
An Artificial Ecosystem Algorithm Applied to
Static and Dynamic Travelling Salesman Problems

Manal T. Adham
Department of Computer Science

University College London
Gower Street, London, WClE 6BT, U.K.

Email: M.Adham@cs.ucl.ac.uk

Peter J. Bentley
Department of Computer Science

University College London
Gower Street, London, WClE 6BT, U.K.

Email: P.Bentley@cs.ucl.ac.uk

Abstract—An ecosystem inspired algorithm that aims to take
advantage of highly distributed computer architectures is pro-
posed. The motivation behind this work is to grasp the phe-
nomenal properties of ecosystems and use them for large-scale
real-world problems. Just as an ecosystem comprises many
separate components that adapt together to form a single syn-
ergistic whole, the Artificial Ecosystem Algorithm (AEA) solves
a problem by adapting subcomponents of a problem such that
they fit together and form a single optimal solution. AEA uses
populations of solution components that are solved individually
such that they combine to form the candidate solution, unlike
typical biology inspired algorithms like GA, PSO, BCO, and
ACO that regard each individual in a population as a candidate
solution. Like species in an ecosystem, the AEA may have species
of components representing sub-parts of the solution that evolve
together and cooperate with the other species. Three versions
of this algorithm are illustrated: the basic AEA algorithm, and
two AEA with Species. These algorithms are evaluated through
a series of experiments on symmetric and dynamic Travelling
Salesman Problems that show very promising results compared
to existing approaches. Experiments also show very promising
results for the Dynamic TSP making this method potentially
useful for handling dynamic routing problems.

I. INTRODUCTION

In natural biology the evolution of species does not take
place in a vacuum. Millions of species may evolve together, all
sharing the same environment. Many take competitive roles:
plants trying to out-grow each other to reach the sunlight, or
predators trying to out-hunt each other. Many take symbiotic
roles: insects pollenating plants, animals eating fruits and
distributing seeds. Indeed many forms of symbiosis are so
complete that some species may not survive without the other.

Those co-evolving species that share their environments
form an ecosystem - a self-regulating complex of interac-
tions that share the common goal of long term survival in
the environment. Although their day-to-day activities may
sometimes seem mutually destructive, when a holistic view
is taken it can be seen that each ecosystem is a carefully
evolved balance between all species. Any temporary imbalance
is quickly corrected: too many of one species is soon reduced
by predation from another. Too few of one species results in
reduction of others (e.g. lack of food/pollinators).

So an ecosystem is a combination of systems which have
adapted to solve - and help each other to solve - a different

aspect of one overall problem (survival in their shared environ-
ment) [1]. From a computational point of view, the ecosystem
is therefore of great interest. In this work we propose a
novel Artificial Ecosystem Algorithm (AEA) inspired by these
ideas. The AEA solves a problem by adapting subcomponents
of a problem such that they fit together and form a single
optimal solution, akin to the way an ecosystem comprises
many separate components that adapt together to form a single
synergistic whole. Like the different species in an ecosystem,
the AEA may have species of components representing sub-
parts of the solution that evolve together and cooperate with
each other. In this way the AEA is designed to take advantage
of highly distributed computer architectures and adapt to
changing problems.

This paper is organised as follows: the next section surveys
different biology inspired algorithms that have been applied to
TSP. Section 3 describes the proposed AEA algorithms. The
experiments section compares the proposed AEA algorithms
and analyses their performance on TSP and DTSP. The final
section discusses findings.

II. BACKGROUND

There is no shortage of bio-inspired algorithms, often
population-based and designed to find solutions to large,
noisy or ill-defined problems by searching in parallel. Most
approaches represent an entire candidate solution in each
individual of the population and any attempts to distribute
the algorithm across many processors will divide populations,
not individual solution evaluations. However there are some
classes of problems that can become so prohibitively large that
it is more appropriate to divide the problem itself into smaller
pieces and have separate processors work on these smaller,
more tractable pieces. A classic example of such a problem
is the Travelling Salesman Problem. The Travelling Salesman
Problem is a NP-Hard problem and as such is a fundamental
combinatorial optimisation problem [2]. The dynamic variant
DTSP, where the number of cities available may change
over time, is arguably even more difficult [3]. There have
been numerous attempts to solve TSP using biology inspired
algorithms.

