anonymization

It is often the case that datasets containing sensitive information
about individuals are useful in various applications, such as re-
search, decision-making and advertising. However, due to the sen-
sitive nature of the information they contain, datasets must be
stripped of any information that identifies individuals before being
released publicly.

A straightforward approach is data pseudonymization, where
all user identifiers (e.g., names) are replaced by random identifiers.
However, as was found in the case of the Netflix Prize [58], an
adversary will often leverage side information to de-anonymize
individuals and thus circumvent any pseudonymization.

To address this problem, a wealth of anonymization techniques
have been introduced, the most popular of which are k-anon-
ymity [72] and its extensions l-diversity [53] and t-closeness [54].
Unfortunately, k-anonymity and l-diversity have been shown to
be vulnerable to various attacks, while t-closeness ends up leaving
very little useful information in the dataset.

More recently, differential privacy was introduced by Dwork et
al. [28] to provide a notion of privacy related to outputs of algo-
rithms on datasets. This approach has seen more success and has
been applied to many use cases [27] but is still not widely used
in practice. In particular there are trade-offs to consider between
privacy and utility [4], as well as one-shot and continuous observa-
tion [29]. As a result, obtaining ameaningful privacy parameter [52]
is rarely achieved in practice [73].

2.3 Privacy-preserving and verifiable statistics

Whilst both the problem of privacy-preserving statistics [15, 18, 44,
68] and of verifiable computation [21, 48, 75] have been extensively
studied, few papers provide a single scheme fulfilling both require-
ments. However, in many cases untrusted third parties must be able
to verify the correctness of publicly released statistics, which is
often in contradiction with privacy requirements. Unfortunately, all
existing solutions come with trade-offs between security, privacy,
flexibility and efficiency that make them hard to use in practice [26].
Most of those schemes are typically based on differential privacy
or homomorphic encryption [35, 41, 47, 57] and are either very
limited, or come with an unrealistic computational overhead.

In this paper, we focus on non-interactive privacy-preserving
schemes that achieve output privacy (i.e., the verifier checking the
correctness of the computations does not learn anything about
the input), which is achieved by very few papers in the literature.
Boyle et al. [13] present constructions including succinct function
private functional signatures, and Barbosa et al. [7] present a new
delegatable homomorphic encryption primitive. In both cases, they
rely on advanced cryptographic techniques (SNARKs, fully homo-
morphic encryption, and functional encryption), and do not include
implementations. This renders them difficult to deploy, in contrast
to our lightweight scheme.

While those generic schemes enable simple arithmetic opera-
tions between variables, extracting association rules in a privacy
preserving manner is a complex and different task [2]. One of the
very first techniques used for privacy-preserving association rule
mining was uniform randomization, where individual user records
are uniformly randomized based on a public factor. The aims is
to transform the dataset so as to conceal the information of indi-
viduals, while preserving the associations themselves. However,
as pointed out by Evfimievski et al. [31], this does not provide
adequate privacy, and it is easy for an adversary to recover sev-
eral of the original records. In the same work, Evfimievski et al.
proposed a class of randomization operators that achieve much
better privacy. However, even these operators achieve unrealisti-
cally low privacy [82], while they require datasets of at least one
million records. Zhang et al. [82] proposed a new scheme that is not
item-invariant and considers the existing association rules when
perturbing each transaction. This scheme provides much better
privacy bounds compared to previous works, but also distorts the
strength of the association rules, overestimating strong relation-
ships and under representing less frequent ones. This makes the
technique unsuitable for our needs, as the added noise would it
impossible for individual users to verify the accuracy of their own
records, as outlined in Section ??.

2.4 Tamper evident logging

Tamper evident logging has previously featured in work by Crosby
and Wallach [22] and Bates et al. [8].

Crosby and Wallach consider the case of a untrusted logger
serving clients storing events in the log, that is kept honest through
auditing. Similar to us, they rely on a hash-tree based log, but
assume a single centralized log and do not address secrecy of logged
events or replication.



Bates et al. are concerned with accountable logs of wiretapping,
which is a different use case to ours. They discuss interception data
which would be inadmissible as evidence in some legal systems
(including the UK) and is subject to judicial oversight prior to au-
thorization of requests. We focus on retained communication data,
which is more internationally applicable and is subject to oversight
only after the fact.

2.5 Hyperledger Fabric

Hyperledger Fabric (HLF) [5] describes itself as a modular, extensi-
ble open-source system for deploying and operating permissioned
blockchains and includes architectural differences to most existing
solutions [16, 77].

A HLF network is a network of peers (and an ordering service),
with identities assured by aMembership Service Provider PKI, which
maintain a key-value store as the state of the shared ledger. The state
can be updated and queried through transactions on the underlying
blockchain, where by transactionswe simplymean chaincode (smart
contract) executions.

As peers have identities, they can be split up into organizations,
as well as roles on the network with regards to transactions. To
execute a transaction, an endorsing peer (or many) executes the
deterministic chaincode inside a docker container and signs the
transactions containing the resulting state update. Transactions are
then sent to the ordering service, which acts as a consensus mech-
anism and packages transactions into blocks that are committed
by validating peers, updating the state of the ledger accordingly. As
only endorsing peers are required to execute code for a transaction,
other peers do not handle any computational burden other than
receiving transactions and block events from the network. The en-
dorsement mechanism also makes it possible to define endorsement
policies, which limit which peers can invoke certain chaincode, and
which peers must sign transactions for a given chaincode.

2.6 Trillian

Trillian [36] is an open-source project that implements a general-
ized version of Certificate Transparency [51], based on two data
structures [1]: a verifiable log backed by a verifiable map.

