
Multiagent Router Throttling:
Decentralized Coordinated Response against DDoS Attacks

Kleanthis Malialis and Daniel Kudenko
Department of Computer Science

University of York, UK
{malialis,kudenko}@cs.york.ac.uk

Abstract

Distributed denial of service (DDoS) attacks constitute
a rapidly evolving threat in the current Internet. In this
paper we introduce Multiagent Router Throttling, a de-
centralized DDoS response mechanism in which a set
of upstream routers independently learn to throttle traf-
fic towards a victim server. We compare our approach
against a baseline and a popular throttling technique
from the literature, and we show that our proposed ap-
proach is more secure, reliable and cost-effective. Fur-
thermore, our approach outperforms the baseline tech-
nique and either outperforms or has the same perfor-
mance as the popular one.

Introduction
One of the most serious threats in the current Internet is
posed by distributed denial of service (DDoS) attacks, which
target the availability of a system (Mirkovic and Reiher
2004). A DDoS attack is a highly coordinated attack where
the attacker (or attackers) takes under his control a large
number of hosts, called the botnet (network of bots), which
start bombarding the target when they are instructed to do so.
Such an attack is designed to exhaust a server’s resources or
congest a network’s infrastructure, and therefore renders the
victim incapable of providing services to its legitimate users.

Router Throttling (Yau et al. 2005) is a popular approach
to defend against DDoS attacks, where the victim server sig-
nals a set of upstream routers to throttle traffic towards it.
In this paper, we introduce Multiagent Router Throttling, a
novel throttling approach where multiple independent rein-
forcement learning agents are installed on a set of upstream
routers and learn to throttle traffic towards the victim server.
Our contributions in this paper are the following:

• Decentralized response: One of the novel characteris-
tics of our approach is its decentralized architecture and
response to the DDoS threat. We compare our approach
against the Baseline Router Throttling and AIMD Router
Throttling (Yau et al. 2005) techniques, a baseline and a
popular throttling technique respectively from the litera-
ture, and we show that our proposed approach is more
secure, reliable and cost-effective.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• Multiagent learning: Due to the high complexity and
multidimensionality of the DDoS threat, multiagent rein-
forcement learning creates an automated and effective re-
sponse against DDoS attacks. The network environment
is highly dynamic and our approach provides adaptable
behaviors over frequent environmental changes. We eval-
uate our approach in a series of attack scenarios with in-
creasing sophistication and we show that our approach
outperforms the Baseline (Yau et al. 2005) technique, and
either outperforms or has the same performance as the
AIMD (Yau et al. 2005) technique.

• Intrusion response: There is an extensive literature re-
garding the application of machine learning to intrusion
detection, specifically anomaly detection where no ac-
tion is performed beyond triggering an intrusion alarm
when something anomalous is detected. Our work inves-
tigates the applicability of machine learning to intrusion
response. In this paper, we investigate the applicability of
multiagent reinforcement learning to DDoS response.

Background
Reinforcement Learning
Reinforcement learning is a paradigm in which an active
decision-making agent interacts with its environment and
learns from reinforcement, that is, a numeric feedback in the
form of reward or punishment (Sutton and Barto 1998). The
feedback received is used to improve the agent’s actions.
Typically, reinforcement learning uses a Markov Decision
Process (MDP) as a mathematical model.

An MDP is a tuple 〈S,A, T,R〉, where S represents the
state space, A represents the action space, T (s, a, s′) =
Pr(s′|s, a) is the transition probability function which re-
turns the probability of reaching state s′ when action a is ex-
ecuted in state s, andR(s, a, s′) is the reward function which
returns the immediate reward r when action a executed in
state s results in a transition to state s′. The problem of solv-
ing an MDP is to find a policy (i.e. a mapping from states
to actions) which maximises the accumulated reward. When
the environment dynamics (transition probabilities and re-
ward function) are available, this task can be solved using
dynamic programming (Bertsekas and Tsitsiklis 1996).