The Genetic Algorithm (GA) was inspired by the concepts
of natural selection and survival of the fittest [4]. Due to



the nature of traditional crossover and mutation operators,
building valid solution permutations is difficult. To counteract
these issues several alternatives have been proposed. Davis
[5] proposes Ordered Crossover (OX), which chooses a sub-
sequence of a tour from one parent and then preserves the
relative order from the other parent. Goldberg and Lingle [6]
define Partially Mapped Crossover (PMX) operation; this uses
two crossover points that define the interchanging mappings.
Exchange Mutation [7] is a 2-opt heuristic that exchanges
positions of cities. There are many variations of GAs that
make use of multiple populations through co-evolution, or
that assemble smaller components of solutions together (e.g.
classifier systems) [4]. From this perspective, the Artificial
Ecosystem Algorithm presented in the next section can be
regarded as a new type of multi-species, distributed classifier
system.

Not all such algorithms evolve solutions. There are several
algorithms inspired by the collective behaviour of decentral-
ized and self-organized organisms. For example, Ant Colony
Optimization (ACO) is based on the foraging behaviour of
ant colonies [8]. Artificial ants build solutions and exchange
information through an indirect communication mechanism
(stigmergy [9]). Ant System (AS) [10] was originally used
to solve TSP and a successful variant is Max-Min Ant System
[11]. A different approach is taken by the Particle Swarm
Optimisation Algorithm (PSO), which models the social be-
haviour of bird flocking. PSO optimizes problems through
exchanging information between individuals. Particles are first
randomly generated, they then move towards an optimal
solution by adjusting their velocities and positions through
multiple iterations. PSO has also been hybridised with ACO
to allow improved performance [12]. Recently, Feng and Liao
[13] proposed a fuzzy adaptive learning algorithm designed
to overcome the shortcomings of PSO and is applied to large
scale TSP.

In another insect-inspired approach, the Bee Colony Op-
timization Algorithm (BCO) models the collective foraging
behaviour of honey bees. One of the pioneering works related
to BCO is Bee System [14], which is a hybrid of BCO with
GA, here BCO enables a local search and GA operates on
a global search level. Wong et al. [15] uses BCO with 2-
opt heuristic to solve TSP. Another example is the Firefly
Algorithm (FA) [16]. Fireflies produce short rhythmic flashes
of light that has two fundamental functions: to attract mating
partners (communication) and to attract potential prey. Jati
et al. [16] proposes an Evolutionary Discrete FA (EDFA)
focussing on using a simple form of FA to solve TSP. The
Bacterial Foraging Optimisation Algorithm (BFOA) was intro-
duced by Good and Sahin, it mimics the foraging behaviour
of E.coli bacteria as they search for energy such that they
can maximise nutrient consumption. When applied to TSP
BFOA found optimal solutions up to the max of 14 cities, but
as more cities were added performance was degraded [17].
Yet another algorithm modelled on birds, the Cuckoo Search
Algorithm (CS) [18], mimics the parasitic behaviour of female
cuckoo birds who lays eggs on a host birds nest. Each egg in

a nest represents a solution, and a cuckoo egg represents a
new solution. The aim is to use the new and potentially better
solutions (cuckoos) to replace a not-so-good solution in the
nests. CS has been adapted to solve TSP by introducing a
new category of cuckoo’s [19].

Many bio-inspired algorithms are based on a single species
rather than multiple interacting species; chromosome in GA,
birds in PSO, ant in ACO and so on. An ecosystem [1]
represents a community of biotic living organisms that are
organized into populations of species, the interactions between
these species, and the interactions with its abiotic non-living
environment. As described by McCormack [20] ecosystems
have powerful properties that need to be exploited. There
have been several simulations of ecosystems in the field of
Artificial Life including Daisyworld, which illustrates the Gaia
Hypothesis [21]; Tierra, which is an ecosystem of computer
programs that compete for CPU time and access to main
memory [22]; Avida, which is an evolutionary biology soft-
ware platform and has been used to investigate many aspects
of competitive and cooperative coevolution [23]. There also
have been some studies that take inspiration from ecological
systems. Kirley [24] models the effects of ecological envi-
ronmental dynamics on a population. Kirley [25] proposes an
evolutionary algorithm that is inspired from spatial interac-
tions and disturbances (natural disasters) within an ecosystem,
looking at how populations evolve in response to these events.
Another example is Invasive Weed Optimization (IWO) [26]
which takes inspiration from colonization of weeds as weed
is naturally very robust and adaptive, changing its behavior
in accordance with changes in the environment. Nevertheless,
despite these works, to date there has been very little work
on general purpose optimisation algorithms inspired by the
functioning of an Ecosystem.

