SCPKI: A Smart Contract-based PKI and Identity System

Mustafa Al-Bassam
Department of Computer Science
University College London
London, United Kingdom

m.albassam@cs.ucl.ac.uk

ABSTRACT

The Public Key Infrastructure (PKI) in use today on the In-
ternet to secure communications has several drawbacks aris-
ing from its centralised and non-transparent design. In the
past there has been instances of certificate authorities pub-
lishing rogue certificates for targeted attacks, and this has
been difficult to immediately detect as certificate author-
ities are not transparent about the certificates they issue.
Furthermore, the centralised selection of trusted certificate
authorities by operating system and browser vendors means
that it is not practical to untrust certificate authorities that
have issued rogue certificates, as this would disrupt the TLS
process for many other hosts.

SCPKI is an alternative PKI system based on a decen-
tralised and transparent design using a web-of-trust model
and a smart contract on the Ethereum blockchain, to make
it easily possible for rogue certificates to be detected when
they are published. The web-of-trust model is designed such
that an entity or authority in the system can verify (or vouch
for) fine-grained attributes of another entity’s identity (such
as company name or domain name), as an alternative to the
centralised certificate authority identity verification model.

1. INTRODUCTION

The secure operation of SSL/TLS relies on a set of trusted
Certificate Authorities (CAs) to authenticate public keys [5].
In practice, the set of trusted CAs are bundled into oper-
ating systems and web browsers. Consequently, the Public
Key Infrastructure (PKI) is centralised as only CAs chosen
by operating system and web browser vendors may issue
universally valid certificates.

This system is exclusive; it is expensive and time-consuming
to convince operating system and web browser vendors to
bundle a CA, therefore entities must usually pay CAs to
sign their public keys. For example, it typically takes over
11 nllonths to apply for root CA inclusion in Mozilla prod-
ucts™.

https://wiki.mozilla.org/CA:How_to_apply

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

BCC’17 April 02-02 2017, Abu Dhabi, United Arab Emirates
(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4974-1/17/04.

DOL: http://dx.doi.org/10.1145/3055518.3055530

A major security weakness of this system is that every CA
has the ability to issue rogue certificates for any entity. In
2011, the DigiNotar CA issued a rogue certificate for Google
which was reported to be used in attempted man-in-the-
middle attacks against Google users [3].

Pretty Good Privacy (PGP) is a data encryption and de-
cryption standard that does not use CAs to verify the au-
thenticity of public keys. Instead, it offers a feature that
allows individuals to sign other individuals’ public keys to
certify their authenticity. This creates a web-of-trust model
that can navigated to determine the authenticity of public
keys belonging to individuals that have no pre-shared secret
with each other [6].

The web-of-trust model is a first step towards a decen-
tralised PKI. However, PGP itself is not a PKI as it does
not provide a way to retrieve public keys. Commonly, PKI
for PGP is implemented as centralised keyservers? that are
used to query for public keys.

Ideally, a PKI for PGP would be be fully decentralised
and not rely on centralised servers. Centralised keyservers
act as a central point of failure that also allow for exclusion
or replacement of keys by a third party.

Most importantly, an immutable blockchain-based decen-
tralised ledger of keys would provide the transparency needed
to quickly identify rogue certificates such as the one issued
by DigiNotar CA, as all new certificates would be immedi-
ately visible to the network.

The X.509 standard for certificates on the Internet pro-
vides scope for a wide range of identity attributes to be
embedded in certificates [7]. Identity attributes include in-
formation such as phone number, address and name. This
provides a way for certificate authorities to vouch for the
identity attributes of an organization’s online presence.

Adapting this system in a web-of-trust PKI model as de-
scribed above opens the door for a wide range of identity-
related problems to be solved, in contexts where an organi-
zation or an individual needs to verify a fact about another
organization or individual without trusting paper records
that can easily be forged, unlike cryptographic signatures.

For example, when an employer needs to verify a potential
employee’s degree certification, the degree-awarding univer-
sity can cryptographically sign a degree, and the branch of
the government responsible for giving universities degree-
awarding powers can cryptographically sign the university’s
degree-awarding certification. The employer only needs to
search the web-of-trust to trust the branch of the govern-
ment that is responsible for giving universities degree-awarding

2Such as pgp.mit.edu.

powers, and work through the remaining chain-of-trust.

