
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 8, AUGUST 2016 2091

Take-Away TV: Recharging Work Commutes With
Predictive Preloading of Catch-Up TV Content

Dmytro Karamshuk, Nishanth Sastry, Mustafa Al-Bassam, Andrew Secker, and Jigna Chandaria

Abstract— Mobile data offloading can greatly decrease the load
on and usage of current and future cellular data networks by
exploiting opportunistic and frequent access to Wi-Fi connec-
tivity. Unfortunately, Wi-Fi access from mobile devices can be
difficult during typical work commutes, e.g., via trains or cars
on highways. In this paper, we propose a new approach: to
preload the mobile device with content that a user might be
interested in, thereby avoiding the need for cellular data access.
We demonstrate the feasibility of this approach by developing
a supervised machine learning model that learns from user
preferences for different types of content, and propensity to
be guided by the user interface of the player, and predictively
preload entire TV shows. Testing on a data set of nearly
3.9 million sessions from all over the U.K. to BBC TV shows,
we find that predictive preloading can save over 71% of the
mobile data for an average user.

Index Terms— Video streaming, predictive preloading, content
delivery, mobile prefetching, supervised learning, catch-up TV.

I. INTRODUCTION

INTERNET video services are increasingly going mobile.
Conveniences offered by high bandwidth mobile networks

and the availability of dedicated mobile video apps have raised
the volume of per-user mobile video traffic by an incredible
262% in recent years [7]. Cisco predicts that mobile video
will increase 14-fold between 2013 and 2018, accounting for
69 percent of total mobile data traffic by the end of the forecast
period [6]. Mobile video and TV have reached an inflexion
point: In October 2014, tablets overtook PCs in number of
accesses to BBC iPlayer, an over-the-top TV streaming service
used widely in the UK for accessing BBC TV shows [4].

This increase is accompanied by a behavioural shift
among mobile users who now not only watch more, but
are increasingly watching on the move, during their daily
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commutes [7], [17]. From the operators’ perspective, as more
and more users start watching videos during commutes, it is
expected that there will be more capacity problems, a chal-
lenge that has not gone unnoticed by regulators [26]. From
the users’ perspective, the high bandwidth requirements of
video content limit usage because of data caps, which are very
common in mobile plans [19].

A common solution to these problems lies in augmenting
mobile networks with Wi-Fi connectivity.1 Indeed, Cisco
estimated that the common policy of preferentially using
Wi-Fi where available, rather than cellular networks, allowed
users to offload a remarkable 45 percent of total mobile
data traffic in 2013 [6]. For cases when Wi-Fi may not be
available at the time of request, researchers have also proposed
mobile data offloading techniques, where users’ requests for
content are either processed with a delay [3], [20], or their
mobility pattern is predicted and content pre-fetched to a
Wi-Fi Access Point (AP) that the user may encounter in the
near future [23], [28]–[30].

However, these “traditional” techniques for mobile offload-
ing exploit opportunistic access to Wi-Fi connectivity, and are
inadequate to support continous streaming of long-duration
content such as TV shows during commutes: Wi-Fi APs appear
in bursts, and are highly unlikely to be seen during typical
commutes on highways, etc [3]. Further, measurement studies
have shown that if the back up option of cellular connectivity is
used, throughput diminishes when accessing from fast moving
trains and cars [14]. Connectivity can also be patchy: in a test
conducted in June 2014 on ten of the most popular commuting
routes in to and out of London, 23.2% of 3G data packets and
37.2% of 4G data packets did not make it to their intended
destinations [13]. The situation can be worse in metro trains
which may go underground. A recent study of 48 metro
systems from 28 countries suggests that the lack of good
Internet connectivity underground is a common problem for
many developed cities across the globe [31].

To address these difficulties in finding opportunistic Wi-Fi
during commutes, we propose predictive preloading, a new
approach to mobile data offloading for current and future
generation 5G networks: In contrast to predicting mobility
patterns, we propose to predict the content that a user is likely
to watch during the commute and preload that content on
her mobile device in advance, when she might have access to
reliable Wi-Fi connectivity, with sufficient spare bandwidth,

1Throughout this paper, we use Wi-Fi to denote access through a fixed-line
broadband connection, potentially via a Wi-Fi access point. Similarly cellular
networks is used to refer to data access over 3G, 4G or 5G networks.
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e.g., at her home. The main challenge with preloading is that
long-duration videos such as TV shows can take up a large
amount of storage. Given the limited storage available on
mobile devices, predictions for preloading need to be highly
accurate in order to be useful. The amount of spare bandwidth
available for preloading could also limit the amount of savings.

Our contributions are twofold: First, we analyze a trace of
nearly 3.9M sessions from mobile devices accessing BBC’s
TV shows online during July 2014 to understand users’
preferences in content types and propensity to be guided by the
UI of the player. Second, we develop a predictive offloading
mechanism for 3G/4G and future generation cellular networks
which allows to save nearly 71% of mobile data for an average
user.

From our data trace we find that users have their favourite
channels and genres, which all capture a large proportion of
their accesses: 75% users’ accesses are made for content items
from only 3 out of 11 categories and for 4 out of 11 channels.
More remarkably, we notice a similar concentration of user
preferences towards the top 4 or 5 content genres and shows
despite a significantly higher degree of choice available (there
are 172 genres and more than a thousand different shows
available on iPlayer). We also find that a vast majority of
users (around 75%) are influenced by the User Interface of the
video player, and tend to access items which are featured by
the BBC content editors on the iPlayer homepage, or access
items on “most popular” lists (25% of accesses by average
users and more than 80% of accesses by the top 10% of users
are for such content items, which appear prominently on the
user interface).