III. ARTIFICIAL ECOSYSTEM ALGORITHMS

In this section we introduce the Artificial Ecosystem algo-
rithm. We first describe the basic AEA algorithm and how it
has been applied to the TSP. Then we describe two variations
of the AEAS: the AEAS (SOM) and AEAS (K-Means), and
apply them to TSP and DTSP. Finally we apply AEAS to
the DTSP in order to assess its ability to learn and adapt to
changing problems.

The dynamic TSP provides an improved theoretical model
of unpredictable and changing real world situations. Its chang-
ing infrastructure means that it resembles applications such
as routing in mobile ad-hoc networks. In the dynamic TSP
cities can be in an enabled or disabled state, if cities are
enabled they can form part of a tour and vice versa. At specific
intervals during the running of the algorithm, a city is selected
at random, if its state is enabled then it is switched to disabled
and vice versa.

For all versions of the AEA, the following definitions are
valid:

1) An Environment is the physical non-living environment
that Individuals will be interacting with, normally for-
mulated as an optimisation problem to be solved.



2) An Individual represents one or more segments of the
solution; connecting these segments forms a solution
segment or complete solution. Each individual encap-
sulates a fitness value Fi representing its quality, a flag
Pi which denotes whether it formed part of the best
solution so far, and, Gi, which is the generation at which
the Individual was a part of the solution.

3) The Population represents a group of individuals (du-
plicate individuals in the same population is permitted).

4) Select refers to tournament based selection.
5) Potential Parents are generated by splitting the current

solution into multiple chunks. These chunks are then
used by the crossover phase to generate new individuals.

6) Turnover is the percentage of individuals who are re-
moved and then replaced after each generation.

7) The Fitness Value (Fi) the fitness function is a weighted
sum in Eqn1 that determines the fitness value. The
fitness value is used in each iteration to evaluate the
quality of the proposed solution. The weights were set
after preliminary tuning experiments and they enable us
to enforce the importance of different terms.

Fi = w1Fvi + w2Fci + w3Fti (1)

Where, Fi = Fitness value for individual i. Fvi =
Normalised city count. Fci = Normalised cost for
individual i. Fti = Normalised tour cost. w1 = Weight
for Fvi. w2 = Weight for Fvi. w3 = Weight for Fti.

Fvi =
ct
C

(2)

Where, ct = Cities visited by the tour. C = Total
number of cities.

Fci =
ici − Cm

Cx − Cm
(3)

Where, ici = Cost of individual i. Cx = Maximum
individual cost. Cm = Minimum individual cost.

Fti =
tc − Tm

Tx − Tm
(4)

Where, tc = Cost for individual i. Tx = Maximum tour
cost. Tm = Minimum individual cost.

A. Basic AEA

Algorithm 1 provides the basic Artificial Ecosystem Algo-
rithm. A population of random individuals is created, where an
individual is a fragment of an overall solution. From that pop-
ulation a new solution is assembled using tournament selection
of individuals. Potential Parents is a pool of individuals created
using individuals who have been selected to be part of a
solution segment. The REMOVEANDREPLACEINDIVIDUALS
proceduce uses tournament based selection to remove unfit
individuals, then replaces them with individuals created using
crossover of parents obtained from the pool of Potential
Parents. As duplicate individuals are permitted, a procedure

BALANCEFITNESS has been devised to ensure that duplicates
have the same fitness.

