
FlagRemover: A Testability Transformation for

Transforming Loop Assigned Flags 1

DAVID W. BINKLEY

Loyola College in Maryland

and

MARK HARMAN and KIRAN LAKHOTIA

King’s College London, CREST

Search–Based Testing is a widely studied technique for automatically generating test inputs,
with the aim of reducing the cost of software engineering activities that rely upon testing. However,
search–based approaches degenerate to random testing in the presence of flag variables, because
flags create spikes and plateaux in the fitness landscape. Both these features are known to denote
hard optimization problems for all search–based optimization techniques. Several authors have
studied flag removal transformations and fitness function refinements to address the issue of flags,
but the problem of loop–assigned flags remains unsolved. This paper introduces a testability
transformation along with a tool that transforms programs with loop–assigned flags into flag–free
equivalents, so that existing search–based test data generation approaches can successfully be
applied. The paper presents the results of an empirical study that demonstrates the effectiveness
and efficiency of the testability transformation on programs including those made up of open source
and industrial production code, as well as test data generation problems specifically created to
denote hard optimization problems.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging

General Terms: Algorithms

Additional Key Words and Phrases: Evolutionary Testing, Testability Transformation, Flags,
Empirical Evaluation

1. INTRODUCTION

Software test input generation has remained a topic of interest for Software Engi-
neering research and practice for three decades. The topic retains its importance
because of the enormous cost of inadequate testing [NIST 2002] and the labour–
intensive nature of the test data generation process as currently practised. This

1This is a revised and extended version of a paper that appeared at the International Symposium
on Software Testing and Analysis 2004 in Boston, Massachusetts.

Author’s address: K. Lakhotia, King’s College London, CREST, DCS, Strand, London, WC2R
2LS, UK.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 0000-0000/2009/0000-0110 $5.00

ACM Journal Name, Vol. 2, No. 3, 06 2009, Pages 110–146.

FlagRemover: Transforming Loop Assigned Flags · 111

reliance on human–centric test input construction makes testing more tiresome,
expensive and unreliable than it might be were the generation of test inputs to
be automated. Full automation of the test input generation process remains an
attractive, though hard open problem.

Several techniques have been proposed for automating test input generation. Of
these, Search–Based Testing (SBT) is an approach that has received increasing
interest and which has formed the subject of over one hundred and fifty recent
papers1. Search–based test data generation [Clark et al. 2003; Harman and Jones
2001; Harman 2007] uses meta–heuristic algorithms to generate test data. Meta–
heuristic algorithms combine various heuristic methods in order to find solutions
to computationally hard problems where no problem specific heuristic exists.

As an optimization technique, SBT incrementally improves either a single, or a
pool of candidate solutions. This iterative process continues until either a satisfac-
tory or ideal solution has been found, or another stopping criterion been reached.
Due to its nature, SBT works particularly well for problems where the value of a
candidate solution can easily be represented numerically in terms of a fitness func-

tion. A fitness function produces higher values for better solutions and thus allows
ranking of solutions based on their fitness value.

SBT has repeatedly shown to be successful [Jones et al. 1996; Jones et al. 1998;
Michael et al. 2001; Mueller and Wegener 1998; Pargas et al. 1999; Pohlheim and
Wegener 1999; Tracey et al. 1998b; Wegener et al. 1996; Wegener et al. 1997], not
only for structural (white box) testing, but also for other forms of testing such
as temporal testing [Wegener et al. 1997] or stress testing [Briand et al. 2005].
McMinn [McMinn 2004] provides a comprehensive survey of work on search–based
test data generation.

The two most commonly used algorithms in SBT are a hill climb variant known as
the Alternating Variable Method (AVM) [Korel 1990] and Evolutionary Algorithms
(EAs) [Holland 1975; Mitchell 1996]. EAs are part of the family of meta–heuristic
algorithms, and the use of EAs for testing is known as Evolutionary Testing (ET).
EAs distinguish themselves from other search–based algorithms by applying genetic
operations, such as crossover or mutation, to a pool of individuals, known as a
population. Each individual in the population represents input parameters to a
program or function for structural testing. In a typical EA, the population is
updated over a sequence of generations. The selection of individuals who survive
into the next generation is governed by a pre–defined selection strategy, based
around the fitness values produced by the fitness function. Between each generation,
genetic operators are applied to the individuals, loosely representing the effects of
mating and mutation in natural genetics. The net effect of these operations is that
the population becomes increasingly dominated by better (more fit) individuals.
The various steps of an evolutionary cycle are explained in more detail in Section
2.1.