In most real-world domains, the environment dynamics
are not available and therefore the assumption of perfect



problem domain knowledge makes dynamic programming
to be of limited practicality. The concept of an iterative ap-
proach constitutes the backbone of the majority of reinforce-
ment learning algorithms. These algorithms apply so called
temporal-difference updates to propagate information about
values of states, V (s), or state-action, Q(s, a), pairs. These
updates are based on the difference of the two temporally
different estimates of a particular state or state-action value.
The SARSA algorithm is such a method (Sutton and Barto
1998). After each real transition, (s, a)→ (s′, r), in the en-
vironment, it updates state-action values by the formula:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (1)

where α is the rate of learning and γ is the discount factor.
It modifies the value of taking action a in state s, when af-
ter executing this action the environment returned reward r,
moved to a new state s′, and action a′ was chosen in state s′.

The exploration-exploitation trade-off constitutes a crit-
ical issue in the design of a reinforcement learning agent.
It aims to offer a balance between the exploitation of the
agent’s knowledge and the exploration through which the
agent’s knowledge is enriched. A common method of doing
so is ε-greedy, where the agent behaves greedily most of the
time, but with a probability ε it selects an action randomly.
To get the best of both exploration and exploitation, it is ad-
vised to reduce ε over time (Sutton and Barto 1998).

Applications of reinforcement learning to multiagent sys-
tems typically take one of two approaches; multiple indi-
vidual learners or joint action learners (Claus and Boutilier
1998). The former is the deployment of multiple agents each
using a single-agent reinforcement learning algorithm. The
latter is a group of multiagent specific algorithms designed
to consider the existence of other agents.

Multiple individual learners assume any other agents to
be a part of the environment and so, as the others simul-
taneously learn, the environment appears to be dynamic as
the probability of transition when taking action a in state
s changes over time. To overcome the appearance of a dy-
namic environment, joint action learners were developed
that extend their value function to consider for each state the
value of each possible combination of actions by all agents.

The consideration of the joint action causes an expo-
nential increase in the number of values that must be cal-
culated with each additional agent added to the system.
Typically, joint action learning algorithms have only been
demonstrated in trivial problem domains whilst applications
in complex systems most often implement multiple individ-
ual learners. For these reasons, this work will focus on mul-
tiple individual learners and not joint action learners.

Distributed Denial of Service Attacks
DDoS attacks (Mirkovic and Reiher 2004) constitute a ma-
jor and evolving problem in the current Internet. Such an
attack targets the availability of computer or network re-
sources, thus not allowing its legitimate users to access re-
sources in a timely and efficient manner. The most common
type of DDoS attacks is the flooding attacks, where the at-
tacker starts bombarding the victim by sending large vol-

umes of traffic towards it, thus causing severe congestion to
the victim.

A DDoS attack is a highly coordinated attack; the strategy
behind it is described by the agent-handler model (Mirkovic
and Reiher 2004). The model consists of four elements, the
attackers, handlers, agents and victim. A handler (or mas-
ter) and the agent (or slave or deamon or zombie) are hosts
compromised by the attackers, which constitutes the botnet.
Specifically, the attackers install a malicious software called
Trojan on vulnerable hosts to compromise them, thus being
able to communicate with and control them. The attackers
communicate with the handlers, which in turn control the
agents in order to launch a DDoS attack. Typically, the users
of the agent systems are not aware of their involvement in a
coordinated DDoS attack.

The DDoS threat is challenging because of the following
reasons (Mirkovic, Robinson, and Reiher 2003):
• Distributed traffic: The traffic flows originate from agent

machines spread all over the Internet, which they all ag-
gregate at the victim.

• Large volume: The large volume of the aggregated traffic
is unlikely to be stopped by a single defense point near the
victim.

• Large number of agents: The number of compromised
agent machines is large, thus making an automated re-
sponse a necessary requirement.

• Similarity to legitimate packets: DDoS packets appear
to be similar to legitimate ones, since the victim damage
is caused by the aggregated volume and not packet con-
tents. A defense system cannot make an accurate deci-
sion based on a packet-by-packet basis. It requires to keep
some statistical data in order to correlate packets and de-
tect anomalies, for example, “all traffic directed towards a
specific destination address”.