Algorithm 1 Basic AEA

Initialise Environment E
Initialise Population P
Set iteration counter to 1
loop

Pick a random individual i1
loop

Select Tn compatible individuals
Find individual i2 with highest Fi

Add i2 to overall solution and update Pi and Gi

until Overall solution is complete
Update Potential Parents
Update Fi for all individuals in the solution
REMOVEANDREPLACEINDIVIDUALS
BALANCEFITNESS
Evaluate overall solution
Increase Iteration counter

until Stopping criteria is met

procedure REMOVEANDREPLACEINDIVIDUALS
R = Turnover * P
loop

Select Tm individuals based on their fitness
Remove Individual with lowest Fi

until R individuals have been removed
loop

Use crossover to create Individuals
until R individuals have been added

end procedure

procedure BALANCEFITNESS
Fu = 0
loop

Pick a random pair of individuals i1 and i2
Fitness of i1 is Fi1; fitness of i2 is Fi2

if Fi1 = 0 and Fi2 > 0 then
Fi1 = Fi2

else if Fi1 > 0 and Fi2 = 0 then
Fi2 = Fi1

end if
Fu++

until Fu Individual pairs have been picked
end procedure

1) AEA applied to TSP: In the Travelling Salesman Prob-
lem, a salesman is given a map of n cities and he must travel
to each city once and return to the start point with minimal
travel distance. Given an undirected graph the outcome is a
Hamiltonian cycle with minimal cost. For a symmetric TSP,
the number of routes is (n − 1)!/2. For a large number of
cities the search space is tremendous and trying to brute force
through all the different permutations of routes is computa-



tionally very expensive.
Algorithm 2 illustrates how the basic AEA can be applied

to the TSP. Here the Environment holds all the cities. An
Individual represents a subpath (the movement between two
cities). Multiple individuals connected together form a Tour
which is essentially the complete solution to the TSP, it is a
path that goes through all the cities once and then returns to
the start point. The Fitness Value Fi is updated according to
Eqn1.

Algorithm 2 Basic AEA Applied to TSP

Initialise Environment E
Initialise Population P
Set iteration counter to 1
loop

Pick a random individual i1
Get the last City visited in i1 and
Find all available Individuals
loop

Select Tn compatible individuals
Find individual i2 with highest Fi

Add i2 to overall solution and update Pi and Gi

until Overall solution is complete
Update Fi for all individuals in the solution
REMOVEANDREPLACEINDIVIDUALS
BALANCEFITNESS
Evaluate overall solution
Increase iteration counter

until Stopping criteria is met

B. Artificial Ecosystem Algorithm with Species

The basic AEA demonstrates how a whole solution is built
from smaller fragments in a single evolving population. How-
ever, an ecosystem is an interactive system that operates as a
whole. It holds many populations, each of which represents
a group of individuals of a particular species. The Artificial
Ecosystem Algorithm with Species (AEAS) is based on this
concept. In the AEAS, different species of individuals focus
on different segments of the overall problem. The individuals
in each species are chosen to form a valid segment of the
solution as in the AEA, and they evolve in each species as in
the AEA. However, overall solutions are now formed from the
combination of solution segments in each species. To initialise
the AEAS it is necessary to partition the overall problem into
segments, where a species will address each segment. For a
problem such as the TSP, this can be achieved using clustering
algorithms to find groups of neighbouring cities. It is important
to note that the Basic AEA is applied on a per species basis,
each species is a separate unit and therefore solution segments
for each species can be formed in parallel and on different
processors.

1) Artificial Ecosystem Algorithm with Species applied to
TSP: The AEA with species (AEAS) splits the problem into
small segments of cities, an optimal tour is constructed for

each segment, the subtours are then connected to build a
complete tour, see algorithm 3. The final solutions formed
from these multiple segments is valid but not necessarily
optimal. This is because there exist internal constraints that
stop the algorithm from building invalid permutations of
solutions. It is possible to use many different algorithms to
perform the problem decomposition. Here we describe the use
of two alternatives for TSP: the Self Organising Map (SOM)
and K-Means clustering. However, the AEAS may use any
suitable methods for problem decomposition. It is not always
evident which clustering algorithm will be superior for a given
problem. This is outlined by the Impossibility Theorem [27],
which states that no clustering algorithm can satisfy all data
clustering axioms.