Other examples could be verifying a company’s sharehold-
ers and directors, verifying the visa of a traveller or verifying
the driving license of a citizen.

This is not easily possible with the current X.509 certifi-
cate standard because the standard does not allow certifi-
cate authorities to sign specific and fine-grained attributes
in a certificate; certificate authorities must sign the entire
certificate or nothing.

2. BACKGROUND
2.1 Blockchain

The concept of the blockchain was first introduced in the
Bitcoin electronic cash system [8]. Bitcoin is designed as a
peer-to-peer network where nodes running the Bitcoin soft-
ware relay transactions to other nodes. To prevent cash
from being double spent, the network reaches a consen-
sus on the ordering of transactions by recording them on
the blockchain; the Bitcoin paper describes a process of
timestamping transactions by “hashing them into an ongo-
ing chain of hash-based proof-of-work, forming a record that
cannot be changed without redoing the proof-of-work”.

In the Bitcoin network the proof-of-work involves repeat-
edly hashing blocks of incoming transactions until a hash is
found that is below a cetain value. This requires process-
ing power, and so as long as the majority of the processing
power on the network is not controlled by a central author-
ity, a central authority cannot modify the blockchain and
reverse transactions. This is because the consensus rule of
the network is such that the blockchain with the most proof-
of-work is the correct one, and so an authority that does not
have the majority of the network’s processing power is un-
likely to outpace the creation of blocks of the rest of the
network.

The open nature of the Bitcoin blockchain and the fact
that it is designed so that it is computationally expensive
(and hence theoretically economically unattractive) for a
central authority to take control of the blockchain and re-
verse transactions makes it a useful tool to build decen-
tralised and transparent applications where records cannot
be hidden or corrupted by a third party.

This is particulaly useful in the context of building a trans-
parent PKI, as rogue certificates or identities would be uni-
versally visible.

2.2 Smart Contracts and Ethereum

Each Bitcoin transaction references other transactions (called

inputs) and creates outputs, which are recorded on the Bit-
coin blockchain. The Bitcoin in these outputs can then be
“spent” by other transactions. To facilitate the creation of
transactions, Bitcoin has a transaction scripting language
that is used to specify “locking scripts” for specifying condi-
tions that must be met to spend transaction outputs [4].

Since the creation of Bitcoin, other forms of blockchain-
based systems have emerged that extend the scripting lan-
guage beyond the purpose of a cash system, to allow for
other types of applications to be expressed on the blockchain
in the form of “smart contracts”.

One such blockchain-based system for smart contracts is
Ethereum [10]. The Ethereum white paper describes smart
contracts as “complex applications involving having digital

assets being directly controlled by a piece of code imple-
menting arbitrary rules” [1].

One of the potential applications of smart contracts dis-
cussed in the white paper is identity and reputation systems.
For example, a smart contract can be created for mapping
domain names to IP addresses to provide a decentralised do-
main name registration system. Namecoin is an example of
such a system that uses a Bitcoin-like blockchain®.

Smart contracts in Ethereum are written in a low-level
stack-based bytecode language executed by an Ethereum
virtual machine and referred to as Ethereum virtual ma-
chine (EVM) code. Smart contracts can also be written in
a high-level language such as Serpent and then compiled to
EVM code [10].

Each smart contract has functions that have “gas” costs
associated with it depending on how many computational
steps or storage space they require which are paid for using
Ether—Ethereum’s internal currency, and smart contracts
can call functions in other smart contracts [10].

Ethereum smart contracts can emit “events”, an abstrac-
tion of the Ethereum logging and event-watching protocol
[2]. Events can have up to three indexes, and can be watched
and filtered efficiently by Ethereum clients.

The primary proposition of SCPKI is to write such a smart
contract with functionality for the operation of a public key
infrastructure and identity management system, where pub-
lic keys and identity attributes are stored on the blockchain
and can be managed by the smart contract.

2.3 Web of Trust

An alternative to the centralised chain of trust certificate
authority model of PKI is the web of trust.

The concept of the web of trust was first described in 1992
in the manual for PGP 2.0: “As time goes on, you will accu-
mulate keys from other people that you may want to desig-
nate as trusted introducers. Everyone else will each choose
their own trusted introducers. And everyone will gradually
accumulate and distribute with their key a collection of cer-
tifying signatures from other people, with the expectation
that anyone receiving it will trust at least one or two of the
signatures. This will cause the emergence of a decentralised
fault-tolerant web of confidence for all public keys” [9].