• Difficult to traceback: It is difficult to discover even the
agent machines, let alone the actual attackers, firstly be-
cause of the agent-handler model’s architecture, and sec-
ondly because of IP spoofing. With IP spoofing an at-
tacker hides his true identity by placing a fake source ad-
dress in the IP packet’s source address.
It is evident that to combat the distributed nature of these

attacks, a distributed coordinated defense mechanism is nec-
essary, where many defensive nodes, across different loca-
tions cooperate in order to stop or reduce the flood.

Related Work
This section describes work related to ours, focusing on dis-
tributed, cooperated defense mechanisms. One of the first
and most influential work in the field is the Aggregate-based
Congestion Control (ACC) and Pushback mechanisms by
Mahajan et al. (2002). The authors view the DDoS attacks as
a router congestion problem. The aggregate is defined as the
traffic that is directed towards a specific destination address
i.e. the victim (note that source addresses cannot be trusted
due to IP spoofing). A local ACC agent is installed on the
victim’s router which monitors the drop history. If the drop
history deviates from the normal, the local ACC reduces the



throughput of the aggregate by calculating and setting a rate-
limit.

Pushback is an optional cooperative mechanism. The lo-
cal ACC can optionally request from adjacent upstream
routers to rate limit the aggregate according to a max-min
fashion, a form of equal-share fairness, where bandwidth
allocation is equally divided among all adjacent upstream
routers. Rate limiting of the aggregate recursively propa-
gates upstream towards its sources. Pushback relies on a
contiguous deployment and requires a secure and reliable
communication. The major limitation of Pushback is that it
causes collateral damage, that is, when legitimate traffic is
punished, in this case rate limited, along with the attack traf-
fic. This is because the resource sharing starts at the con-
gested point, where the traffic is highly aggregated and con-
tains a lot of legitimate traffic within it.

Another popular work is the Router Throttling mechanism
by Yau et al. (2005). The authors view the DDoS attacks as a
resource management problem, and they adopt a proactive,
server-initiated approach, which according to Douligeris and
Mitrokotsa (2004) similar techniques to this are used by net-
work operators. The approach is as follows. When a server
operates below an upper boundary Us, it needs no protection
(this includes cases of weak or ineffective DDoS attacks).
When the server experiences heavy load, it requests from
upstream routers to install a throttle on the aggregate. In
case the server load is still over the upper boundary Us, the
server asks from upstream routers to increase the throttle. If
the server load drops below a lower boundary Ls, the server
asks the upstream routers to relax the throttle. The goal is
to keep the server load within the boundaries [Ls, Us] dur-
ing a DDoS attack. Router Throttling requires a secure and
reliable communication. However, unlike Pushback, it does
not require a contiguous deployment; it is more of an end-to-
end approach initiated by the server and therefore collateral
damage is significantly reduced.

The authors present the Baseline Router Throttling ap-
proach in which all upstream routers throttle traffic towards
the server, by forwarding only a fraction of it. This ap-
proach penalizes all upstream routers equally, irrespective of
whether they are well behaving or not. The authors then pro-
pose the AIMD (additive-increase/multiplicative-decrease)
Router Throttling algorithm, which installs a uniform leaky
bucket rate at each upstream router, and guarantees the max-
min fairness.

Multiagent Router Throttling
Network Model and Assumptions
The network model is similar to the one used by Yau et al.
(2005). A network is a connected graph G = (V,E), where
V is the set of nodes andE is the set of edges. All leaf nodes
are hosts and denoted by H . Hosts can be traffic sources
and are not trusted because of IP spoofing. An internal node
represents a router, which forwards or drops traffic received
from its connected hosts or peer routers. The set of routers
are denoted by R, and they are assumed to be trusted, i.e.
not to be compromised. This assumption is rational since it
is much more difficult to compromise a router than an end

host or server, because routers have a limited number of po-
tentially exploitable services (Keromytis, Misra, and Ruben-
stein 2002). The set of hosts H = V −R is partitioned into
the set of legitimate users and the set of attackers. A leaf
node denoted by S represents the victim server. Consider
for example the network topology shown in figure 1. It con-
sists of 20 nodes, these are, the victim server denoted by S,
13 routers denoted by R1 − R13 and six end hosts denoted
by H1−H6, which are traffic sources towards the server.