a) AEAS (SOM): Self Organising Map (SOM) is an
unsupervised learning algorithm that allows the mapping from
high dimensional space to low dimensional space, whilst
preserving the topological structure. In this study we map to a
2-dimensional space. SOM is an artificial neural network that
works in two phases; training and mapping. In the training
phase, competitive learning is used by neurons to learn from
a sample, thereby allowing a topological ordering of the map.
In the mapping phase, input vectors are classified. There are
three important variables that must be adjusted to suit the
problem size: the height and width of the 2-dimensional map
and the neighborhood radius that determines how much the
neighborhood is influenced by [28].

b) AEAS (K-means): The number of clusters K is first
chosen and the centroids are initialised. Choosing the value
of K is one of the most difficult problems in clustering data
[29], we used trial and error preliminary experiments to set
the value for K. The cities are then assigned to clusters based
on their spatial proximity to the respective centroids. Next the
centroids are recalculated and continuously updated based on
the spatial positions of all the cities in the cluster until there
is no movement.

Algorithm 3 AEA with Species Applied to TSP/ Dynamic
TSP

Initialise Environment E
loop

SOM/K-means to decompose TSP to clusters of cities
for each Cluster Cn do

Create a population Pn of individuals
end for
for each Species do

Apply Basic AEA
end for
Connect all the segments to form a complete solution
Evaluate overall solution

until Stopping criteria is met

2) Artificial Ecosystem Algorithm with Species applied to
the Dynamic TSP: AEAS is applied to the DTSP with one
difference: The AEAS applied to the TSP will terminate when
there is no improvement in the current global optimum for



a set number of iteration. In contrast, the AEAS applied to
the DTSP terminates when the algorithm has reached the
maximum iteration count. This is is because the DTSP is a
constantly changing problem with no fixed optimum solution.

IV. EXPERIMENTS

Three experiments are performed to investigate AEA and
AEAS’s ability to solve different instances of TSP and DTSP.
All the Artificial Ecosystem Algorithms were developed in
Java. The following TSP data was used:

1) Artificial Circle TSP data: Equidistant 2D points lying
on a circle were constructed with an origin (450,350).
Six circle datasets were created where the number of
cities (c) and radius (r) were c:6 r:450, c:12 r:465, c:18
r:468, c:24 r:469, c:30 r470, c:54 r:470.

2) Real TSP data from TSPLIB [30] namely: Eil51, which
is a 51 city problem and Eil75, which is a 75 city
problem.

In order to ensure the reliability of these experiments we
performed 30 independent runs. We then measured perfor-
mance by calculating the deviation from the optimal tour
cost using Eqn5. In addition to this we measure minimum,
maximum and average values for tour cost as well as the
number of evaluations used to find the optimal tour cost.

D = 100
c̄− c∗

c∗
(5)

Where, D = Deviation from optimal. c̄ = Mean tour cost.
c∗ = Optimal tour cost.

The following settings hold for all experiments. The values
of K clusters, map width, map height and neighborhood
were set by running trial and error experiments and the best
combination of values found were then used in the formal
experimental process.

Turnover 20%
MaxGen 100 000

Tn 10%
Tm 10%
w1 0.8
w2 0.1
w3 0.1

TABLE I: Experimental Setup

A. Experiment 1

This experiment establishes the effects of population size
on the different Artificial Ecosystem Algorithms and also
demonstrates the effectiveness of the AEAS compared to the
basic AEA.

1) Setup: The same experiment was performed for all
three versions of the AEA. Tables II, IV and III provide the
parameter values varied in this experiment.

Cities 6 12 18 24 30 54
Population 500 1000 2000 4000 6000 8000

TABLE II: Baseline AEA Experimental Setup

Cities 6 12 18 24 30 54
Population 300 500 700 1000 2000
Map width 2 3 4 6 8 10
Map hieght 2 3 4 6 8 10

Neighborhood 2 4 6

TABLE III: SOM AEA Experimental Setup

Cities 6 12 18 24 30 54
Population: 300 500 700 1000 2000
K Cluster: 2 4 6 10

TABLE IV: K-means AEA Experimental Setup

2) Results: Fig. 1a, 1b and 1c represent how much the
solution deviated from the optimal using different number
of populations for a given number of cities, where zero (no
deviation) represents the optimum. Please note the scale on
Fig. 1c is different as the deviation from optimal was very
small.