The verifiable log is an append-only log implemented as a Merkle
tree, as described in Certificate Transparency. It allows clients to
efficiently verify that an entry is included in the log with a proof
showing the Merkle path to the tree’s entry, detect log equivocation
(i.e., conflicting tree heads) and verify that the log is append-only
through Merkle consistency proofs. The verifiable map is a key-
value store implemented as a sparse Merkle tree i.e., a Merkle tree
pre-populated with all possible keys as leaves e.g., all 2256 possible
SHA-256 hashes. Although a tree with 2256 unique leaves would in
principle not be practical to compute, only the non-empty leaves
have to be computed as all others will have the same value (e.g.,
zero) [50]. Clients can then verify that a certain value is included
(or not) in the map at any point in time, with proofs containing
Merkle paths.

Combining a verifiable log with a verifiable map leads to a ver-
ifiable log-backed map, where the log contains an ordered set of
operations applied to the map. Clients can then verify that the

Table 1: Functionalities of the parties in the system.

Function Description

request Place and record a request about a user
provide Provide data to an agent as required by a request
check Check the log for requests tied to a user identifier
monitor Verify the statistics published by auditors
detect Detect if a log server is misbehaving
audit Audit and publish the log of requests
host Host a log of requests submitted by agents
broker Act as an intermediary for users

entries in the map they view are the same as those viewed by oth-
ers auditing (i.e., replaying) the log, allowing clients to trust the
key-value pairs returned by the map.

Trillian includes only three components: the log of entries, the
map and the log of map heads. As it is more centralized, it does not
require any form of consensus like distributed ledgers. Instead, it
relies on gossip between clients and auditors to detect misbehaving
servers by comparing the view of the log they have received from
the server. If they detect a different view, a cryptographic proof that
the server has equivocated exists because every tree head, the root
hash of the Merkle tree of all log entries, is signed by the server
and published to a verifiable log.

2.7 ThreeBallot voting system

ThreeBallot [63, 64] is a paper-based voting scheme proposed by
Rivest for end-to-end auditable elections.

Voters are given three ballots arranged as three columns, with
each row corresponding to a candidate. Votes are cast according to
simple rules. Each row must be selected at least once and no row
must be selected thrice, selecting a row in two columns is a vote for
and selecting a row in one column is a vote against. The outcome
is the same as that of a standard election while voters use receipts
to check their vote was counted (assuming a public bulletin board)
and ballots are unlinkable.

The scheme’s security has been extensively studied in various
works [6, 19, 40, 46, 64, 70, 71]. From all the attacks examined, the
reconstruction and pattern-based attacks are applicable to our use
cases. These attacks have been examined by Henry et al. [40] for
two candidate races (i.e., binary choices), and extend on work by
Strauss [71]. These works provide a lower bound for security as a
function of the ballot size (number of binary choices), and we later
use them to determine the secure usage boundaries for our system.

3 SETTING AND THREAT MODEL

3.1 Setting and notation

Our proposed system is composed of agents, data providers, users,
auditors, log servers and optional data brokers. External to the
system are also regulators, who are not active in the use of the
system but serve to define regulations, such as the Investigatory
Powers Act of 2016, which determine the rules obeyed by the parties
in the system.



Figure 1: All essential parties in our setting and their func-

tionalities, alongwith the regulator and their policy that are

external to our setting. The optional data broker would act

as a user.

Each party in our system and the functions they perform (detailed
in Table 1) are defined as follows:

Agents, the set of which we denote A, could be public authorities,
companies or generally any party wishing to obtain user data from
data providers. For an agent a ∈ A, we denote this functionality
a.request.
Data providers, the set of which we denote DP, could be telecom-

munication companies, healthcare providers or generally any party
collecting user data They are responsible for receiving and answer-
ing data requests from agents. For a data provider dp ∈ DP, we
denote this functionality dp.provide.
Log servers, the set of which we denote S, are responsible for

providing access to the log of requests made by agents. For a log
server s ∈ S, we denote this functionality s.host.
Auditors, the set of which we denote O, are organizations such as

the IPCO, which audit requests made by agents to check for errors
and publish statistical reports. They must also be able to detect
if log servers are behaving dishonestly. For an auditor o ∈ O, we
denote these functionalities o.audit and o.detect, respectively.
Users, the set of which we denote U, are members of the public.

If a user is generating data(e.g., using the Internet or participating
in the healthcare system), they may wish to check the requests
that have been made about them. We denote this functionality as
u.check. Additionally, any user may wish to check if the log server
is misbehaving, or that the reports published by the auditor are
correct. We denote these respective functionalities by u.detect and
u.monitor .
Data brokers, the set of which we denote B, are non-essential

intermediaries which users can rely on to deal with data requests if
they are willing to serve as a data provider, for example providing
data to an agent running a study. The data broker can then be
chosen to deal with these requests according to pre-set rules from
the user, for example on which type of study they are willing to
participate in. For a data broker b ∈ B, we denote this functionality
b.broker .

For the above parties, we say that they are honest-but-curious
if they attempt to gain information that is not inherently visible
to them, for example by inferring information from reports pub-
lished by auditors or by linking requests that they are not involved

in. Malicious parties aim to trick the system by dishonestly per-
forming their functionalities. This means agents submitting invalid
requests, data providers providing invalid data, log servers host-
ing erroneous logs, auditors publishing inaccurate reports or users
checking requests of other users. In general, we always assume a
computationally bounded adversary that has access to all released
data, statistics and logged requests. Moreover, the adversary may
also have full or partial information about the records of users.

3.2 Threat model

With the above notation and setting laid out, we now define our
threat model where we address three criteria: auditability, privacy
and verifiability. In essence, auditability is about ensuring the in-
tegrity of the information on the system, privacy is about ensuring
the only information that can be gained by anyone is already in
the clear, and verifiability is about ensuring that information the
auditor publishes about hidden data is accurate.