A legitimate user sends packets towards the server S at a
rate rl, and an attacker at a rate ra. We assume that the at-
tacker’s rate is significantly higher than that of a legitimate
user, that is, ra >> rl

1. This assumption is based on the
rationale that if an attacker sends at a similar rate to a le-
gitimate user, then the attacker must recruit a considerably
larger number of agent hosts in order to launch an attack
with a similar effect (Yau et al. 2005). A server S is assumed
to be working normally if its load rs is below a specified up-
per boundary Us, that is, rs ≤ Us (this includes cases of
weak or ineffective DDoS attacks). The rate rl of a legiti-
mate user is significantly lower than the upper boundary i.e.
rl << Us , where Us can be determined by observing how
users normally access the server.

Design

Agent Selection Different selection methods exist, all
based on the condition that ideally all of the aggregate traffic
passes through the selected agents, otherwise the attack can-
not be handled effectively, or even at all. For reasons of di-
rect comparison we have chosen a similar selection method
to the one used by Yau et al. (2005). Reinforcement learn-
ing agents are installed on locations that are determined by
a positive integer k, and are given by R(k) ⊆ R. R(k) is
defined as the set of routers that are either k hops away from
the server, or less than k hops away but are directly attached
to a host. The effectiveness of throttling increases with an in-
creasing value of k, although there is a limit since routers in
R(k) must belong to the same administrative domain (or col-
laborative domains). We emphasize that no topology model-
ing is required.

Consider for example the network topology shown in fig-
ure 1. Reinforcement learning agents are installed on the set
R(5), which consists of routersR6, R7 andR10. RouterR6
is included in the set R(5), although it is only 4 hops away
from the server, because it is directly attached to the host
H1.

State Space Each agent’s state space consists of a single
state feature, which is its average load. Recall that an aggre-
gate is defined as the traffic that is directed towards the vic-
tim. The average load is defined as the aggregate traffic ar-
rived at the router over the last T seconds, which we call the
monitoring window. We set the time step of the reinforce-
ment learning algorithm to be the same as the monitoring
window size.

1Dropping traffic based on host addresses can be harmful be-
cause, as mentioned, hosts cannot be trusted.



Figure 1: Network topology showing defensive routers

Action Space Each router applies throttling via proba-
bilistic traffic dropping. For example action 0.4 means that
the router will drop (approximately) 40% of its aggregate
traffic towards the server, thus setting a throttle or allow-
ing only 60% of it to reach the server. The action is applied
throughout the monitor window.

Completely shutting off the aggregate traffic destined to
the server by a router is prohibited, that is, the action 1.0
(which corresponds to 100% drop probability) is not in-
cluded in the action space of any of the routers. The reason
being that the incoming traffic likely contains some legiti-
mate traffic as well, and therefore dropping all the incoming
traffic facilitates the task of the attacker, which is to deny
legitimate users access to the server.

Reward Function Each agent has the same reward func-
tion and therefore receives the same reward or punishment.
Our proposed system has two important goals, which are di-
rectly encoded in the reward function.

The first goal is to keep the server operational, that is, to
keep its load below the upper boundary Us. When this is not
the case, our system receives a punishment of −1. The sec-
ond goal of our system is to allow as much legitimate traffic
as possible to reach the server during a period of conges-
tion. In this case, the system receives a reward of L ∈ [0, 1],
whereL denotes the rate of the legitimate traffic that reached
the server during a time step.