Based on these results, we develop a supervised learning
model that predicts whether a user would watch a content item,
and preload the most-likely-to-be-watched items at a scheduled
time point on a daily basis, e.g., after midnight. We compare
the results of the predictive preloading with a naïve baseline
model which greedily preloads remaining parts of the last
unfinished item when accessing over Wi-Fi/broadband or at a
scheduled time. Our results suggest that predictive preloading
allows to offload up to 71% of mobile data usage for an
average user (over 95% for top 10% of users) and signifi-
cantly outperforms naïve greedy techniques (which can only
save ≈ 22% of per-user mobile data on average).

II. BACKGROUND

A. Related Work

The idea of augmenting cellular networks with opportunistic
accesses to WiFi networks has attracted a lot of attention in the
recent literature. Lee et al. [20] have shown that about 65%
of outdoor urban mobile traffic can be saved by offloading
cellular traffic to WiFi networks without using any delayed
transmission and extra 29% can be achieved by allowing long
delays (over 1 hour) in delay-tolerant settings, whereas as
little as 2-3% of savings can be achieved for short deadlines
(i.e., less than 100 secs). Balasubramanian et al. [3] proposed
an approach to the more difficult problem of offloading during
commutes (rather than urban settings) by elaborating a sim-
ple method to predict future WiFi throughput and allowing
delayed transmissions only if cellular savings are expected

within an acceptable time window. Whereas this works well
for delay tolerant applications, delay sensitive applications
are still affected by the bursty and infrequent availability
of Wi-Fi APs on highways and other commuter routes [3].
Although prefetching content to APs that are expected to
be encountered in the near future can help to some extent,
bursty availability of APs can still cause buffering and stalls
for continuous streaming applications, and this is known to
be deleterious for user engagement [8]. Other works in this
direction have focused on exploring predictability of human
mobility using a cross-layer implementation [23], [28]–[30].
In contrast to predicting mobility we focus on predicting
to-be-watched content to assist pre-fetching decisions.

Other attempts at data offloading have started to use social
context to prefetch content that a user might be predisposed
to access for social reasons [11], [15], [33]. None of these
attempt to completely offload content directly to the user’s
device, and it is unclear whether social information by itself
can provide accurate-enough predictions when space is limited
to less than 5–10 items. However, social and other context
information, where available, can enhance preloading pre-
dictions made solely by using user preferences, as in our
approach.

In contrast to using specific context, globally popular con-
tent can be prefetched for all users. Hoque et al. [12] focus on
the most popular content and exploit crowd-sourced popularity
statistics of other users to decide which chunks (of an item
currently being watched) a user is more likely to watch next
and speculatively pre-fetch more of the popular chunks from
a WiFi network. The potential of utilising broadcast channels
to pro-actively push bundles of the most popular content has
been explored before [9], but only a mere 20% of mobile
traffic savings has been reported. This is consistent with the
savings we see for prefetching “Top” items (the baseline used
in Fig. 4 (left)). By drawing on a much larger scope of
signals specific for catch-up TV systems (i.e., user preferences,
featured content lists, periodically released serial content, etc.)
we obtain significantly larger savings, i.e., up to 71% of
per-user mobile traffic.

It worth noting that in the context of BBC iPlayer itself,
we have previously suggested a simpler prediction algorithm,
where only local information about individual user prefer-
ences in TV programmes was exploited to predictively record
broadcasted shows on set-top boxes [25]. While this simplified
approach worked well for set-top boxes with significantly
larger storage capacities (many current DVRs may have
a 500 GB or 1 TB hard disk), it proved to be inefficient for
predictive preloading on mobile devices which have storage
capacities to store only a dozen content items at maximum and,
so, require significantly higher prediction accuracies. Similarly
we have shown that peer-assisted approaches can deliver
significant savings for accesses over fixed-line broadband [16].
However, support for P2P has not yet become prevalent in
cellular networks, although device-to-device sharing has been
proposed recently [10]. Because the approach in this paper
caches directly on user devices, it has the advantage of
not requiring additional spectrum for device to device (P2P)
communications at the edge.
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More broadly, predictive analytics in Internet TV systems
have been primarily applied for channel zapping in
IPTV [1], [18], [22], off-loading internet traffic for set-top
box users [24] and programme recommendations [21], [34].
This paper elaborates on this line of work and extends it to
mobile content offloading.

B. Motivation

A recent marketing research of mobile users conducted on
a monthly trace of all mobile activities for 470 volunteers2

suggests that 30% of smartphone users and 40% of table users
watch videos on a daily basis with time of accesses peaking in
the morning and afternoon hours. Indeed, in agreement with
the above study, we previously found [17] that the majority
of mobile accesses to BBC iPlayer happen during commute
times, i.e., around 7-10AM in the morning and around 5-7PM
in the afternoon (In contrast, accesses from broadband ISPs
peak during evenings [17].).