We begin with log servers. These may be malicious, but our sys-
tem allows users and auditors to detect this (although not prevent
it). In what follows, we thus assume log servers are honest, as they
can otherwise be removed from the system for misbehaving. We
also assume that malicious agents and data providers do not collude,
as they could then simply choose to not use the system.

Starting with auditability, we split this into two cases. For an
auditor, we allow all other parties to be malicious, but require
that the auditor can still run o.audit properly. For a user, we allow
everyone but data providers to be malicious, as the identifier tied
to the request must be correct in order for them to be able to run
u.check. We again require that the user must be able to properly
run this function, as well as u.monitor .

In terms of privacy, the goal is to ensure that no information
that is not already public can be gained by any malicious party
not involved in the request. We thus allow any malicious party to
attempt to link requests together in order to gain information about
the agents, data providers or users linked to a request. We also
allow malicious parties to attempt to gain more information than is
revealed by the statistics themselves when they are published by an
auditor. The goal in both cases is to prevent them from learning this
information. We can model this as a game, in which an adversary is
given a transformed dataset containing private information about
a user and, in the clear, all but one of the database fields about the
user. To win, the adversary must guess the last field with noticeably
higher advantage than if they had not seen the database fields (so
just had the transformed dataset).

Finally, for verifiability, we require that auditors maliciously
performing o.audit will get caught by users, who check the validity
of the statistics by performing u.monitor .

4 OUR SYSTEM: VAMS

With our setting and threat model in mind, we now present an
overview of the form our system will take, before specifying the
proposed mechanisms that provide our security guarantees. In
particular, as the separate functionalities offered by our system
already exist separately in various forms (discussed in Section 2),
we justify our design choices which allow us to combine everything
into one cohesive ensemble.



4.1 Overview of system requirements

Looking at the functionalities (Table 1) that the parties in the system
must be able to perform and our threat model, we can already lay
out a basic framework which supports the required operations
without placing trust in other potentially malicious parties.

Clearly, the system should contain some form of database of re-
quests submitted by agents through a.request, which is maintained
by log servers performing s.host. As auditors and users should be
able to detect malicious log servers through u.detect and o.detect,
the database structure must allow them to detect any misbehavior
(e.g., the log server equivocating), in the form of an incomplete log,
or altered log entries. Malicious log servers should also not impede
the ability of auditors and users to perform audits, so the system
should be resilient to some proportion of malicious log servers.

To store requests, key-value stores are a natural choice as re-
quests are tied to unique identifiers that form a set of keys to which
we assign request values. Retrieving requests is then made simple
for auditors and users performing o.audit and u.check respectively,
as the key value map can easily be queried for identifiers, or a
range of identifiers. Performing these functions with integrity also
involves being able to check that the retrieved requests are the
original ones submitted by agents, and have not been tampered.
This reinforces the need for a data structure that is append only.

The need for an append only data structure can also be seen in
cases where evidence is required. Examples of this (introduced in
Section 1.1) are court cases where law enforcement or a healthcare
companies are required to prove they accessed data with a valid
request without a data provider testifying this is the case, or where
a data provider must prove they provided data matching the request.
In particular, urgent requests are authorized orally, with paperwork
only retrospectively authorized, so it is not enough attempt to block
invalid requests. Requests should be signed, so that they can be
used as evidence to assign liability and to hold the relevant parties
accountable, This would only work if the evidence produced is
robust so that liability can be properly assigned. Evidence should
also exist even if the party that produced it is no longer active, for
example if a data provider declares bankruptcy, a public authority
is abolished or simply if some servers fail, are destroyed or act
maliciously. Thus, log servers should not depend solely on the
party tied to the evidence.

Once the requests are recorded in the log, and the auditor has
performed their audit, they will publish the resulting statistics
through o.publish. Users must be able to verify these statistics
through u.monitor , there must be evidence of the results they pub-
lish, as well as the data necessary to verify their results, without
compromising privacy.

To achieve the requirements above, a data structure such as a
blockchain or a form of Merkle tree is required. We make the choice
of using existing solutions: verifiable log-backed maps (Trillian)
and blockchain based permissioned ledgers (Hyperledger Fabric),
which were introduced in Sections 2.5 and 2.6. Both store key-
value maps, either as the state of the ledger which is updated by
transactions on the underlying blockchain, or as a sparse Merkle
tree, where each branch leads to a key. These also support our need
for verifiability of audits, as the results of an audit can be included
in the system with the same robustness guarantees as any other

data i.e., the requests, which allows users performing u.monitor to
verify the results without having to trust they have been altered by
the auditor that publishing them. This is in line with the use case
for permissioned blockchains outlined byWüst and Gervais [80], as
a state must be stored with multiple known and untrusted writers,
no always-online trusted third party, and verifiability requirements.

4.2 Mechanisms to build VAMS

Now that we have settled on a set of design choices, we move on to
the specific mechanisms we provide and argue that they achieve the
security guarantees from our threat model. Two implementations,
using HLF and Trillian, of the design presented here are provided
in Section 5.

For generality, we abstract both HLF and Trillian as the underly-
ing key-value store underlying the system.

4.2.1 Publishing requests to the log. When performing a.request,
agents append requests to the log by assigning a request to a key
in the key-value store. To make sure requests are tied to unique
identifiers, each key corresponds to a different request using com-
mon identifiers, which are built from existing private identifiers.
We assume that agents and data providers refer to users by private
identifiers ida and iddp , that are also known to the user, and sim-
ply encrypts one using the other as key with a secure encryption
scheme such as AES. By maintaining a session identifier n, an in-
teger that changes deterministically (e.g., increases by one) with
each request involving a pair (ida, iddp), the pair can be re-used by
the agent and data provider to generate new common identifiers
(which we denote idc) by concatenating the session identifier to the
encrypted identifier; i.e., they can compute idc = Enc(ida, iddp ∥n).
As ida and iddp may be short and have little entropy, a key deriva-
tion function (KDF) such as PBKDF2 [55] should be used to obtain
a more resilient ciphertext, with ida being fed through the KDF
before being used as an encryption key.