Simulation Results
To train and then evaluate our approach against others, we
carried out realistic simulations using the ns-2 network sim-
ulator. ns-2 is the most widely used open source network
simulator (Issariyakul and Hossain 2011). It is an advanced
network simulator which offers, among others, abstraction,
scenario generation and extensibility (Breslau et al. 2000).
Abstraction refers to the simulation at different levels of
granularity. Scenario generation refers to the creation of
complex traffic patterns, topologies and dynamic events. Ex-
tensibility allows users to add new functionality to the sim-
ulator.

During the training of our system, we keep track of, and
distinguish between legitimate and attack traffic (require-

ment for the reward function). However, we particularly em-
phasize that this is not the case during the evaluation of our
system. The rationale behind this is that the defensive sys-
tem can be trained in simulation, or in any other controlled
environment (e.g. small-scale lab, wide-area testbed), where
legitimate and DDoS packets are known a priori, and then
deployed in a realistic network, where such knowledge is
not available.

System Training
The network topology used for training our system is shown
in figure 1. As a convention, bandwidth and traffic rates
are measured in Mbit/s. The bottleneck link S − R1 has
a limited bandwidth of Us = 8, which constitutes the up-
per boundary for the server load. The rest of the links have
an infinite bandwidth, and all links have a delay of 10ms.
Defensive agents are installed on the set R(5), i.e. routers
R6, R7 and R10.

Our network model is based on the model used by Yau
et al. (2005). Legitimate users and attackers are evenly dis-
tributed, specifically each host is independently chosen to
be a legitimate user with probability p and an attacker with
probability q = 1 − p. We have chosen p and q to be 0.6
and 0.4 respectively. Each host sends fixed size UDP pack-
ets towards the server. Legitimate and attack packets are sent
at constant rates, randomly and uniformly drawn from the
range [0, 1] and [2.5, 6] respectively.

The Multiagent Router Throttling approach uses a lin-
ear decreasing ε-greedy exploration strategy with an initial
ε = 0.4 and the learning rate is set to α = 0.1. We have
used Tile Coding (Sutton and Barto 1998) for the repre-
sentation of the state space and have discretized the action
space into ten actions: 0.0, 0.1, ..., 0.9 which correspond to
0%, 10%..., 90% packet drop probabilities. We have also de-
cided to use the popular SARSA (Sutton and Barto 1998)
reinforcement learning algorithm, which was described ear-
lier. We are only interested in immediate rewards, therefore
we have set the discount factor to γ = 0; the resulting
SARSA update rule is shown in formula 2:

Q(s, a)← Q(s, a) + α [r −Q(s, a)] (2)

The system is trained for 62500 episodes, with no explo-
ration after the 50000th episode. All traffic starts at time
t = 0s and each episode has a duration of 60s. The mon-
itoring window is set to 2s. We particularly emphasize that
training attempts to cover all instances of the network model,
in other words, each episode is most likely to be different
from each other. This is because at the start of each episode
a new network instance is generated i.e. we re-choose the
legitimate users, attackers and their rates according to the
model. Consider the network topology shown in figure 1. In
the first episode for example, there may be two attackers,
let’s say H1 and H3. In the second episode there may also
be two attackers, but different ones, let’s say H2 and H5.
The third episode may have the same attackers as the first
episode, but their sending rates are different. Therefore, we
have trained our system in a very dynamic environment. It is
very important to note that during the training phase, our



Figure 2: System training

system learns the “best” policy for all network instances,
which can be different from the optimal policy of a single
network instance.

We plot the last reward of each episode. Figure 2 presents
the average rewards over 20 system trainings. It is clear that
the system learns and improves over time until it finally con-
verges. It is important to note that even if the corresponding
“best” actions are performed in each episode, it is likely that
different rewards will be yielded (and hence the shape of the
graph).

Evaluation Results
We decided to evaluate our approach against the Baseline
and the popular AIMD Router Throttling (Yau et al. 2005)
approaches described earlier. These approaches use a lower
boundary Ls = 6 and the same upper boundary Us = 8 as
our approach. Other control parameters are configured based
on values and ranges recommended by their authors. As far
as our approach is concerned, each reinforcement learning
agent uses its policy learned during the system training.