In a web of trust, there are no certificate authorities. In-
stead any user of the system can sign each other’s public
key, which means that there is no certificate authority in
the system that is “too big to fail” as public keys are by de-
sign intended to have multiple signatures. This means that
if one signer is compromised and the signer’s key is revoked,
the impact on the trust network is limited.

24 IPFS

Smart contract systems like Ethereum are useful as a high-
integrity progammable database layer for decentralised ap-
plications. However due to gas costs, and it is not eco-
nomically practical to store large amounts of data on the
Ethereum blockchain.

InterPlanetary File System (IPFS)* has become a popular
storage layer for decentralised applications. It is a peer-to-
peer data distribution protocol where nodes in the IPFS
network form a distributed file system.

3http://namecoin.org/
“https:/ /ipfs.io/

Data in IPFS is addressed by its cryptographic hash and
so links always stays the same regardless of which nodes
serve the data. This makes it ideal for blockchain applica-
tions, as it makes it possible to address large amounts of
data from transactions in the blockchain using permanant
and immutable IPFS links.

3. DESIGN

SCPKI is a system hosted on the Ethereum blockchain
and controlled by a smart contract, that allows entities to
manage (such as storing, retrieving and verifying in a web-
of-trust) identities of itself and other entities. An entity
refers to any participant in the system and may be human
or non-human, such as a person, organization or autonomous
agent. An identity is a set of attributes about an entity such
as cryptographic keys, names or addresses.

The design of SCPKI contains two primary components:
the smart contract—which dictates the protocol of the sys-
tem and acts as an interface to the blockchain for the man-
agement of identities and attributes, and the client—which
interacts with the smart contract and other systems such as
IPFS to allow users to fully utilise the system by allowing
them to search for and filter attributes.

Attribute

& attributeID: uint
@ owner: Ethereum address

@ attributeType: string Entity
& has_proof: bool 0. 1|&@ owner: Ethereum address |1

@ identifier: byte32
& data: string
@ datahash: string

0.*
1 Revocation

@ revocationID: uint
& signaturelD: uint

0.*
Signature

& signaturelD: uint

—@ attributeID: uint

" |&@ signer: Ethereum address
& expiry: uint

Figure 1: Entity-relationship diagram for the SCPKI smart
contract.

The smart contract of SCPKI centers around the entity,
which publishes a set of attributes, signatures, and revoca-
tions on the blockchain for its identity. Each entity is rep-
resented by an Ethereum address—which is controlled by
a private key or smart contract that the entity has control
over.

Although publishing an attribute to an entity’s identity
binds the identity to the attribute, attributes that represent
cryptographic keys can also be reverse-binded to the iden-
tity, creating a double-binding. This can be done by pub-
lishing a “binding proof” that consists of a cryptographic
signature of the entity’s Ethereum address using the cryp-
tographic key represented by the attribute, proving that the
owner of a private key is associated with an Ethereum ad-
dress. This is useful for transfering trust relationships be-
tween different cryptographic keys: for example if a user
A already trusts a user B’s PGP key, and user B adds their
PGP key to their SCPKI identity with a binding proof, then
user A can also trust user B’s SCPKI identity without asking
for more information.

Due to the expensive gas costs associated with Ethereum
storage, SCPKI is designed to allow users to store large at-

tribute data (such as PGP keys) off the blockchain (such as
on IPFS) to save costs, while maintaining the authenticity
of the data by providing a cryptographic hash of the data
with the attribute on the blockhain.

Two vesions of the smart contract can exist, a full ver-
sion that is designed in such a way where its information
(attributes, signatures and revocations) can be programati-
cally accessed by other smart contracts, and a lighter version
where it cannot. The trade-off is that the lighter version has
lower gas costs because there is no need to store attribute
data within the contract itself for retrieval by other con-
tracts, but simply emit events on the blockchain for clients
to watch, but is less extensible by other smart contracts that
interact with it.

3.1 Adding Attributes

The AddAttribute function allows entities to add attributes
to their identity. As input, it takes the following parameters.

Attribute type. The type of attribute that is repre-
sented, for example “PGP key” or “name”.

Identifier. A unique identifier for the attribute if it has
one, such as a PGP fingerprint.