The unlinkability that results from this usage of identifiers is
argued in Theorem 4.3.

In order to provide basic access control to the information on
the log (such that information cannot be inferred from a live view),
requests are then encrypted under the public key of auditors and
the relevant user, so that only they may decrypt the requests they
should have access to.

4.2.2 Checking requests in the log. Once requests are made, au-
ditors and users can check the log using o.audit and u.check, assum-
ing they have first determined the log servers to not be malicious
through o.detect and u.detect, which we argue they can in Theo-
rem 4.1. Accessing the key-value map, they can then rely on the
integrity properties of the log, as argued in Theorem 4.2, to audit
the requests made. To find their own requests, the user has to iterate
over possible values of the session identifier n until no request is
found, to determine the possible requests relevant to them.

If users do not wish to take on this computational burden, they
may optionally choose to outsource this role to a data broker. These
parties act as intermediaries between agents and users that would
otherwise perform u.provide, and also allow users to act as data
providers if they are willing to, for example, participate in a study.
One downside of this is that the data broker must then be trusted



Figure 2: Constructing shares in Dpr iv from a record in D.
Left illustrates splitting the elements of the record into indi-

vidual shares for univariate statistics, right illustrates gener-

ating three shares from a record according to the ThreeBal-

lot scheme.

with the private identifier tied to requests that the user positively
answers. However, no other trust is required as VAMS allows the
user to check the activity of the broker, which will be logged and
be auditable under the same guarantees as other log entries.

4.2.3 Statistics on the logs. In our motivational use cases, and
many others, auditors may be required to publish statistics obtained
from data accessed when performing o.publish. An example of what
might be published are the statistics provided by the IPCO in its
annual report [43], or results of a study in the healthcare scenario.
For operational and privacy reasons, however, the original data
used to compute statistics cannot be published. This means that
users whose data was used, and any other user in general cannot
verify the correctness of these statistics and instead must trust the
auditors.

Instead, auditors can publish their results (i.e., statistics) and a
transformation of the data used. From the transformed data, users
can verify the correctness of the results when performing u.monitor
(as argued in Theorem 4.5). To ensure statistics reveal no more than
the statistics themselves (as argued in Theorem 4.4) we use two
schemes that enable a range of lightweight privacy preserving and
verifiable statistics. The transformation operates on the original
dataset D of n records, where each record Ri ∈[1,n] is comprised of
multiple elements. For instance, an element may note the existence
(or absence) of a particular gene or mutation, while another one
may report on a particular phenotype.

The simplest case is when only univariate statistics are required.
In this case, the transformation generates a privacy-preserving
dataset Dpr iv by splitting each record into shares, one for each
element of the record as in Figure 2. This prevents any information
leakage from correlations between the shares, or inference. Each of
those shares is tagged with the element type and a unique share
identifier idshare = Hash(idc |i) constructed from the common
identifier idc of the user and index i of the share. The auditor then
adds Dpr iv to the ledger along with the analysis results (statistics).
Users can then check the presence of their shares in Dpr iv , and re-
compute the published statistics from Dpr iv to check their validity.
In the case of Hyperledger Fabric, chaincode may be used to allow
users to publicly report on the results of the verification of their

records, and thus collectively confirm (or not) the integrity of the
published data.

If a more complex analysis is needed (i.e., multivariate statistics),
a scheme analogous to the ThreeBallot scheme (presented in Sec-
tion 2.7) can be used to generate Dpr iv . In this case, each record is
split into three shares, which are comprised of as many elements as
the original record. For each element e of the record, two of those
shares (randomly selected) are set to e , while the remaining one is
set to e , the false value for e . Figure 2 illustrates this. As argued in
Theorems 4.4 and 4.5, this process both prevents an adversary from
breaching the privacy of individuals and preserves the correlation
between the elements. Given Dpr iv , it is then possible to compute
multivariate statistics for the original dataset D, with only a small
error. As in the univariate case, auditors can then publish Dpr iv , so
that users can verify that their shares are accurately represented,
and statistics can be re-computed.

Inmore detail, we use ideas from association rule learning (ARL) [2],
one of the most commonly used techniques for multivariate anal-
ysis of datasets. Given an element set E = {e1, e2, . . . } of binary
attributes (elements of a record) and a dataset D = {R1,R2, . . . } of
records containing elements that form a subset of E, a rule is an
implication ϵ ⇒ ϵ ′ where ϵ, ϵ ′ ⊆ E. Such association rules are used
to find interesting relationships between variables, like linking a
set of genes with a particular disease. Two measures are commonly
used to select interesting rules: support and confidence.

Support (defined in equation 4.1) indicates how frequently a
subset of elements appears in the dataset i.e., the proportion of
records R ∈ δ , where δ ⊆ D, that contain a subset of elements
ϵ ∈ E.

supp(ϵ) =
|{R ∈ δ : ϵ ∈ R}|

|δ |
(4.1)

The support of a rule ϵ ⇒ ϵ ′, is simply the support of the joint
element sets i.e., supp(ϵ ⇒ ϵ ′) = supp(ϵ ∪ ϵ ′). From the above, we
can also compute confidence (defined in equation 4.2) to indicate
how often a rule is found to be true. Given a rule ϵ ⇒ ϵ ′, as above,
it is straightforwardly defined from the support of the rule ϵ ⇒ ϵ ′

over the support of antecedent ϵ .

conf (ϵ ⇒ ϵ ′) =
supp(ϵ ⇒ ϵ ′)

supp(ϵ)
(4.2)

Computing these values on D is straightforward, but some pre-
processing is needed to extract them from Dpr iv . As elements e
appear in the shares generated to constructDpr iv fromD, not all of
the observed values for ϵ and ϵ ′ match those of the original record.