The current work is motivated by two factors: On the one
hand, the high bandwidth requirements of video content limit
usage because of data caps, which are very common in mobile
plans [19]. On the other hand, watching catch-up TV during
work commutes in the UK is still an extremely challeng-
ing affair: neither train companies [13] nor London under-
ground system [31] provide adequate Internet access (whether
WiFi or cellular) suitable for streaming high resolution video
content. Research studies in other environments have also
found that high speed Internet (Wi-Fi or cellular) is difficult
in typical commute trajectories [3], [14].

Although the general scarcity of Wi-Fi APs enroute makes
the use of “traditional” mobile data offloading techniques dif-
ficult for delay-sensitive applications like continuous stream-
ing of a TV show, it has been observed that most mobile
devices have plenty of opportunities for high bandwidth
Wi-Fi access [20]. Further, even though real-time streaming
of TV content is delay sensitive, the content could potentially
be pre-staged on the mobile device,3 removing the dependence
on time.

Thus the core proposal of the current paper is to take
advantage of high-bandwidth Wi-Fi connectivity when avail-
able, to predict what a user is going to watch next and
download content much before access by the user. The total
savings with predictive preloading is limited by the amount
of bandwidth/storage available – perfect savings could be
achieved by preloading the entire content catalogue, but this is
clearly unrealistic. Therefore, to prioritise and make the best
use of limited storage, we develop a machine learning model
that takes user preferences, and current UI/featured content as
signals, and predicts per-user likelihood of watching for each
content item. The most-likely-to-be-watched items are then
saved on the user’s device.

III. UNDERSTANDING WATCHING PREFERENCES

OF MOBILE CATCH-UP TV USERS

In this section we analyze watching preferences of catch-up
TV users using a dataset of access logs from nearly 3.9 million

22014 Mobile Behavior Report, http://goo.gl/uatYhj
3Content can be protected using Digital Rights Management. Many appli-

cations including BBC iPlayer do this effectively already.

sessions from mobile devices to BBC iPlayer – a widely used
service for accessing BBC’s TV and Radio shows over the
Internet. Our goal is to find patterns in user accesses which
can drive predictive preloading.

A. Dataset Description

BBC iPlayer is an “over-the-top” video streaming ser-
vice which provides free access to TV and radio content
from a number of local and national BBC channels in the
UK. Content items are typically published on iPlayer for
“catch-up” viewing soon after broadcast and is made available
for up to 30 days depending on licensing terms and other
policies. iPlayer additionally provides live streaming access
to content currently being broadcast, but on-demand access
constitutes the vast majority (≈90%) of TV sessions.

In this paper we consider a month-long snapshot of access
logs for video content on BBC iPlayer in July, 2014. Each
record in the dataset contains information about a user’s
session in the following format:

< network type, user id, start time, duration, content id >

The anonymized user-id is based on long-term cookies
(with a four year expiration date), that uniquely identifies
each device/user agent separately. Network type is obtained
by resolving users’ IP addresses to Autonomous System IDs
using the RIPE4 dataset and further manual classification of
network ids into two classes: mobile (cellular connection) and
Wi-Fi (Fixed-line Internet). A single user might have more
than one user-id if they use more than one device, or even
if they use more than one browser to access iPlayer. Users
might also get multiple IDs if their cookies expire. However,
in general, the two IDs (user and network) allow us to identify
the different providers of each user.

Session duration shows the number of unique seconds of
a content item that a user has watched during a session.
It is worth noting that iPlayer’s video player automatically
records watching position when a user interrupts a session and,
if a user re-accesses the same content later, starts streaming
from the recorded position. Therefore, we assume that users
complete watching consecutive parts of content items during
repeated accesses. We focus on regular users of iPlayer,
defined as users with at least 10 sessions overall (i.e., over
Wi-Fi or mobile), and at least 5 mobile sessions. This results
in a subset of 3,863,031 sessions from 113,731 mobile users.

B. Users Preferences for Content Types

Equipped with a dataset of iPlayer accesses we firstly
analyse user preferences for different types of content.
All content items in iPlayer are annotated by BBC editors
with one (or several) of 11 content categories (e.g., drama,
comedy) and one (or several) of 172 content genres
(e.g., sitcoms, crime, soaps). We also consider on which
of 11 BBC channels content items were broadcast. Finally,
many content items are part of multi-episode TV series, which
are typically serialised into weekly broadcasts. We consider

4http://www.ripe.net/data-tools/db
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Fig. 1. Users’ preferences in content types. Distribution of per-user accesses
for the content items in a user’s Top-N out of 11 categories (top-left), out
of 11 channels (top-right), out of 172 genres (bottom-left) and out of more
than thousand serial programmes (bottom-right).

which (if any) of the more than thousand serial programmes
in the content corpus an episode belongs to.

Thus, content items can be classified along four different
content type axes: categories, genres, channels and shows.
We calculate the share of per-user accesses that fall in the
users’ Top-N classes according to each content type axis, and
measure user preferences or affinity towards particular types
of items. We note that for all users in our dataset, 75% of
their accesses are made for content items from only 3 out
of 11 categories and for 4 out of 11 channels (Fig. 1, top row),
suggesting high user affinity towards categories and channels.
More remarkably, we notice a similar concentration of user
preferences, even when we move from 11 categories to a
more fine-grained subdivision into 172 content-genres, and to
extremely specific TV serials or shows (Fig. 1, bottom row).