When considering test data generation for achieving branch coverage, as is the
case in this paper, the fitness value of an individual is computed in terms of how
close it comes to executing a target branch. While some branches are easily covered,

1The source of this publication data is the repository of papers on Search–Based Software Engi-
neering at http://www.sebase.org/sbse/publications/, accessed 21st February 2009.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

112 · David Binkley et al.

Best case Acceptable case Worst case

Smooth landscape with Rugged landscape with Dual plateau landscape with

ubiquitous guidance toward some guidance toward no guidance toward

global optimum. global optimum. global optimum.

Fig. 1. This figure uses three fitness landscapes to illustrate the effect flag variables
have on a fitness landscape, and the resulting ‘needle in a haystack’ problem.

even by simple methods such as random testing [Harman and McMinn 2007], it is
the remaining uncovered branches which challenge test data generation techniques
and where SBT provides an attractive solution [Michael et al. 2001; Pargas et al.
1999; Wegener et al. 2001].

Although SBT works well in many situations, it is hampered by the presence of
flag variables: variables that hold one of two discrete values: true or false. One
place where flag variables are common is in embedded systems, such as engine
controllers, which typically make extensive use of flag variables to record state
information concerning devices. Such systems can therefore present problems for
automated test data generation. This is important, because generating such test
data by hand (which is often the case in practice) is prohibitively expensive, yet,
having test data is required by many testing standards [British Standards Institute
1998b; Radio Technical Commission for Aeronautics 1992].

The flag problem is best understood in terms of the fitness landscape. A fitness
landscape is a metaphor for the ‘shape’ of the hyper–surface produced by the fitness
function. In the 2 dimensional case (i.e., one input and one fitness value), the
position of a point along the horizontal axis is determined by a candidate solution
(i.e., an input to the program) and the height of a point along the vertical axis is
determined by the computed fitness value for this input. Using the fitness landscape
metaphor, it becomes possible to speak of landscape characteristics such as plateaus
and gradients.

As illustrated in the right hand side of Figure 1, the use of flag variables leads
to a degenerate fitness landscape with a single, often narrow, super–fit plateau and
a single super–unfit plateau. These correspond to the two possible values of the
flag variable. While this landscape is not a problem for symbolic execution based
techniques, it is well–known to be a problem for many search–based techniques; the
search essentially becomes a random search for the ‘needle in a haystack’ [Baresel
and Sthamer 2003; Bottaci 2002a; Ferguson and Korel 1996; Harman et al. 2004].

This paper presents an algorithm for transforming programs containing loop–
assigned flag variables, which cannot be handled by previous approaches. The
result of the transformation is a tailored version of a program that allows existing
approaches to compute representative fitness values for candidate solutions at a
particular flag–controlled branch. It uses a testability transformation [Harman

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 113

et al. 2004], a form of transformation in which functional equivalence need not be
preserved, but in which test set adequacy is preserved. The primary contributions
of this paper are as follows:

(1) A testability transformation algorithm is described which can handle flags as-
signed in loops.

(2) Results of two empirical studies evaluating the algorithm are reported. They
show that the approach reduces test effort and increases test effectiveness. The
results also indicate that the approach scales well as the size of the search–space
increases.

(3) Results from a third empirical study show that the loop–assigned flag problem
is prevalent in real programs, thereby validating the need for algorithms to deal
with flags in general and loop–assigned flags in particular.

The rest of the paper is organized as follows. Section 2 provides an overview of
background information on ET, the flag problem, and testability transformation.
Section 3 introduces the flag replacement algorithm and Section 4 outlines how it
has been implemented. Section 5 presents an empirical study which demonstrates
that the approach improves both test generation effort and coverage achieved and
explores the performance of the approach as the size of the search space increases.
Section 6 presents the empirical study of loop–assigned flags and examples of real
world code that contain loop–assigned flags. Section 7 examines related work and
Section 8 concludes.

2. BACKGROUND

This section briefly explains the flag problem and the general characteristics of the
testability transformation solution proposed.