Our goal is to estimate the true counts of ϵ , ϵ ′ and ϵ ∪ ϵ ′ in D,
based on observations from Dpr iv . Computing the support and
confidence measures defined above is then straightforward. This
process is often referred to as support recovery in the literature. For
simplicity, we represent both the original records and the shares
as bitstrings e.g., a record with five elements, all being true, will
be represented as [1, 1, 1, 1, 1] in binary representation, or as 31 in
decimal representation. We also define a vector oD that contains
the occurrences of all possible bitstring permutations in D, and a
vector opr iv with all bitstring occurrences for Dpr iv .



oD , opr iv =


#[0]
...

#[2t − 1]

 (4.3)

We also compute the expected bitstring occurrences in Dpr iv ,
denoted E(#bitstrinд), for all possible bitstring permutations and a
fixed number of bits (i.e., elements) t , and store these values in a
matrixM .

M =


E[#[0]]0 . . . E(#[0])2t−1...

...
...

E[#[2t − 1]]0 . . . E(#[2t − 1])2t−1

 (4.4)

We can then estimate opr iv from the product ofM and oD .

opr iv = M · oD (4.5)

In our case, opr iv is known as we can simply count the occur-
rences in Dpr iv and it is oD that we are interested in. We can
solve 4.5 for oD by inverting3 M and multiplying it with opr iv .

oD ≈ M−1 · opr iv (4.6)

Based on the computed opr iv , we can now compute the support
and confidence measures for any element sets ϵ , ϵ ′. The accuracy
of this method is evaluated in Section 5.

4.3 Security arguments

We now argue the security of our system in the adversarial model
described in Section 3, based on the mechanisms proposed above.
For Theorems 4.1 and 4.2, the arguments are split between the HLF
and Trillian based systems.

Theorem 4.1. An auditor o ∈ O and a user u ∈ U can detect
malicious log behavior (i.e., equivocation) when performing o.detect
and u.detect, respectively.

Proof. In the HLF case, there are two options. Either the order-
ing service maintains consensus, and the log cannot equivocate, or
there is a fork of the blockchain. In the event of a fork, both the
main chain and the alternative chain are visible, so equivocation
can be detected.

In the Trillian case, a log that equivocates would have to produce
signed tree heads and Merkle consistency proofs for the alternative
Merkle trees. Different Merkle consistency proofs leading from the
same Merkle tree generate different views of the log, but these
differing logs will no longer be able to accept the same Merkle
consistency proofs to extend the logs because the leafs will be
different. As the tree heads are signed by equivocating log server,
it will be detected. □

Theorem 4.2. Assuming an honest data provider dp ∈ DP, an au-
ditor o ∈ O and a user u ∈ U can detect malicious agent behavior (i.e.,
invalid requests) when performing o.audit and u.check, respectively.

3M is a square nonsingular matrix as long as its determinant is non-zero. Singular
matrices are considered to be rare, and can be made nonsingular with very slight
changes that would not affect the results much in our case.

Proof. In both the HLF and Trillian case, auditors and users
with access to the system can perform o.audit and u.check by query-
ing the state of the ledger or log-backed map containing the re-
quests, which are encrypted under their public keys. Both can then
verify that requests are valid, and detect any invalid request. A
request that cannot be decrypted, either under the auditor’s public
key or under the user’s public key for a relevant common identifier,
can also be considered invalid and reported.

In the event that a malicious party attempts to tamper requests
appearing on the log (i.e., modify the value of a key), auditors and
users can then rely on properties of HLF and Trillian.

In the HLF case, we rely on the integrity properties of the under-
lying blockchain that records the requests that update the ledger’s
state. Auditors and users can obtain the available key-value history
function to obtain the transactions that have modified the value of
a key. If they do not trust the integrity of that function (the code for
which is public), they have access to the blockchain and can inspect
it, replaying transactions and detecting a party’s misbehavior as
they will have signed the relevant transactions.

In the Trillian case, we rely on the integrity properties of the
underlying Merkle tree, and the Merkle consistency proofs that give
the append-only property of the tree. In the event that a malicious
party has tried to tamper requests, theywill have to update a request
value, which will appear in the append-only log. If the log server
produces a new tree head for a tree that modifies requests in the tree
associated with the previous tree head, there cannot be a Merkle
consistency proof between the two trees, so it will be detectable.
Similarly, if a leaf of an existing tree is removed, the Merkle root of
the tree will no longer match the leaves. □

Theorem 4.3. Assuming that AES is a secure pseudorandom per-
mutation, and that session identifiers n are used only once for each
pair of (pseudorandom) private identifiers ida and iddp , it is not possi-
ble to link two or more requests (i.e., common identifiers) that appear
in the log.

Proof. A user u or adversary knowing both ida and iddp will
be able to find requests about u with probability 1 by iterating over
possible values of n and computing common identifiers.

An adversary knowing one of ida and iddp , determining the
other input (say ida if the adversary knows iddp) would require
iterating over possible values of ida as well as n, which would
require O(|ida |ranдe(n)) AES encryptions, where |ida | is the size
of ida and ranдe(n) is the range of values n takes. This would only
reveal one pair of private identifiers for a user. With regards to
agent-data provider unlinkability, each pairing is equally as likely,
which gives probability 1

|A | |DP | of determining one.
If an adversary knows neither ida or iddp , then the security

of AES is enough to argue that the adversary will not be able to
determine two common identifiers shared one or more inputs. □

Theorem 4.4. Knowledge of all but one element of the record
belonging to a user u ∈ U does not make it possible to learn the last
one from the statistics and private dataset Dpr iv published by an
auditor o ∈ O as part of o.publish.