The Basic AEA achieved optimal solutions for smaller TSP
problem sizes (cities= 6 and 12) and for lower population sizes,
but it was unable to cope with larger problems. Varying the
population size for the Basic AEA provided unexpected results
- in general smaller population sizes provided solutions closer
to the optimal. This may be because of the way tournament
selection is used to assemble complete solutions - larger
population sizes may make it harder to find good quality
individuals to assemble into good overall solutions.

Both versions of AEAS provided considerably improved
results. AEAS (K-means) achieved excellent solutions for
all TSP problems, and again showed that smaller population
sizes seem to be more effective. AEAS (SOM) achieved very
good results, although not quite as good as AEAS (K-means).
Interestingly AEAS (SOM) appeared to show best results for
specific and different population sizes for each TSP size; the
exact cause of this behaviour remains to be investigated.

B. Experiment 2

This experiment compares the different algorithms in terms
of the number of evaluations used to find a solution and the
deviation from the best solution so far.

1) Setup: In this experiment we fix the population size to
500 and compare all three AEA algorithms by varying the
problem size. Table V describes the parameters varied in this
experiment.

Cities 6 12 18 24 30 54
K Cluster 4 6 8 10
Map width 2 3 4 6 8 10
Map hieght 2 3 4 6 8 10

Neighborhood 2 4 6

TABLE V: Baseline, SOM and K-means AEA Experimental
Setup



(a)

(b)

(c)

Fig. 1: Deviation from optimal for different TSP sizes against
population sizes (a) Basic AEA. (b) AEAS (SOM). (c) AEAS
(K-means). It should be noted that the scale for the Deviation
from Optimal axis for the three figures is radically different,
clearly indicating the poor relative performance of the basic
AEA compared to AEAS.

Trial and error experiments were used to set the values for K
clusters and SOM height, width and neighborhood. Different
combinations of the above values were used for different city
sizes.

2) Results: Fig. 2a and 2b summarise performance of the
basic AEA, AEAS(SOM) and AEAS(K-means) algorithms in
terms of the evaluations and the deviation from optimal. The
figures show that the baseline AEA does not scale well with
an increased TSP problem size, the number of evaluations
required to form a solution drastically increased and solution
obtained massively deviated from the optimal tour cost.

(a)

(b)

Fig. 2: (a) Comparison of number evaluations needed by AEA
methods for different TSP sizes - using a logarithmic scale.
(b) Comparison of deviation from optimal of AEA methods
for different TSP sizes.

The results show that AEAS scales very well with in-
creased problem complexity.The AEAS (K-Means) generally
outperforms the SOM in terms of deviation from optimum,
however the AEAS (SOM) generally used fewer evaluations.
The difference is interesting and may point to the use of AEA
(K-Means) as the approach with the most potential for the
future.

C. Comparison with other approaches

It is important to examine the capabilities of this new
method in the context of results reported in the literature for
other bio-inspired algorithms applied to TSP. Table 6 shows
the results of AEAS (SOM) and AEAS (K-means) for different
TSPs compared to GA, BCO and IWD.

For the larger TSP problems tested here, AEAS performs
extremely well - as good as or better than other bio-inspired
methods reported in the literature. For 101 cities AEAS
also finds near optimal solutions, clearly demonstrating the
potential of this approach.

D. Experiment 3

Ecosystems have the ability to adapt to changing conditions
over time [24]. We therefore perform a final experiment to



TABLE VI: Comparative Analysis, results were taken from [31] [32] and represent the best results over different runs

File Cities Opt AEAS(SOM) AEAS(K-means) GA ACO IWD
Eil51 51 426 452 445.5 445.8 427 471
Eil76 76 538 569 555 676 559

Eil101 101 629 631.6 670.3

Cities 24 30 54
K Cluster 5
Population 200
DP Interval 10 50 100

TABLE VII: Dynamic TSP Experimental Setup

analyse AEAS’s ability to find solutions to dynamic problems.
To achieve this we apply the AEAS (K-means) to the DTSP.

1) Setup: Table VII describes the parameters used in this
experiment. The DTSP gains or loses a city randomly every
DP interval, this determines how frequently the problem
changes. The termination criteria is a fixed maximum number
of iterations. We focus on looking at AEAS’s behaviour when
applied to the DTSP with 30 cities, as preliminary experiments
indicate the algorithm performs in a similar manner for DTSP
with fewer or more cities and correspondingly fewer or more
clusters.