For evaluation we randomly sampled 50 episodes (in-
cludes only effective DDoS attacks) each of a duration of
120s. We use the same monitoring window size as previ-
ously, that is, 2s. Legitimate traffic is started at t = 0s and
stopped at t = 120s. Attack traffic lasts for 100s; it is started
at t = 10s and stopped at t = 110s. Evaluation is performed
in six scenarios with different attack dynamics (Mirkovic
and Reiher 2004):

• Constant rate attack: The maximum rate is achieved im-
mediately when the attack is started.

• Increasing rate attack: The maximum rate is achieved
gradually over 50s.

• Pulse attack: The attack rate oscillates between the maxi-
mum rate and zero. The duration of the active and inactive
period is the same and represented by T . We create 3 dif-
ferent attacks namely the long, medium and short pulse
attacks which use a period of T = 10s, T = 4s and
T = 2s respectively. Note that a short pulse has the same
value as the system’s monitoring window.

Figure 3: Evaluation results

• Group attack: Attackers are split into two groups and
each group performs simultaneously a different attack
pattern. We have chosen the first group to perform a con-
stant rate attack, and the second to perform a medium
pulse attack. For this case, we retook a random sample
of 50 episodes such that in each episode there are at least
two attackers, one for each group.

We emphasize that these patterns have not been previ-
ously seen by our system during the training period. Fur-
thermore, to make the evaluation more realistic, the legiti-
mate packets’ interarrival times follow a Pareto distribution.
Again, this is different from what has been used for the train-
ing of our system.

Performance is measured as the percentage of legitimate
traffic that reached the server. Figure 3 shows the average
performance over the 20 policies learned during the system
training, for the six types of attacks; error bars show the stan-
dard error around the average. In all scenarios, the Multia-
gent approach outperforms the Baseline Router Throttling
approach (the differences are statistically significant). Simi-
larly, in almost all scenarios, the AIMD approach also out-
performs the Baseline approach. Furthermore, our approach
has the same performance as the AIMD approach for the
scenarios involving the constant rate, increasing rate and
long pulse attacks (the differences are not statistically dif-
ferent). Most importantly, Multiagent Router Throttling out-
performs the AIMD approach in the scenarios involving the
medium pulse, short pulse and group attacks. Noteworthy is
the fact that in the case of short pulse attacks, where their
period is the same as the monitoring window, the AIMD ap-
proach performs worse than the Baseline.

Discussion
Advantages
Security The Baseline and AIMD throttling approaches
are server-initiated, that is, the server controls and sends the
throttle signals to the upstream routers. However, they are
based on the assumption that either the server and the net-



work infrastructure remain operational during the DDoS at-
tack, or that a helper machine is introduced to deal with the
throttle signaling (Yau, Liang, and Lui 2001). The first as-
sumption is unlikely to be valid in a real-world scenario. As
far as the second assumption is concerned, the helper ma-
chine can also become a target of the attack.

In essence, the problem arises because existing ap-
proaches are server-initiated, in other words, they have a
single point of failure. One of the novel characteristics of
Multiagent Router Throttling is its decentralized architec-
ture and response to the DDoS threat. Each agent indepen-
dently throttles traffic, thus our approach is more secure and
does not have a single point of failure.

Reliability and Cost-effectiveness Existing throttling ap-
proaches require an efficient and reliable communication
between the server and the upstream routers. Specifically,
they require throttle message authentication, priority trans-
mission for throttle messages and packet retransmission in
case of packet loss (Yau, Liang, and Lui 2001).

Our approach requires no communication at all between
routers due to its decentralized architecture and response.
This makes our approach not only more secure and reliable,
but more cost effective since authentication, priority trans-
mission and packet retransmission are not needed.