Proof. Shares are not manually generated, so a user cannot be
coerced into selecting specific shares (as in the ThreePattern attack),



but the risk of producing shares that would be identifiable (i.e., per-
mitting reconstruction attacks) remains. An adversary knowing all
but one elements of the original record could compute the possible
share arrangements for these, looks for them inDpr iv and use these
to infer the last element unknown to them. To prevent this, even
the least probable patterns of shares must appear more than once
in Dpr iv .

Henry et al. [40] focus on the reconstruction and ThreePattern
attack in ballots involving multiple two-candidate races i.e., ballots
with binary choice. This matches our use cases as records would
involve elements of the form "has gene X : true or false", that are
binary. In cases where elements take more than two possible values,
they can be split into multiple binary elements. For example, "has
preference X , Y or Z " can be split into three binary elements of the
form "has preference X " where only one takes value true and the
other two take value false.

Henry et al. present upper bounds on the safe number of elements
in a record for 100, 1000 and 10 000 users i.e., a user with shares
arranged in the least likely pattern will find that it appears at least
one less time than the upper bound with probability almost 1. For
reconstruction attacks, the upper bounds are 7, 11 and 15 elements.
These are noticeably higher than the upper bounds in the case of
coercion i.e., if shares were manually generated. If repeated patterns
exist due to coercion, the upper bounds are 2, 4 and 6 elements for
a single pattern, and 2, 3 and 5 elements for five patterns. Strauss
studied various settings with correlated races and proved that even
heavily correlated races had a minor effect on the security of the
scheme [71]. Based on these findings we reduce the aforementioned
number of traits by one to account for extreme correlation cases,
which leaves us with upper bounds 6, 10 and 14 elements per record
for 100, 1000 and 10 000 users, respectively.

Finally, as Dpr iv is used only for verification, this leaves us
plenty of room for minimizing the amount of information included.
If D is composed of records with a large number of elements, but
only few of these have interesting correlations that are relevant
in the published statistics, then only these could be published in
Dpr iv . This can significantly reduce the size of Dpr iv compared to
D, especially in cases of datasets sparse in relationships. Moreover,
the fact the Dpr iv is used only for verification and not for associ-
ation mining allows us also to support even continues variables
by turning them into binary. For example, while during the rule
mining phase the researcher will consider all the blood pressure
values, once a relevant blood pressure threshold is identified, all the
values can be expressed as larger or smaller than that e.g., "blood
pressure > 180". □

Theorem 4.5. A user u ∈ U can verify the correctness of the
statistics published by auditors when performing u.monitor .

Proof. A user that was included in the used dataset D used
can check the integrity of the transformed dataset Dpr iv , identi-
fying their shares in Dpr iv to verify their correctness. Once the
integrity of the data is confirmed, any other user can replicate the
computations of the analysis and compare their results with those
published. □

Figure 3: The Hyperledger Fabric based implementation.

5 IMPLEMENTATION AND PERFORMANCE

Here we present two implementations: one based on Hyperledger
Fabric and one based on Trillian. Both are evaluated on identical
Amazon AWS t2.medium instances.4 The ThreeBallot-based privacy
scheme is also evaluated. The code for each of these will be open-
sourced after publication.

5.1 Hyperledger Fabric

The modularity of Hyperledger Fabric (HLF, introduced in Sec-
tion 2.5) makes it a good candidate for our use case. The network
maintains a key-value store which can be populated by requests
linked to common identifiers. These requests can then easily be
retrieved, querying specific keys or a range of keys in lexical order.
As updates to the state happen as transactions on the underlying
blockchain, the expected verifiability guarantees for state updates
are present. There is also key history function that returns the
updates to a key’s value, along with the blockchain transactions
which resulted in the update rather than simply the state of the
database. Furthermore, as the HLF project has ongoing develop-
ment by IBM, improvements in scalability, privacy and integrity
can be expected. In particular, private channels exist, but limited
cross-channel support prevents them from being used in our case.
Specific improvement proposals for encrypted transactions and
state values have also been discussed and are being developed for
future releases, as well as attribute based access control.

We implement a test network as proof of concept, with seven sep-
arate machines that represent four peers (an agent, a data provider,
a user and an auditor), an ordering service (an Apache Zookeeper
service5 and a Kafka broker), and a client from which commands
are sent to peers.

For this simplified implementation, all peers are connected to
the same channel and there is a single chaincode containing four
functions. The first is used to update the state of the ledger (as part
of a.request), the second is used to retrieve a range of key values (as
part of o.audit), the third is used to retrieve values for specific keys
(as part of u.check) and the fourth is used to retrieve a key’s history
(as part of o.audit and u.check) to see which blockchain transaction
resulted in state updates for a given key. Chaincode invocations
result in state updates recorded in blocks on the blockchain, that

4Each instance has 2 vCPUs, 4GB of memory and is running Linux 16.04 LTS with Go
1.7, docker-ce 17.06, docker-compose 1.18 and Fabric 1.06 installed.
5Ideally, a Byzantine fault tolerant ordering service would be used. Although one has
been proposed for HLF [69], it is not yet available.



Figure 4: The Trillian based implementation.

then appear in the log, which is the state of the ledger i.e., the
key-value store.

Peers have identities, X.509 [81] public key certificates, and sign
transactions accordingly. Signatures are checked as part of the
transaction process, as chaincode invocations must be endorsed
(signed) by the appropriate parties. In our implementation, these
are the peers invoking the chaincode. Thus, auditors or users can
check the transactions that updated the value of a key and easily
determine the agent responsible for the update, as they will have
endorsed the transaction.

As endorsement policies can more generally require multiple
signatures, they could also hold multiple parties accountable. For
example, data providers were considered responsible for accepting
invalid requests, they could be required to sign the corresponding
request transactions. An ordering service of specific peers (e.g.,
auditors) could also be used to detect and flag invalid requests as
they are initially processed (and endorsement policies are checked)
before committing the state updates. These are not present in our
implementation, but give an idea of what may be possible as Hyper-
ledger Fabric undergoes continued development and implements
further cryptographic tools.