Data. The raw data of the attribute, or an URI where
the data can be downloaded off the blockchain. The data
also includes the binding proof of the attribute, if applicable.

Data hash. If the data is stored off the blockchain, the
cryptographic hash of the data for authenticating the data,
if necessary. This is not necessary if the data is stored on
IPFS, as IPFS links contain the hash of the data.

Has proof. True if it is a cryptographic attribute that
has a binding proof, otherwise False.

The function also generates a unique automatically incre-
menting attribute ID for the new attribute, which is used
to reference the attribute. The owner of the new attribute
is the Ethereum address of the transaction that called the
smart contract function.

An AttributeAdded event is then logged with all of the
input parameters of the function call as well the attribute ID
and attribute owner, for SCPKI clients to pick up. The event
has three indexes that can be filtered by in the client: the
attribute ID, the attribute owner and the attribute identifier.

In the full version of the smart contract, the function
stores the data of all attributes in an array of attributes,
which can be accessed by other smart contracts by ID. The
attribute ID is the index of the attribute in the array. In the
light verson of the smart contract, the function only stores
and increments the latest attribute ID.

3.2 Signing Attributes

The SignAttribute function allows entities to sign (“vouch
for”) the attributes of any entities. It takes the following
parameters.

Attribute ID. The ID of the attribute being signed.

Expiry. A UNIX timestamp representing the time at
which the signature should no longer be considered valid.

The function also generates a unique automatically incre-
menting signature ID for the new signature. The signer of
the new signature is the Ethereum address of the transaction
that called the function.

A SignatureAdded event is then logged with all of the in-
put parameters of the function call as well the signature ID
and signer. The event has three indexes that can be filtered
by in the client: the attribute ID, the signature ID and the

signer.

In the full version of the smart contract, the function
stores the data of all signatures in an array of signatures,
which can be accessed by other smart contracts by ID. The
signature ID is the index of the signature in the array. In
the light verson of the smart contract, the function stores
only stores the data of the signers of the signatures in the
signatures array. This information is necessary in order for
the contract’s signature revocation function to only allow
the signers of signatures to revoke them.

3.3 Revoking Signatures

The RevokeSignature function allows entities to revoke
their own signatures It takes one parameter, Signature
ID—a reference to the signature to be revoked. The func-
tion also generates a unique automatically incrementing re-
vocation ID for the new revocations.

A SignatureRevoked event is then logged with the signa-
ture ID the revocation ID, which are both indexes.

In the full version of the smart contract, the function
stores the data of all revocations in an array of revocations,
which can be accessed by other smart contracts by ID. The
revocation ID is the index of the revocation in the array.
In the light verson of the smart contract, the function only
stores and increments the latest revocation ID.

The RevokeSignature function only revokes signatures if
the Ethereum address calling it is also the signer of the sig-
nature to be revoked; the signature is checked to ensure that
the signer matches the sender of the transaction calling the
function. The procedure for this is shown in Algorithm 1.

Algorithm 1 Revocation Procedure

procedure REVOKESIGNATURE
if transaction.sender =
signatures[signaturel D].signer then
revocationl D < revocations.length + 1
revocation < revocations[revocationl D)
revocation.signaturel D < signaturel D
SIGNATUREREVOKED(revocationID, signaturelD)
return success ful
else
return failed
end if
end procedure

4. IMPLEMENTATION

A working prototype of SCPKI is implemented, and avail-
able as an open-source project®. The smart contracts are im-
plemented in 90 lines of Solidity, a JavaScript-like language
for writing Ethereum smart contracts that are compiled to
EVM code. The full and light contracts are available in
Appendix A and Appendix B, respectively.

A corrosponding command-line Python client was imple-
mented in 844 lines of code. The client allows users to man-
age their identity by adding attributes, signing attributes
and revoking signatures. It connects to the local Ethereum
client’s JSON RPC to send and recieve data to and from the
blockchain.

®https://github.com/musalbas/trustery

The client allows users to retrieve and validate attributes
and their signatures/revocations from the blockchain, and
search for attributes filtered by ID, type or identifier.

The client also interfaces with IPFS and PGP, to allow
clients to seamlessly add and retrieve attributes that have
data stored off the blockchain on IPFS, and to allow clients
to publish their PGP key attribute with an automatically
generated binding proof to their identity. The client can
also automatically verify binding proofs of the PGP key at-
tributes of other users.