Further, we analyse the age of the content items watched
by users, by measuring the Cumulative Distribution
Function (CDF) of the time elapsed between the time of
an access and time when the requested content item was
broadcast (Figure 2 (left)). We note that the majority of
accesses are for items with ages less than 1.5 days, suggesting
a preference for recent broadcasts.

C. UI Guidance

Next, we consider the extent to which users may be
influenced by items featured at any given time on iPlayer.
The iPlayer’s user interface (UI) provides several means of
navigating across the content corpus: via the list of featured
and popular content items on the front page; via the featured
lists in each content category and each of BBC channels; and
via textual search over content titles. To study the effect of
the UI on users’ choice of content, we periodically crawled
the 25 main BBC iPlayer UI elements (including the front
page, channel and category pages). Complete snapshots were
collected every half hour from 1-31 July 2014.5 It is worth

5Network failures resulted in a small loss of < 1% of collected data.

Fig. 2. Users prefer recently released and featured shows. Distribution of
time interval between users’ accesses and the broadcast time (left) and per-user
shares of accesses for the content items featured on the front page (right).

noting that iPlayer UI is not personalised (i.e., the front and
other pages remain same across different users, browsers and
device types; it also flows similarly whether the browser or a
specialised mobile app is used for access). Therefore, it was
sufficient to crawl the UI from a single machine, with default
HTTP parameters. Although the pages are adjusted based on
screen size, the relative positions of different content items on
each page does not change across device types.

The front page of the BBC iPlayer user interface typically
displays a list of 16-20 episodes featured by BBC editors
and mixed with several groups of serial content items and a
group of top-5 most popular shows. We use the timestamped
snapshots of UI pages collected by repeatedly crawling BBC
iPlayer and assess the probability of users accessing featured
content.

In Fig. 2 (right) we plot the ratio of per-user accesses for
content items which were featured on the front page at time
of accesses. We note that on average, users have 25% of their
accesses for content featured on the front page. However,
the share may significantly vary across different users: for
around 25% of users, none of their accesses are for featured
content, whereas for ≈ 10% of users, the vast majority
(i.e., more than 80%) of their accesses are for featured content.

However, one obstacle to using such correlations between
user accesses and whether or not the accessed item was
featured on the UI for predictions is that the set of items
featured changes regularly. Thus, predictions made based on
the set of items featured at the time of prediction may not
be accurate at the time of access – predictions need to be
reasonably close to the time of access. To understand how
far ahead the set of featured items can serve as predictive
signals, we analyze how frequently featured pages are updated
using our repeated crawls of featured items, performed every

30 minutes. We measure the proportion ρF = Ft+30∩Ft
Ft

of items
listed on a featured page F at time t which continue to remain
on F at time t + 30 minutes. For the content items Ft+30 ∩ Ft

which remain on a featured page from time t to t +30, we also
measure and report Spearman’s correlation of their relative
position on that featured page. Fig. 3 (left) shows that featured
pages remain relatively stable, with periodic changes just after
midnight. To quantify this, we measure cumulative changes to
the set of items featured of the front page from a fixed time
t = 3AM up to time t + n in Figure 3 (right). We note that
the vast majority of the content items remain on the featured



KARAMSHUK et al.: RECHARGING WORK COMMUTES WITH PREDICTIVE PRELOADING OF CATCH-UP TV CONTENT 2095

TABLE I

PREDICTIVE FEATURES AND THEIR IMPORTANCE FOR MOBILE CONTENT PRELOADING. TYPE COLUMN INDICATES WHETHER A FEATURE
HAS BEEN CONSTRUCTED FROM A USER’S INFORMATION (U), AN EPISODE’S INFORMATION (E) OR BOTH (U, E). NOTE THAT THE

IMPORTANCE OF INDIVIDUAL FEATURES IS ROUNDED TO THREE DECIMAL PLACES HERE FOR READABILITY.
THE UNROUNDED SUM OF IMPORTANCES EQUALS ONE

Fig. 3. Featured pages are static on a daily basis. Percentage of content
items featured on the front page which remain unchanged from time ti
to ti+1 (left) and from time t0 = 3AM to time ti (right).

pages for almost 24 hours, featuring a slight change in the
morning hours around 10 − 11AM , and a major change after
midnight next day. This observation will justify our design
decision of performing predictive preloading at 3AM in the
morning (§IV).

IV. PREDICTING TO-BE-WATCHED CONTENT

In this section we develop a machine learning algorithm
which models user preferences observed in §III and predicts
what a user is going to watch next.

A. Predictive Features

First, based on the observations in §III, we devise a set of
features to predict whether a user U will watch an episode E .

For each pair (U, E), we exploit the state of user U ’s
profile at the time of prediction T ; meta information about
item E ; its position in the popularity ranking and featured
lists at time T ; and the user U ’s affinity towards item E
calculated from information collected for U by time T . Table I
summarises all 449 features computed.

Our first class of features attempts to match the content
type of E to the importance of that content type for U :
Because a content item may simultaneously be classified
in multiple top-level categories or content-genres, we use a
11-long (respectively 172-long) 0-1 vector to describe the
content category (genre). We use another 11-long (172-long)
vector, to describe user affinity to particular content cate-
gories (genres). The affinities are calculated as a share of
the particular category (genre) among all items watched by
the user. Similarly, we compute user affinity to particular
TV series/shows and channels. However, since each item
belongs to one serial and is broadcast on one channel, these
affinities can be directly computed as a fraction of the user’s
previous history which can be attributed to a show or channel.
We also compute the time since the show was broadcast as a
scalar feature capturing user preference for recent content.