5.2 Trillian

The second implementation of the system is based on Trillian, us-
ing a verifiable log-backed map (introduced in Section 2.6) as its
underlying data structure. Figure 4 summarizes the system.

As part of a.request, agents append signed requests they have
sent to the log, which data providers can then check. There is no
built-in identity system, so the log server service responsible for
receiving new requests must check that they are signed. A map
server then monitors the log for new entries, and updates the map
according to the new entries–the common identifiers are used as
the keys in the map. It then periodically publishes signed map heads
that are written to the second verifiable log, solely responsible for
keeping track of published signed map heads. To perform u.check,
users can then query the map to efficiently check their possible
common identifier values. The map will return a Merkle proof of
non-inclusion for common identifiers that do not map to requests
(i.e. the common identifier maps to a zero value), or a Merkle proof

Table 2: Summary of features for theHyperledger Fabric and

Trillian based implementations.

Features HLF Trillian

User privacy   
Agent privacy G#  
Data provider privacy G#  
Statistical privacy   
User auditability G#  
External auditability   
Verifiability   
Access control  G#

of inclusion of requests that the common identifiers do map to.
Auditors performing o.audit can in turn check that the map is
operated correctly by replaying all log entries, verifying that they
correspond to the same map heads that were written to the second
verifiable log tracking signed map heads.

5.3 Trade-offs

We now compare both implementations. Trillian has the advantage
of having a higher transaction throughput, because no consensus is
required among different nodes to agree on the ordering of transac-
tions. Trillian also has better user auditability, because when a user
queries the map server for an idc , the map server returns a Merkle
proof of the key and value being included in the map. HLF does
not support this, requiring users to replay the entire blockchain
in order to verify the inclusion of a key and value. This could be
managed if “light clients” were introduced (as in Ethereum). Users
could also decide to outsource this task to a trusted data broker, or
multiple if they believe that a majority are honest.

On the other hand, HLF supports more flexible chaincode poli-
cies for governing write access to the log, as it comes with built-in
authentication and public key infrastructure know as an identity
service. Authenticating must be done separately in Trillian. How-
ever, this means that in HLF users must submit queries to audit the
log using a key pair associated with their pseudonymous identity,
so if they used the same identity for multiple queries, their common
identifiers could be linked together.

The two systems also differ in their decentralised (HLF, even
though it is permissioned) or centralised (Trillian) approach. A de-
centralised approach is appealing as it reduces the trust required in
single entities. In practice, however, there is only one organisation
that legitimately has reason to write records for a particular busi-
ness relationship. Users will mostly only have a single data provider
for a service, which may lend itself more towards the centralised
approach.

Table 2 summarizes the features of both implementations Ulti-
mately, Trillian is easier to deploy and has less setup than Hyper-
ledger, as HLF requires the setup of a network of multiple nodes to
act as peers, and the maintenance of an identity service to allow
nodes to interact with the network.



Table 3: Micro-benchmarks of basic operations for the Hy-

perledger Fabric and Trillian based implementations. The

max throughput values are given for a batch size of 1 in the

HLF case, and a batch size of 300 in the Trillian case.

Measures HLF Trillian

State update (per idc ) 65ms 35ms
Request retrieval (per idc ) 66ms 14ms
Max throughput 40 102
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Figure 5: Throughput evaluation for the HLF and Trillian

based implementations.

5.4 Performance measurements

Micro-benchmarks. Table 3 presents micro-benchmarks for the
basic operations of our systems. These include state updates (i.e.,
adding a request as part of a.request), state retrievals (i.e., retrieving
requests as part of performing u.check) and the maximal through-
put for each system with a batch size (i.e., requests per state update)
of one. In the case of state updates and retrievals, the results were
obtained by averaging over 500 operations. In both cases, the av-
erage for each operation are a few dozen milliseconds. Note that
for the HLF system, the results include the time required to cre-
ate and submit 500 blocks, chaincode execution alone is otherwise
under 10ms . For state retrievals, HLF allows retrieving the values
for a range of keys. This scales linearly with the number of values
retrieved and only requires one transaction.

Throughput. Table 3 also includes themaximal throughput, which
is 40 for the HLF system and 102 for the Trillian system. A plot of
throughput for different batch sizes is also presented in Figure 5.

For the HLF system, the highest throughput is observed for
lower batch sizes, where the bottleneck is simply the client sending
requests. Throughput then lowers slightly as batch size increases.
For the Trillian system, the batch size of the verifiable derived-map
implementation determines how many items at a time the map
servers retrieves from the log to update the map’s key-values, until
around batch size 300. The bottleneck is then the number of keys
updated by the map server per second, and throughput levels out.

There are, however, trade-offs to consider between batch size
and throughput however. Although a higher throughput that may

be obtained with a larger batch size, having requests appear on
the system sooner than later may be advantageous for some use
cases of our system, and certainly the motivating examples of law
enforcement and healthcare. Thus, a lower batch size may be advan-
tageous to ensure requests appear as soon as possible, particularly
for urgent requests. A batch timeout can also be used as a compro-
mise, such that a high batch size can be chosen with a guarantee
that a request will appear after a time limit if the batch size limit is
not reached.

We may also look at the case of law enforcement for indica-
tions, using figures from the 2016 UK IPCO report (neither in the
healthcare setting, nor for the use of US administrative subpoenas
are there equivalent publicly available statistics). There are about
750 000 requests for communication data per year in the UK [43], or
1 request every 9 seconds assuming requests happen during work-
ing hours. In this case, a HLF-based server capable of 40 requests per
second, placed at the interface for law-enforcement (standardized
by ETSI TS 103 307 [30]) would be more than sufficient, with an av-
erage waiting time of 25 ms assuming Poisson-distributed requests.
For a Trillian-based system with 102 transactions per second the
average waiting time would be 10 ms.