2) Results: Fig. 3a, 3b and 3c show that for a 30 city
problem, the algorithm takes on average around 60 evaluations
to find an optimal solution. However, when the number of
cities changes, subsequent learning is extremely rapid - an
average about 4 iterations. The lower the DTSP interval is,
the less chance the algorithm has to recover and therefore the
performance is degraded.

We define the recovery time to be the amount of time
(number of evaluations) it takes for the algorithm to return
to an optimal state. Fig. 4 shows the number of changes to
the problem. The x axis shows the number of changes to the
problem so far in the algorithm, the y axis shows the average
number of evaluations it takes to find a solution. This graph
shows very clearly that once the algorithm learns the problem
it takes very little time to recover after subsequent changes of
the problem space. These are very promising results as they
indicate that the algorithm has a natural ability to retain and
reuse previous good solutions and fragments of good solutions,
unlike other population-based algorithms which converge on
current solutions and cannot retain earlier solutions.

Fig. 4: Average time to recover against DTSP problem
changes.

(a)

(b)

(c)

Fig. 3: (a) Solutions percentage error for a DTSP interval of
100. (b) Solutions percentage error for a DTSP interval of 50.
(c) Solutions percentage error for a DTSP interval of 10.

V. CONCLUSION

Evolution and the behaviour of interacting members of
populations have long been an inspiration for designers of
bio-inspired algorithms. However, the combined behaviour of
many species as they evolve, adapt and combine to form a



single ecosystem, had not been used as inspiration previously.
This work presented the first ecosystem-inspired algorithm
designed to take advantage of highly distributed computer
architectures and tackle large-scale problems. Just as an
ecosystem comprises of many separate components that adapt
together to form a single synergistic whole, the Artificial
Ecosystem Algorithm (AEA) solves a problem by adapting
subcomponents of a problem such that they fit together and
form a single optimal solution. This work also introduced the
AEAS - an AEA with species of components representing sub-
parts of the solution that evolve together and cooperate with
the other species. AEAS data decomposition is not limited
to SOM and K-means, different levels of clustering can be
used to expose different dimensions of the data. For example,
density Based Clustering can be used to avoid the formation
of highly packed clusters. It is also possible to look at the
topology of the search space and according to its properties
select an appropriate decomposition method. The AEA and
two versions of the AEAS were evaluated by application to
the symmetric Travelling Salesman Problems of varying size.
The experiments showed that smaller population sizes were
more effective, and that the use of species in AEAS to solve
segments of the solution enabled the algorithm to find better
solutions compared to AEA. Indeed comparisons of AEAS
with the performance of other more established bio-inspired
methods provided very encouraging results. Finally, experi-
ments where AEAS (K-Means) was applied to the Dynamic
TSP showed promising results as this method was able to adapt
to changing problems very effectively and also retain good
solutions and fragments of solutions to dynamically changing
problems. This is significant as it makes this algorithm a
potential candidate for real world problems such as routing
in ad hoc or dynamically changing networks.

REFERENCES

[1] W. Gurney and R. M. Nisbet, Ecological dynamics. Oxford University
Press, Oxford, 1998.

[2] G. Reinelt, The traveling salesman: computational solutions for TSP
applications. Springer-Verlag, 1994.

[3] C. Li, M. Yang, and L. Kang, “A new approach to solving dynamic
traveling salesman problems,” in Simulated Evolution and Learning.
Springer, 2006, pp. 236–243.

[4] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[5] L. Davis, “Applying adaptive algorithms to epistatic domains.” in IJCAI,
vol. 85, 1985, pp. 162–164.

[6] D. E. Goldberg and R. Lingle Jr, “Alleleslociand the traveling salesman
problem,” in Proceedings of the 1st international conference on genetic
algorithms. L. Erlbaum Associates Inc., 1985, pp. 154–159.

[7] W. Banzhaf, Biological Cybernetics, vol. 64, no. 1, pp. 7–14, 1990.
[8] M. Dorigo and M. Birattari, “Ant colony optimization,” in Encyclopedia

of Machine Learning. Springer, 2010, pp. 36–39.
[9] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and

stigmergy,” Future Generation Computer Systems, vol. 16, no. 8, pp.
851–871, 2000.