2.1 Evolutionary Test Data Generation

The empirical results reported herein were generated using the Daimler Evolu-
tionary Testing system [Wegener et al. 2001], built on top of the Genetic and
Evolutionary Algorithm Toolbox [Pohlheim], using a client–server model, and
AUSTIN [Lakhotia et al. 2008], a search–based testing tool for programs containing
pointer inputs. Figure 2 provides an overview of a typical evolutionary testing pro-
cess, where the outer circle depicts a typical procedure for an EA: First, an initial
population is formed, usually with random guesses. Each individual within the pop-
ulation is evaluated by calculating its fitness value via the fitness function. Starting
with randomly generated individuals results in a spread of solutions ranging in fit-
ness because they are scattered around different regions of the search–space.

Subsequently pairs of individuals are selected from the population, according to a
pre–defined selection strategy, and combined by the crossover operator to produce
new solutions. Once the individuals have been formed, mutation is applied. This
mimics the role of mutation in natural genetics, introducing new information into
the population. The evolutionary process ensures that productive mutations have
a greater chance of survival than less productive ones.

The cycle concludes an iteration by re–evaluating the new individuals with re-
gards to their fitness. Survivors into the next generation are chosen from both

ACM Journal Name, Vol. 2, No. 3, 06 2009.

114 · David Binkley et al.

Fitness evaluation

Mutation

Survival

Recombination

Selection

Individuals

Test data

Test
execution

Monitoring
data

Fitness values

Initial Population

Test Results

Fig. 2. Evolutionary Algorithm for Testing

parents and offspring, depending on their fitness values and the selection strategy.
Typically, ‘fitter’ individuals survive. However, less fit individuals retain a chance of
being carried across into the next generation, thereby maintaining diversity within
a population. Diversity is important especially during the early stages of an EA to
avoid pre-mature convergence at a local optimum. The algorithm is iterated until
the (global) optimum is achieved, or some other stopping condition is satisfied.

At present EA techniques are less efficient than structural analysis techniques for
most types of test data generation (e.g., code–based test criteria) [Lakhotia et al.
2009; Harman and McMinn 2007]. In practice, this means they should be applied
where other techniques fail to generate test data for a particular subset of structures
(e.g., branches). In this way the cost can be amortized.

For software testing to be automated with the aid of EAs, the test aim must be
transformed into an optimization task. This is the role of the inner circle depicted
in Figure 2. Each generated individual represents a test datum for the system under
test. Depending on the test aim pursued, different fitness functions apply for test
data evaluation.

If, for example, the temporal behaviour of an application is being tested, the
fitness evaluation of the individuals is based on the execution times measured for the
test data [Puschner and Nossal 1998; Wegener and Mueller 2001]. For safety tests,
the fitness values are derived from pre– and post–conditions of modules [Tracey
et al. 1998a], and for robustness tests of fault–tolerance mechanisms, the number
of controlled errors forms the starting point for the fitness evaluation [Schultz et al.
1993].

For structural criteria, such as those upon which this paper focuses, a fitness func-
tion is typically defined in terms of the program’s predicates [Baresel and Sthamer
2003; Bottaci 2002a; Jones et al. 1996; Michael et al. 2001; Pargas et al. 1999;
Wegener et al. 2001]. It determines the fitness of candidate test data, which in

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 115

turn, determines the direction taken by the search. The fitness function essentially
measures how close a candidate test input drives execution to traversing a desired
(target) path or branch.

2.2 The Flag Problem

In this paper, a flag variable will be deemed to be any variable that takes on one of
two discrete values. Boolean variables are used in the examples. The flag problem
deals with the situation where there are relatively few input values (from some set
S) that make the flag adopt one of its two possible values. This problem typically
occurs with internal flag variables, where the input state space is reduced, with
relatively few ‘special values’ from S being mapped to one of the two possible
outcomes and all others being mapped to the other of the two possible flag values.
As explained below, the flag problem is the hardest of what is commonly known as
the internal variable problem in automated test data generation.

Consider a predicate that tests a single flag variable (e.g., if (flag)). The fitness
function for such a predicate yields one of two values: either maximal fitness (for
‘special values’) or minimal fitness (for any other value). As illustrated in the right
of Figure 1, the landscape induced by such a fitness function provides the search
with no guidance.

A similar problem is observed with any n–valued enumeration type, whose fitness
landscape is determined by n discrete values. The boolean type (where n = 2) is the
worst case. As n becomes larger the program becomes increasingly more testable:
provided there is an ordering on the set of n elements, the landscape becomes
progressively smoother as the value of n increases.