Next, we calculate a number of features relating to the UI
that can boost or hinder its probability of being watched.
To compute these features, we first rank items according to
popularity, and according to the position at which a content
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item is featured on each of the 25 main pages of iPlayer UI at
the time of preloading. In addition, to account for the exposure
of the user to the item as featured on the UI, we also compute
the average position of the item in each list from all previous
accesses in a user’s history. The user’s probability of watching
items from each featured page is used to personalise the weight
to be placed for each page.

Our final set of features computes the propensity of the
user to complete watching an unfinished program or rewatch it.
As we will discuss later, some users rewatch episodes, making
it important to cache even after it has been completely been
watched. Similarly, if a user has completed a reasonable
fraction of the show (e.g., at least 10-15 mins), it may be a
good indication of intention to complete watching it, whereas
if only a very small part of the show (e.g., first 2-3 mins)
has been watched, it may indicate that the user did not find
the item interesting and abandoned watching it. We capture
such information by computing whether the item has been
previously watched, what fraction of the show was watched
and whether the user has re-watched other shows.

B. Prediction Model

For each session (U, E, T ), where U denotes a user, E a
content item and T the time of access, we compute the set of
predictive features from §IV-A, which describe the history of
the user and the state of the content item at time T overnight ,
the night before access happens at time T .6 For training,
we only consider mobile sessions of the users which happened
when users have already collected significant history, i.e., at
least 5 mobile sessions. We also generate a set of negative
samples for each session in the training set by randomly
sampling 4 other content items available on iPlayer at T
with probability proportional to the items’ popularity at T
(i.e., more popular content is more likely to be selected
to achieve a balance in popularity of negative and positive
samples). We assume that user U had a chance to watch those
items but decided not to and train a model to understand what
factors matter.

Our model uses a Random Forest classifier (with
500 tree-predictors), which is known for a good prediction
performance with high-dimensional datasets [2]. Random For-
est is an ensemble classifier which operates by constructing
a multitude of decision trees using a combination of tree-
bagging and random subspace projections – two different
techniques which reduce the variance and the bias of indi-
vidual tree-predictors, correspondingly [5]. Following standard
methodology, we use Gini impurity values as the criterion
for constructing decision trees and train the model over a
random sample of 2K users, resulting in 85K training samples
(17K positive and 67K negative samples).

C. Validation Methodology

Firstly, we measure the performance of the algorithm in
terms of its ability to classify between the preferred and not

6we experimented with different time points for T overnight , and found that
predictions conducted at 3AM achieve the best prediction performance.

TABLE II

PERFORMANCE OF THE PREDICTION ALGORITHM AS MEASURED BY
MEAN VALUES OF ACCURACY, PRECISION, RECALL, AREA UNDER

PRECISION-RECALL CURVE (AUC) AND F1-SCORE

WITH 10-FOLD CROSS-VALIDATION

preferred content for a given user (Table II). We note that the
algorithm is able to achieve considerable classification per-
formance (precision of 0.91 with recall of 0.80) with 10-fold
cross validation over the dataset of 2K randomly selected users
described above. We also note that the prediction performance
does not improve significantly if we further increase the size
of the dataset.

In practice, we are interested in how the algorithm is
able to pick a few most likely to-be-watched episodes for a
user among the variety of shows available on iPlayer and,
so, we further measure the ranking accuracy of the algorithm
as follows. We process each user session (E, U, T ) individ-
ually and for a set of content items ET overnight available7 on
iPlayer at time T overnight , we use the trained model to predict
the likelihood of user U watching the item, and rank them
according to the predicted likelihoods. In practice, we rank
more than a hundred of content items in each individual
experiment. For the cases when we have very short users’
histories by the time of prediction (i.e., less than 3 mobile
sessions) we empirically find that users’ histories are not
sufficient to properly capture users preferences yet and we use
popularity-based predictions instead. Overall, we conduct the
testing on a total of 16.2K mobile sessions, from a set of 1K
users chosen randomly such that the training and testing sets
do not overlap. As discussed later in §V-A, we assume that the
mobile device has space for 5–10 items. Thus, the prediction
is accurate if it ranks the items watched in the top 5–10.
Therefore, we measure the performance of the model by
calculating the per-user accuracy of successful prediction in
the top-N of the predicted list (also known as Accuracy@N).

D. Results

In Fig. 4 (left) we compare the performance of our
personalised model against a baseline (denoted TOP acc@N)
of predicting the globally most popular Top-N items with the
popularity also measured at T overnight . This shows significant
improvements in accuracy with our machine learning
model (denoted ML acc@N). We also note a diminishing
returns for Accuracy@N with the corresponding growth of
the prediction list length N : the median per-user accuracy