ThreeBallot scheme. To evaluate the effectiveness and applicabil-
ity of our verifiable statistics schemes, we measure the accuracy
of the rule association metrics computed on Dpr iv . For our ex-
periments, we generate multiple synthetic datasets with several
frequent element sets [39], then mine those itemsets using the Apri-
ori algorithm [3]. The algorithm works by identifying frequent
elements in the dataset and extends them to larger element sets for
as long as the element sets appear frequently enough in the dataset.
The generated datasets follow the structure of D, as described in
Section ??. We then compute the support and confidence measures
on Dpr iv for the previously extracted element sets, comparing
those values with the reported values for the same element sets on
D. For this purpose, we use the percent error of the measures.

Element sets are commonly extracted both in the interception
use case e.g., proportion of urgent requests, analysis of request
rejections, errors and recommendations [43], and the healthcare
use case e.g., proportions of people registered with diabetes that
achieved blood glucose, pressure and cholesterol targets [60]. We
opt to use synthetic datasets to examine the accuracy offered by
our ThreeBallot scheme more thoroughly, by simulating different
scenarios rather than relying on public datasets that have already
been sanitized. However, we also verify our reported results us-
ing commonly used public datasets, such as the Extended Bakery
dataset [24] and the T10I4D100K dataset [34]. In all our experiments,
we measured the error for both the support and the confidence met-
rics. However, we include only the graphs for support, as those for
confidence are identical.

In our first experiment, we study the percent error for the support
of element sets with varying occurrence frequencies based on a
dataset of 1 million transactions/users. For each of those settings,
we repeat the experiment 100 times (the same process is followed
in the other two experiments). As seen in Figure 6, element sets
that occur less often are prone to higher percent error, with a high
variance in the reported support values. However, as element sets
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that appear with varying frequency in datasets with differ-

ent number of users.

becomemore frequent, the accuracy of both the percent error (< 2%)
and the variance shrink.

In our second experiment, we examine if the scheme’s accuracy
for an element set depends on the number of times the element
set occurs, or its relative occurrences to the overall number of
users (i.e., support). For this reason, we generate four datasets of
various size (1k, 10k, 100k, 1M users), and pick five element sets with
support 0.1, 0.3, 0.5, 0.7, 0.9 from each dataset. Figure 7 presents
the percent error for those element sets and every dataset. As the
support increases, the percent error shrinks. However, the absolute
size of the element set seems to play a much more decisive role in
the accuracy of the statistics. This is more visible in the cases of the
100k and 1M datasets, where the support seems to have a minimal
effect on the accuracy.

Our final experiment evaluates the performance of our ThreeBal-
lot scheme for different element set sizes using a synthetic dataset of
100k users. As seen in Figure 8, the scheme’s accuracy is sensitive to
increases in the number of elements. This is expected as the scheme
probabilistically estimates the field values of the original record Ri ,
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Figure 8: The ThreeBallot scheme percent error for element

sets of varying size that appear with the same frequency i.e.,

have the same support.

based on the observed share. Understandably, the inference error
for each field adds up with the number of traits.

Based on the above results and the list of statistics reported
in the IPCO report [43], our ThreeBallot scheme is suitable for
the law-enforcement use case. To better evaluate its suitability for
healthcare data, we now look into the relevant medical and bio-
statistics literature. We consider two types of studies: Studies on
Genes and Protein networks, and Epidemiology studies. In the first
type, datasets commonly contain between 100 000 and a few mil-
lion records, while the support threshold is usually around 0.5%.
In most cases, valid association rules are comprised of only two
traits, while their support is higher than the minimum threshold.
This is important as the minimum threshold is relevant only during
the rule mining phase, while in the verification phase the users
compute measures over the relationships that are reported by the
researcher as strongly associated [32, 38, 49, 56]. In epidemiology
studies, the average element set size is 3, while the minimum sup-
port is around 1%. However, the support of relevant element sets
identified is much higher and ranges from 1% to 16%, while datasets
contain between 10 000 and 250 000 records [45, 61, 74]. From this,
we conclude that our ThreeBallot scheme is also suitable for the
aforementioned types of studies, with a slightly higher expected
percent error compared to the law-enforcement use case.

6 CONCLUSION

We have proposed and implemented (twice) a system, VAMS, which
achieves all our auditability, privacy and verifiability goals, based on
realistic use cases. Our results illustrate that the current framework
for requesting data can be greatly improved to benefit all parties
involved.

One aspect that we have mostly ignored is access control. HLF
provides some basic access control through endorsement policies,
and plans to include more mechanisms in future releases, such as
attribute based access control in chaincode. For Trillian, any signifi-
cant access control would have to be built on top of it. In general, it
is also difficult to design and implement realistic access control sys-
tems for use cases such as ours. Requests for data are made through



paperwork that is read and interpreted by a human, according to
policies that are necessarily flexible. The additional need to handle
urgent requests also means that any thorough access control system
would need to include a way to bypass it anyway. Nonetheless, by
providing a system that produces evidence of actions, parties may
still be held accountable.

Access to the information in the log is something that we handle
by encrypting the requests under the public key of parties that they
are relevant too (i.e., auditors and specific users). Whilst enabling
a fully public log could lead to greater transparency, it could also
lead to more privacy risks, as is often the trade-off. A solution to
this is left for future work.

Cryptography also offers techniques such as identity-based en-
cryption [11, 67], attribute based encryption [10, 37], functional
encryption [12] and the more recent controlled functional encryp-
tion [59] and access control encryption [23] that could be used to
control access to information. However these are still rarely used,
are often very inefficient and can require a central party controlling
a master private key.
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