The problem of flag variables is particularly acute where a flag is assigned a
value inside a loop and is subsequently tested outside the loop. In this situation,
the fitness function computed at the test outside the loop may depend upon values
of ‘partial fitness’ computed at each and every iteration of the loop. Previous
approaches to handling flags break down in the presence of such loop–assigned
flags [Baresel and Sthamer 2003; Bottaci 2002a; Harman et al. 2004].

2.3 Testability Transformation

A testability transformation [Harman et al. 2004] is a source–to–source program
transformation that seeks to improve the performance of a previously chosen test
data generation technique. Testability transformations differ from traditional trans-
formations [Darlington and Burstall 1977; Partsch 1990; Ward 1994] in two ways:

(1) The transformed program produced is merely a ‘means to an end’, rather than
an ‘end’ in itself. The transformed program can be discarded once adequate
test data has been generated. By contrast, in traditional transformation, the
original program is replaced by the transformed equivalent.

(2) The transformation process need not preserve the standard semantics of a pro-
gram. For example, in order to cover a chosen branch, it is only required
that the transformation preserves the set of test–adequate inputs. That is, the
transformed program must be guaranteed to execute the desired branch under
the same initial conditions as the untransformed program. By contrast, tradi-

ACM Journal Name, Vol. 2, No. 3, 06 2009.

116 · David Binkley et al.

tional transformation preserves functional equivalence, a much more demanding
requirement.

These two observations have important implications:

(1) There is no psychological barrier to the transformation. Traditional
transformation requires the developer to replace familiar code with machine–
generated, structurally altered equivalents. It is part of the folklore of the
program transformation community that developers are highly resistant to the
replacement of the familiar by the unfamiliar. There is no such psychological
barrier for testability transformations: The developer submits a program to
the system and receives test data. There is no replacement requirement; the
developer does not even need to be aware that a transformation has taken place.

(2) Considerably more flexibility is available in the choice of transfor-
mation to apply. Guaranteeing functional equivalence can be demanding,
particularly in the presence of side effects, goto statements, pointer aliasing,
and other complex semantics. By contrast, merely ensuring that a particular
branch is executed for an identical set of inputs is comparatively less demand-
ing.

(3) Transformation algorithm correctness becomes a less important con-
cern. Traditional transformation replaces the original program with the trans-
formed version, so correctness is paramount. The cost of ‘incorrectness’ for
testability transformations is much lower; the test data generator may fail to
generate adequate test data. This situation can be detected, trivially, using
coverage metrics. By contrast, functional equivalence is undecidable.

3. THE FLAG REPLACEMENT ALGORITHM

The aim of the replacement algorithm is to substitute the use of a flag variable
with a condition that provides a smoother landscape. Prior work with flag vari-
ables requires that assignments reaching a use do not occur within a loop [Baresel
and Sthamer 2003; Bottaci 2002a; Harman et al. 2004]. By contrast, the algo-
rithm presented in this paper handles flags assigned inside a loop. It does this by
introducing two new real valued variables, fitness and counter. These variables re-
place the predicate use of a flag with an expression that supports a distance based
calculation (e.g., if (counter == fitness)) to be used.

The addition of these variables is a form of instrumentation. The variable counter
is an induction variable added to count the number of assignments to a flag in all
loop iterations. The variable fitness collects a cumulative fitness score from a local
fitness function for the flag assignments during loop execution.

Before the formal presentation of the algorithm, the transformation is illustrated
to provide some initial intuition. To begin with, Figure 3(a) shows an untrans-
formed program, which contains a single flag variable. In addition to serving as an
illustration of the transformation, this program will be used in the empirical study
because it denotes the worst possible case for structured code: as the size of the
array a increases, the difficultly of the search problem increases. Metaphorically
speaking, the needle (all array entries equal to zero) is sought in an increasingly
larger haystack.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 117

For illustration, suppose that the goal is to execute the branch at Node 6. To
realize this goal requires finding array values that avoid traversing the true branch
of Node 3 because if an input causes the program to pass through Node 4, the
target branch will be missed. The program in Figure 3(a) produces the landscape
shown at the right of Figure 1. Transforming this program to count the number of
times the predicate at Node 3 is false, produces the landscape shown at the middle
of Figure 1. The transformed program in shown in Figure 3(b). In essence, the
counting drives the search away from executing Node 4 because fitness receives a
value closer to counter the more times Node 4 is missed.