7Note that the content catalogue on iPlayer changes constantly – new items
are made available shortly after being broadcast on TV, and old items are
regularly removed, e.g., after one week. Thus there may be content items
which even a perfect predictive model cannot preload, as they may not be
available as part of the content catalogue at the time of preloading.
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Fig. 4. Performance of the Preloading Algorithms. Left: Per-user accuracy@N of ML predictions (ML acc@N) for different lengths N of prediction list
benchmarked over popularity-based predictions (TOP acc@N). Middle: Cumulative Distribution Function (CDF) of per-user mobile savings (θ ) with greedy
preloading of currently (and previously) watched content items. Simulations conducted for different settings of spare bandwidth factor k, with a single content
item in cache (top solid, dash, dot), with unlimited cache (dash-dot), and after adding a scheduled preloading session at midnight (bottom solid). Right: Mobile
savings achieved from predictive preloading with different storage sizes of 5 items (ML@5) or 10 items (ML@10); and with a more frequently scheduled
preloading of twice-daily schedule and with a storage size of 5 items (2 times @5), all benchmarked against the best greedy preloading method (baseline),
which is also shown as ‘midnight’ in the middle plot.

increases considerably (by around 140%) between Top-1
(ML acc@1) and Top-5 (ML acc@5) predictions, but, only
by 12% from Top-5 (ML acc@5) to Top-10 (ML acc@10)
predictions. This suggests that, if successfully predicted,
content items are consistently ranked high (i.e., in
the Top-5) in the prediction list.

Further, we compute the extent to which individual signals
contribute to the overall prediction accuracy of the proposed
model. In the last column of Table I we report the importance
of individual features calculated as the expected fraction of
the training samples they contribute to. We note that user
affinity towards shows and genres are the strongest predictors
of users’ future accesses – a result which is an agreement with
the finding in Figure 1 that users specialize in a handful of
content types.

More generally, User Preference features gained the maxi-
mum importance (i.e., 0.555) among the three different groups
of features, followed by UI Guidance with total importance
of 0.292. Interestingly, individual users’ preferences for fea-
tured content, as measured by the featured probability, have
proved to be an important feature (i.e., importance of 0.091),
whereas a measure of a user’s attraction towards popu-
lar content, i.e., popularity position, is an order of mag-
nitude less important for predicting to-be-watched content
(i.e., importance of 0.008). Intuitively, most users have a
shared preference for popular content (and hence the content
item is popular), and therefore this feature is not as dis-
criminatory as preference for featured content, as different
users prefer different featured content. This finding is also
in agreement with the result in Fig. 2 (right) that featured
content has strong affinity among some of the users, and anti-
affinity among others. Finally, the Previously Watched features
jointly account for an overall importance of 0.154 and are
less important than the User Preferences and UI Guidance
features.

V. PREDICTIVE PRELOADING

Equipped with the prediction algorithm from the previous
section we finally introduce predictive preloading – a new
mobile data offloading approach for catch-up TV.

A. Mobile Preloading

To start off, we define a naïve baseline preloading strategy
based on making use of good broadband connectivity when
it is available to “greedily” complete the downloading of
partially watched items, and “greedily” caching them on
device-local storage, therefore offloading from future sessions
that may require cellular data access. This baseline approach
is supported by the finding in our previous work [17, Fig. 8b]
that in many cases, it may take users multiple sessions across
both fixed-line and cellular ISPs to complete watching a
TV show.8

A crucial question for mobile preloading is deciding when
the content should be downloaded. From the perspective
of trace-based evaluation, it is not a priori clear when
Wi-Fi access is available. Hence we consider two conservative
assumptions: The most conservative assumption is that Wi-Fi
connectivity is available only when some content is being
streamed over Wi-Fi (i.e., through a fixed-line broadband
provider). Even this limited connectivity is sufficient to
greedily prefetch content in advance of being watched, given
that average broadband speed in the UK is 18.7 Mbps [27],
whereas typical video bitrates, in e.g., BBC iPlayer, could
be 1.5 Mbps or even lower. Thus, it is not unreasonable to
expect that content can be downloaded at up to 10 times the
playback speed.

A less conservative, but still reasonable, assumption is
that Wi-Fi connectivity and spare bandwidth is available at

8This may happen for various reasons. Users may, for instance, stop
watching when their train reaches the destination, and continue at home.
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some scheduled time during the day. For instance, network
usage decreases drastically after midnight, and a user may be
expected to be at home, where her device can obtain Wi-Fi
connectivity with ample spare bandwidth. Note that although
the evaluation below assumes a specific time point for clarity,
we only require that spare Wi-Fi bandwidth is available at
some time daily.

We expect that more than one content item can be preloaded
during one or multiple Wi-Fi sessions. However, in reality,
the savings may be limited by the storage available on the
phone. As a back-of-envelope calculation, a 60 minute TV
show encoded at 1.5 Mbps could take up ≈675 MB of storage.
An older 8GB iPhone may have ≈4.9GB available for all user
data.9 Thus, it is reasonable to assume storage for preloading
about 5 shows. More recent phones or tablets could have
16GB storage for example, thus storing ≈ 10 shows is still
reasonable.

Predictive preloading expands beyond partially watched
content items and allows to load unwatched content that a
model predicts are likely to be accessed. In the following,
we explore to what extent predictive preloading based on the
machine learning algorithm from §IV can outperform simple
greedy techniques.

B. Simulation Settings

We develop an event-based simulator where for a given
Wi-Fi session SW i−Fi = (U, E, D) of a user U watching
content E for D seconds, we can preload and cache on the
user’s device content corresponding to k D seconds, where
k = α

β is a spare bandwidth factor, defined as the proportion
between a user’s download bandwidth α and content bitrate β.
The higher k is, the more the spare bandwidth available.