[10] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, pp. 53–66, 1997.

[11] T. Stutzle and H. Hoos, “Max-min ant system and local search for the
traveling salesman problem,” in Evolutionary Computation, 1997., IEEE
International Conference on. IEEE, 1997, pp. 309–314.

[12] P. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni, “Particle
swarm and ant colony algorithms hybridized for improved continuous
optimization,” Applied mathematics and computation, vol. 188, no. 1,
pp. 129–142, 2007.

[13] H.-M. Feng and K.-L. Liao, “Hybrid evolutionary fuzzy learning scheme
in the applications of traveling salesman problems,” Information Sci-
ences, vol. 270, pp. 204–225, 2014.

[14] T. Sato and M. Hagiwara, “Bee system: finding solution by a concen-
trated search,” in Systems, Man, and Cybernetics, 1997. Computational
Cybernetics and Simulation., 1997 IEEE International Conference on,
vol. 4. IEEE, 1997, pp. 3954–3959.

[15] L.-P. Wong, M. Y. H. Low, and C. S. Chong, “Bee colony optimization
with local search for traveling salesman problem,” International Journal
on Artificial Intelligence Tools, vol. 19, no. 03, pp. 305–334, 2010.

[16] G. K. Jati et al., “Evolutionary discrete firefly algorithm for travelling
salesman problem,” in Adaptive and Intelligent Systems. Springer, 2011,
pp. 393–403.

[17] B. Good and F. Sahin, “Bacterial foraging approach to classic traveling
salesman problem,” in 2006 International Conference on Computational
Science and Education, 2006.

[18] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,” in Nature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress
on. IEEE, 2009, pp. 210–214.

[19] A. Ouaarab, B. Ahiod, and X.-S. Yang, “Improved and discrete cuckoo
search for solving the travelling salesman problem,” in Cuckoo Search
and Firefly Algorithm. Springer, 2014, pp. 63–84.

[20] J. McCormack, “Artificial ecosystems for creative discovery,” in Pro-
ceedings of the 9th annual conference on Genetic and evolutionary
computation. ACM, 2007, pp. 301–307.

[21] A. J. Watson and J. E. Lovelock, “Biological homeostasis of the global
environment: the parable of daisyworld,” Tellus B, vol. 35, no. 4, pp.
284–289, 1983.

[22] T. S. Ray, “Evolution, ecology and optimization of digital organisms,”
Santa Fe, 1992.

[23] C. Adami and C. T. Brown, “Evolutionary learning in the 2d artificial
life system avida,” in Artificial life IV, vol. 1194. Cambridge, MA:
MIT Press, 1994, pp. 377–381.

[24] J. R. Dyer and P. J. Bentley, “Plantworld: Population dynamics in
contrasting environments.” in GECCO Late Breaking Papers, 2002, pp.
122–129.

[25] M. Kirley, “A cellular genetic algorithm with disturbances: Optimisation
using dynamic spatial interactions,” Journal of Heuristics, vol. 8, no. 3,
pp. 321–342, 2002.

[26] A. R. Mehrabian and C. Lucas, “A novel numerical optimization
algorithm inspired from weed colonization,” Ecological Informatics,
vol. 1, no. 4, pp. 355–366, 2006.

[27] J. Kleinberg, “An impossibility theorem for clustering,” Advances in
neural information processing systems, pp. 463–470, 2003.

[28] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[29] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[30] G. Reinelt, ORSA journal on computing, vol. 3, no. 4, pp. 376–384,
1991.

[31] G. Vahdati, M. Yaghoubi, M. Poostchi, and S. Naghibi, “A new approach
to solve traveling salesman problem using genetic algorithm based
on heuristic crossover and mutation operator,” in Soft Computing and
Pattern Recognition, 2009. SOCPAR’09. International Conference of.
IEEE, 2009, pp. 112–116.

[32] D. Gupta, “Solving tsp using various meta-heuristic algorithms,” Inter-
national Journal of Recent Contributions from Engineering, Science &
IT (iJES), vol. 1, no. 2, pp. pp–26, 2013.