4.1 Costs

Using the implementation, the gas costs of using SCPKI
can be analysed. As of January 2017, 1 gas = 0.000000018
ether®, and 1 ether = $10.57".

Table 1 and Table 2 show the gas costs for adding at-
tributes of various sizes with and without IPFS, on the full
and light smart contract. When not using IPFS, the gas
cost of a transaction to add an attribute grows linearly (by
around $0.015 per 100 bytes for the full contract and by
around $0.001 per 100 bytes for the light contract) with the
size of the data of the attribute. When using IPFS; it re-
mains static because the size of the link to data on IPFS
stays the same regardless of the size of data.

The light smart contract shows a significant cost improvement—

just $0.007 to add an attribute over IPFS compared to $0.032
without; a 72% reduction.

Table 3 and Table 4 show the gas cost for publishing the
smart contract on the blockchain, signing attributes and re-
voking signatures. These operations have static gas costs as
they do not have data of variable length as input. By far the
biggest cost (over a tenth of a dollar for the full contract) is
the cost of publishing the contract on the blockchain. This
is a one-time cost necessary for users to start using the con-
tract. All other operations are relatively cheap at $0.012 or
under per operation, for both types of contracts.

5. CONCLUSIONS AND FUTURE WORK

This paper set out to realise a decentralized public key
infrastructure system that utilises the transparency of the
blockchain and has fine-grained attribute management for
the web of trust.

This has been achieved in the form of a smart contract and
a command-line client for using the smart contract, with a
working prototype implemented.

As the Internet scales, rogue certificate attacks become
more common, and organizations demand more forgery-proof
identity verification techniques, the need for transparent pub-
lic key infrastructure systems will grow.

Some limitations and potential future work of SCPKI are
discussed below.

Adaptability. The design of the system is such that
all parties referenced by the system must already use the
system. For example, if a university wants to issue a degree
to an user in the system, the user must first add a degree
attribute to their identity before the university can sign it.
This increases the adoption barrier for the system. However,
the upside to this is that the user has control over what
attributes are or are not attached to their identity.

Shttps://ethstats.net/
"https:/ /coinmarketcap.com/

Data (bytes) Gas Gas in USD Gas (IPFS) Gas in USD
(IPFS)

100 213782 $0.041 170215 $0.032

200 281595 $0.056 170215 $0.032

300 349473 $0.066 170215 $0.032

400 417287 $0.079 170215 $0.032

500 485037 $0.092 170215 $0.032

Table 1: Gas used for adding attributes in the full smart contract.

Data (bytes) Gas Gas in USD Gas (IPFS) Gas in USD
(IPFS)

100 41789 $0.008 38372 $0.007

200 49377 $0.009 38372 $0.007

300 57030 $0.011 38372 $0.007

400 64619 $0.012 38372 $0.007

500 72144 $0.014 38372 $0.007

Table 2: Gas used for adding attributes in the light smart contract.

Operation Gas Gas in USD
Publishing contract 729752 $0.139
Signing attribute 62799 $0.012
Revoking signature 22120 $0.004

Table 3: Gas used for other operations in the full

smart contract.

Operation Gas Gas in USD
Publishing contract 353385 $0.067
Signing attribute 49904 $0.009
Revoking signature 22120 $0.004

Table 4: Gas used for other operations in the light smart contract.

Privacy. The system is only suitable for the publish-
ing of attributes that the user wishes to make public (such
as degree awards). It is not suitable for the publishing of
more private identity attributes such as personal address
as all attributes can be viewed by anyone in the system

and there is no access control.

Future iterations of the

system may address this by adding functionality to pub-
lish “zero-knowledge” attributes for verification of privately
shared data that the user distributes and has control over.

6.
[

[5]

[6]

REFERENCES

A next-generation smart contract and decentralized
application platform. https:
//github.com/ethereum/wiki/wiki/White- Paper/
784a271b596e7fede047a2a585b733d631fcf1d4, 2016.
Ethereum contract abi. https://github.com/ethereum/
wiki/wiki/Ethereum-Contract- ABI/
e6077256597058bd257f75740955caa10624086d, 2017.
H. Adkins. Google online security blog: An update on
attempted man-in-the-middle attacks.
https://googleonlinesecurity.blogspot.fr/2011/08/
update-on-attempted-man-in-middle.html, 2011.