Thus, at the end of Session SW i−Fi , the user’s device
has preloaded content equal to Dpre = min(P(U, E) +
k D, L(E)) seconds of playback, where L(E) denotes the
length of the episode, and P(U, E) denotes the part of
the content item preloaded during previous accesses of U
for content E . The min(·) here captures the fact that it is
impossible to preload more than the length of the episode
L(E) even if the spare bandwidth factor and the duration of
a session D are large. It is also worth noting that k = 1
corresponds to the case when only as much content is cached
on a user’s device as the user has actually watched.

1) Caching: To derive any benefit from preloading, the
preloaded content needs to be cached. We considered two
variants. The first, basic, assumption is that exactly one item is
cached. Thus, preloading a new content item would replace the
previously preloaded item. We follow this up by considering
an infinite cache that can save all previously preloaded items.
Intermediate cache sizes are not reported, because we find
(see Fig. 4 (middle)) that increasing storage does not yield
much improvement.

2) Calculating Savings: For each mobile session SMobile =
(U, E, D) of user U to episode E which lasts for a duration
of D = Dmobile(S) seconds, we check whether a user has
already preloaded the part of the content item being accessed,

9http://goo.gl/5dxDKi

and if yes, measure how many seconds of the user’s mobile
traffic would have been saved by watching D from the user’s
cache rather than streaming over a cellular connection. Note
that if the part being watched has not been preloaded fully
beforehand, we assume that only the preloaded part (say, Dpre

seconds) would be watched from the user’s cache, whereas
the rest of the session (Dmobile − Dpre seconds) would be
streamed from a mobile network. We measure performance of
the proposed preloading mechanism in terms of the per-user
mobile savings which we formally define as follows10:

θ(U) =
∑

S∈SMobile(U ) Dpre(S)
∑

S∈SMobile(U ) Dmobile(S)
(1)

C. Naïve Baseline: Greedy Preloading

1) Active Preloading Is Not Required for Savings: We start
off with a scenario when no preloading happens, i.e., only
the content that has been already played back to the user
is cached (i.e., k = 1). We also set the cache size to one
item, i.e., only the last item played back is cached. Surpris-
ingly, even this passive caching of the last item streamed,
without downloading in advance, can achieve non-trivial sav-
ings (Fig. 4 (middle)) of ≈11% on average, albeit for a fraction
of the user population (≈63%). The savings arise because
those users also watch the same content more than once.
However, as many users do not rewatch shows, the average
savings for the whole population is only ≈7%.

2) Increased Bandwidth and Storage Help, But Benefits
Are Limited: Next, we consider scenarios where k > 1,
to study the benefits of increased bandwidth. Fig. 4 (middle)
shows that there is additional savings to be had when k
increases to 10, but almost no additional savings beyond this
can be achieved, even when k becomes infinite and content
can be preloaded instantaneously, as soon as a Wi-Fi session
starts. To understand why this is the case, notice that with
a spare bandwidth factor of k = 10 (which we recall is
reasonable assumption given the average download bandwidth
of 18.7Mbps in the UK and a typical iPlayer streaming bitrate
of 1.5Mbps), a typical 60 minute-long TV show can be
preloaded in just 6 minutes. Thus, no additional benefit is to
be had by increasing k when the Wi-Fi session lasts longer
than 6 minutes. We then study the importance of cache size
by simulating an unlimited cache, in addition to k = ∞. This
increases the mobile savings for 70% of the users and saves
≈ 13% on average, suggesting that some users are likely to
switch back and continue watching (or re-watching) a content
item even after they have already started watching something
new. On the other hand, we note that even with all these
proposed unrealistic adjustments, the median per-user savings
of this just-in-advance preloading only reaches ≈ 9% when
averaged over the whole population.

10Note that we measure savings in terms of mobile minutes rather than
directly in terms of bytes saved because bitrate information was not available
for many mobile sessions in our dataset. However, given that bitrate variation
in iPlayer sessions is typically quite small [16], we envisage that savings in
terms of minutes translate approximately to bytes.
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3) Scheduled Preloading Helps by Catching Mobile-Only
Split Sessions: With an infinitely fast preloader (k = ∞)
and infinite storage, all sessions over cellular network that are
preceded by a Wi-Fi session to the same content item should
be offloaded. Thus, any remaining split sessions are due to
mobile-only access. For instance, a user may begin watching
the first part of a TV show over cellular network during her
morning commute and finish also over cellular network during
her evening commute, or on the next day’s commute. To catch
such sessions, we need a separate special session that accesses
iPlayer solely to preload content rather than piggybacking the
preloading on top of an existing Wi-Fi session. To study the
effect of such a dedicated preloading session, we explore a
scheduled preloading approach and model a batch job on each
user’s device which wakes up each midnight and preloads
all partially watched content items from the users’ previous
sessions. Fig. 4 (middle) shows that with this strategy, up to
83% of users can save and each obtains an average savings
of ≈ 22%.

D. Predictive Preloading

Next, we ask how the machine learning model introduced
in §IV can improve mobile savings.