Adaptability and Performance Existing throttling ap-
proaches can suffer from stability, and potential convergence
problems because of system oscillations in order to settle the
server load to a desired level within the lower Ls and upper
Us boundaries. Performing throttling becomes challenging
as the range [Ls, Us] becomes smaller. Even if convergence
is obtained, oscillations can cause an increase in the time
required for the server load to converge to the desired level.

In contrast, the Multiagent Router Throttling approach
learns the router throttles, therefore it does not require sys-
tem oscillations, and as a result it does not suffer from sta-
bility issues. Our approach is highly adaptable and this is
exactly the reason it outperforms the AIMD algorithm in the
highly dynamic scenarios that involve the medium and short
pulse attacks and the group attack.

Limitations and Future Work
“Meek” Attackers Our approach does not consider the
case of “meek” attackers, i.e. where an attacker’s sending
rate is similar to the rate of a legitimate user. As already
discussed, this requires that an attacker compromises and
recruits a really high number of host machines. Effectively
tackling this problem would require the enrichment of the
state space of an agent, that is, to introduce more statistical
features other than the local router load. This is necessary
because in the case of “meek” attackers, the system cannot
differentiate between legitimate and attack traffic by just tak-
ing into account router loads.

Scalability Scalability is an important challenge which we
plan to study in our future work by examining different
mechanisms. Specifically, we will investigate how Multia-
gent Router Throttling can be extended to incorporate tens
of learning agents.

Network Model The performance of Multiagent Router
Throttling depends on an accurate network model. As al-
ready discussed, during the training phase, the reward func-
tion requires to distinguish between legitimate and attack
traffic. However, the network’s behavior, especially the at-
tacker’s, is unpredictable; capturing this into a model is very
difficult. Unlike non-learning approaches, one of the core
advantages of reinforcement learning is its capability for
online learning. Online learning would allow the system to
continue learning without a model. Further investigation is
required to examine the potential of online learning.

Acknowledgments
Thanks go to Sam Devlin and Gareth Andrew Lloyd for their
time and input to this work.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Breslau, L.; Estrin, D.; Fall, K.; Floyd, S.; Heidemann, J.;
Helmy, A.; Huang, P.; Mccanne, S.; Varadhan, K.; Xu, Y.;
and Yu, H. 2000. Advances in network simulation. Com-
puter 33(5):59–67.
Claus, C., and Boutilier, C. 1998. The dynamics of rein-
forcement learning in cooperative multiagent systems. In
AAAI/IAAI, 746–752.
Douligeris, C., and Mitrokotsa, A. 2004. Ddos attacks
and defense mechanisms: classification and state-of-the-art.
Computer Networks 44(5):643–666.
Issariyakul, T., and Hossain, E. 2011. Introduction to Net-
work Simulator NS2. Springer, 2nd edition.
Keromytis, A. D.; Misra, V.; and Rubenstein, D. 2002. Sos:
secure overlay services. In SIGCOMM, 61–72.
Mahajan, R.; Bellovin, S. M.; Floyd, S.; Ioannidis, J.; Pax-
son, V.; and Shenker, S. 2002. Controlling high bandwidth
aggregates in the network. Computer Communication Re-
view 32(3):62–73.
Mirkovic, J., and Reiher, P. L. 2004. A taxonomy of ddos
attack and ddos defense mechanisms. Computer Communi-
cation Review 34(2):39–53.
Mirkovic, J.; Robinson, M.; and Reiher, P. L. 2003. Alliance
formation for ddos defense. In NSPW, 11–18.
Sutton, R. S., and Barto, A. G. 1998. Introduction to Rein-
forcement Learning. MIT Press Cambridge, MA, USA.
Yau, D. K. Y.; Lui, J. C. S.; Liang, F.; and Yam, Y. 2005.
Defending against distributed denial-of-service attacks with
max-min fair server-centric router throttles. In IEEE/ACM
Transactions on Networking, 29–42.
Yau, D. K. Y.; Liang, F.; and Lui, J. C. S. 2001. On defend-
ing against distributed denial-of-service attacks with server-
centric router throttles. Technical Report CSD TR #01-008,
Department of Computer Science, Purdue University.