A. M. Antonopoulos. Mastering Bitcoin: Unlocking
Digital Crypto-currencies. O’Reilly Media
Incorporated, 2014.

T. Dierks and E. Rescorla. Rfc 5246 - the transport
layer security (tls) protocol version 1.2.
https://tools.ietf.org/html/rfc5246, 2008.

S. Garfinkel. PGP: Pretty Good Privacy. O'Reilly &
Associates, 1994.

7]

8]

[9]

(10]

R. Housley, W. Ford, W. Polk, and D. Solo. Internet
x.509 public key infrastructure certificate and crl
profile. https://www.ietf.org/rfc/rfc2459, 1999.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf, 2008.

H. F. Tipton. Official (ISC)2 Guide to the SSCP
CBK, Second Edition. Auerbach Publications, Boston,
MA, USA, 2nd edition, 2010.

G. Wood. Ethereum: A secure decentralised
generalised transaction ledger (eip-150 revision).
https://github.com/ethereum/yellowpaper/raw/
2¢6fbal400e321734ccec19cb5d9cb32a51ffcd4 /paper.
pdf, 2017.

APPENDIX
A. FULL SMART CONTRACT

contract SCPKI {

struct Attribute {
address owner;
string attributeType;
bool has_proof;
bytes32 identifier;
string data;
string datahash;

}

struct Signature {
address signer;
uint attributelD;
uint expiry;

}

struct Revocation {
uint signaturelD;
}

Attribute [] public attributes;
Signature[] public signatures;
Revocation[] public revocations;

event AttributeAdded (uint indexed
attributeID, address indexed owner,
string attributeType, bool has_proof,
bytes32 indexed identifier, string
data, string datahash);

event AttributeSigned (uint indexed
signatureID, address indexed signer,
uint indexed attributeID, uint expiry)

)
event SignatureRevoked (uint indexed
revocationID, uint indexed signaturelD

3

function addAttribute(string attributeType
, bool has_proof, bytes32 identifier,
string data, string datahash) returns
(uint attributeID) {
attributeID = attributes.length++;
Attribute attribute = attributes|[

attributeID];
attribute.owner = msg.sender;
attribute.attributeType =
attributeType;
attribute.has_proof = has_proof;
attribute.identifier = identifier;

attribute.data = data;

attribute.datahash = datahash;

AttributeAdded (attributeID, msg.sender
, attributeType, has_proof,
identifier, data, datahash);

}

function signAttribute(uint attributelD,

uint expiry) returns (uint signatureID

)

signatureID = signatures.length++;

Signature signature = signatures/|
signatureID];

signature.signer = msg.sender;

signature.attributeID = attributelD;

signature.expiry = expiry;

AttributeSigned(signatureID, msg.
sender , attributeID, expiry);

function revokeSignature(uint signatureID)
returns (uint revocationID) {
if (attributes[signatureID].owner ==
msg.sender) {
revocationID = revocations.length
++;
Revocation revocation =
revocations [revocationID];
revocation.signatureID =
signaturelD;
SignatureRevoked (revocationID,
signatureID);

B. LIGHT SMART CONTRACT

contract SCPKI {
struct Signature {

address signer;
}

uint public attributes;
Signature [] public signatures;
uint public revocations;

event AttributeAdded (uint indexed
attributeID, address indexed owner,
string attributeType, bool has_proof,
bytes32 indexed identifier, string
data, string datahash);

event AttributeSigned (uint indexed
signatureID, address indexed signer,
uint indexed attributeID, uint expiry)

;
event SignatureRevoked (uint indexed
revocationID, uint indexed signaturelD

)

function addAttribute(string attributeType

, bool has_proof, bytes32 identifier,

string data, string datahash) returns

(uint attributeID) {

attributeID = attributes++;

AttributeAdded (attributeID, msg.sender
, attributeType, has_proof,
identifier, data, datahash);

}

function signAttribute(uint attributeID,

uint expiry) returns (uint signatureID

)

signatureID = signatures.length++;

Signature signature = signatures/|
signaturelID];

signature.signer = msg.sender;

AttributeSigned(signatureID, msg.
sender , attributelID, expiry);

}

function revokeSignature (uint signaturelD)
returns (uint revocationID) {
if (signatures[signatureID].signer ==
msg.sender)
revocationID = revocations++;
SignatureRevoked (revocationID,
signatureID);