1) Predictive Approach Improves Over Greedy Scheduled
Preloading: Fig. 4 (right) shows that predictive preload-
ing achieves significantly higher savings in comparison to
the greedy scheduled overnight preloading: greedy scheduled
preloading (shown as baseline in Fig. 4 (right)) assumes
infinite cache size and still performs worse than ML@5 and
ML@10 with cache sizes of 5 and 10 items. This suggests
that machine learning based selection of to-be-watched content
items can capture a significantly wider range of indicators
for future preferences of the users than just the history of
previously watched episodes, as used in the greedy method.
This result is in agreement with the fact that information about
whether (and for how long) a content item has been watched
contributes only 0.154 (out of 1) to overall importance of
prediction features in Table I.

2) Increased Storage Offers Diminishing Returns:
Fig. 4 (right) shows that doubling storage from 5 to 10 items
yields only a slight (18%) increase in mobile savings. This is
in agreement with the accuracy results discussed in §IV which
suggests a high concentration of successful predictions in the
Top-5 of the prediction list (Figure Fig. 4 (left)). Thus, storing
a larger list of items does not translate directly to mobile
savings.

3) Increased Frequency of Preloading Helps a Bit: Finally,
we analyse potential gains from increasing the frequency of
preloading opportunities throughout a day. We motivate this
step with the illustrative example of a commuter who may
access iPlayer during the morning commute once and again
during the evening commute. Recomputing predicted items
after the morning commute can help because the model can
learn from the new addition to the user’s history, and also
because a more updated list of featured items, as well as an
updated list of most popular items can be used. Examining
our dataset, we find that a majority (> 60%) of the users,
if they access iPlayer from a mobile device during a day,

do so two or more times during that day. Indeed, we observe
a 18% improvement in mobile savings by incorporating this
additional opportunity for predictive preloading during the
day (dash dot line in Figure 4 (right)). However, this approach
yields diminishing returns and we do not observe significant
improvements from further increasing the number of preload-
ing opportunities during the day. Interestingly, we notice that
increasing storage size and adding preloading opportunities
yields similar gains in mobile savings, a fact that can be
exploited to trade-off between the two strategies depending
on whether storage capacity or Wi-Fi access availability is a
constraint.

VI. DISCUSSION AND CONCLUSIONS

In this paper we proposed a novel predictive preloading for
data offloading that operates by predicting which items users
are likely to watch while on the move, and preloads such items
from a reliable Wi-Fi connection beforehand. We evaluated
this technique using as case study a large “catch-up” TV
system used widely in the UK for streaming BBC shows.
However, similar techniques could potentially be applied in
other situations as well, with the prediction models adapted
to the use case at hand. We believe that such predictive
preloading techniques could be a valuable addition to the
array of offloading techniques proposed for future cellular
systems [32]. Below we conclude with a summary of the main
results in the context of our specific study, and discuss caveats
and limitations:

Using a trace of nearly 3.9 million sessions to iPlayer from
mobile devices we first looked for signals which can predict
future user access. We found that individual users’ preferences
in content items are typically concentrated around a handful
of content genres, channels and shows. We also found that
in general users are influenced by the UI guidance, such as
content featured on different iPlayer pages but the extent of
this influence varies significantly across different users: For
around 25% of users, none of their accesses are for featured
content, whereas for 10% of users the vast majority (i.e., more
than 80%) of their accesses correlate with the content featured
in the iPlayer UI.

We exploited these insights to develop a supervised learning
algorithm which can predict more than 66% of per-user
accesses in the Top-10 of the prediction list for the majority
of users and over 88% for the top 10% of users. Based on the
machine learning model, we proposed a predictive preloading
mechanism to offload mobile traffic of individual users during
work commutes and compared it with a number of naïve
approaches. Our result suggests that predictive preloading
significantly outperforms all naïve strategies and allows up
to 71% of mobile traffic savings for an average user and over
95% for the top 10% of users.

Although we evaluated our approach using a large and
real dataset, full-scale deployments may need to consider
additional factors. For instance, our evaluation relied on a
month-long trace, whereas models used in a real deployment
may need to be tuned to perform well over larger time periods.
On the one hand, a larger time period can benefit from a
longer user history. On the other hand, user interests may
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change over time, and the content catalogue on BBC iPlayer
itself changes regularly (new shows are typically added in the
first hours after broadcast and are removed after 30 days).
Therefore, the machine learning model will need to adapt and
use an appropriate amount of recent user history to maintain
good performance. Similarly, our approach relies on capturing
a wide range of signals, some of which may be specific to
catch-up TV systems such as BBC iPlayer. Additional tuning
may be required if it needs to be applied to other platforms
such as Netflix which may have slightly different content
availability characteristics (e.g., larger content catalogue, or a
catalogue of items which does not change as often as iPlayer).

Further, storage strategies in full-scale deployments can
incorporate simple improvements that can potentially improve
the performance beyond what we report here. One approach
would be to optimise the length of the preloaded episode
based on a typical duration of a user’s commute: Instead of
preloading the full length of a long episode, the algorithm may
preload small fractions of multiple episodes for short com-
mutes, thereby increasing the chance that the content watched
by the user will be in the preloaded list. Another approach
relies on using the storage of the device more effectively by
taking the bitrate preferences of the user or device capabilities
into account: For example, a smartphone with small screen
resolution and, consequently, a lower bitrate requirement, can
accommodate a larger number of episodes given the same
storage constraints.

In summary, we envisage that with the right predictive
model, preloading can be a very fruitful strategy for many
kinds of applications. However, a number of use-case specific
adaptations will need to be made, as in our case study.
Full-scale deployments will need to bear other considerations
in mind, as discussed above.
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