However, this coarsely transformed version does not provide the search with any
guidance on finding inputs that make a particular array element zero. It only
favours such inputs once found. Thus the stair–step landscape of the middle of
Figure 1. The fine–grained transformed version, shown in Figure 3(c) calls a local

fitness function in the true branch of Node 3 that helps guide the search towards
individual array values being zero. In this case, the local fitness measures how close
the input was at this point to avoiding Node 4.

Local fitness is computed by negating the predicate condition at Node 3 and
calculating a distance d for the negated predicate, based on a set of rules described

by Bottaci [Bottaci 2002a]. In the example, d is equal to the ith value of a, indicating
how close a[i] was to being 0 and thus traversing the false (desired) branch of Node
3. Figure 3(d) presents a portion of the local fitness function used in the case of
the example function. This portion is for the operator ‘!=’.

After transformation, it is possible to simplify the transformed program by taking
the slice [Binkley and Gallagher 1996; Tip 1994; Weiser 1984] with respect to the
condition in the transformed predicate. Slicing removes unnecessary parts of the
program and thus forms a program specialized to the calculation of a smooth fitness
landscape targeting the test goal. This optimization can be used for a variety of test
data generation techniques and is independent of the flag replacement algorithm.
Any branch in the program may be used as the slicing criterion.

The formal transformation algorithm is presented in Figure 4. It assumes that
flag is initially assigned true and might subsequently be assigned false. Clearly there
is a complementary version of the algorithm which can be applied when the initial
assignment to flag is false.

The rest of this section explains the algorithm’s steps in detail. First, Step
1 ensures that all assignments to the variable flag are of the form flag=true or
flag=false. This is done by replacing any assignment of the form flag=C for some
boolean expression C with if(C) then flag=true else flag=false. Step 2 adds an empty
else block to all if statements as a place holder for later code insertions. Steps 3
and 4 simply insert the fitness accumulation variable, fitness, and the assignment
counter, counter, both initialized to 0 prior to the start of the loop.

Step 5 introduces the update of the fitness accumulation variable, fitness, and
the loop counter, counter. It has three cases. The first, Case 5.1, checks for the
special situation when the loop degenerates into a simple assignment. In Cases 5.2
and 5.3 the value added to fitness depends upon the value assigned to flag along the
associated path. If flag is assigned true (Case 5.2) then, in essence, assignments in
previous loop iterations are irrelevant. To account for this, fitness is assigned the

ACM Journal Name, Vol. 2, No. 3, 06 2009.

118 · David Binkley et al.

void f(char a[SIZE]){

int i;

(1) int flag = 1;

(2) for(i=0;i<SIZE;i++){

(3) if(a[i]!=0)

(4) flag=0;

}

(5) if(flag)

(6) /*target*/

}

void f(char a[SIZE]){

int i;

int flag = 1;

double counter = 0.0;

double fitness = 0.0;

for(i=0;i<SIZE;i++){

if (a[i] != 0){

counter++;

flag = 0;

}else{

fitness++;

counter++;

}

}

if(fitness == counter)

/*target*/

}

(a) No transformation (b) Coarse–grained transformation

void f(char a[SIZE]){

int i;

int flag = 1;

double counter;

double fitness;

char __cil_tmp1;

char __cil_tmp2;

double f;

counter = 0.0;

fitness = 0.0;

for(i=0;i<SIZE;i++){

if (a[i] != 0){

__cil_tmp1 = a[i];

__cil_tmp2 = 0;

f =

local(__cil_tmp1, "!=",

__cil_tmp2);

f = normalize(f)

flag = 0;

fitness += f;

counter++;

} else {

counter++;

fitness++;

}

}

if(fitness == counter)

/*target*/

}

double normalize(double dist){

return 1 - pow(1.001, -dist);

}

double

local(char arg1, char* op,){

char arg2){

double dist;

if(strcmp(op, "!=") == 0){

dist = abs(arg1 - arg2);

if (dist == 0)

return 0;

else

return (dist + 1);

}

else if(strcmp(op, "==") == 0){

...

}

}

(c) Fine–grained transformation (d) Local fitness function

Fig. 3. An example program before and after applying the coarse and fine–grain transformations.
The figures also shows part of the function for computing local fitness.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 119

Suppose that flag is assigned to true outside the loop and that this is to be maintained.

Step 1 Convert all flag assignments to assignments of constants by replacing flag=C with if(C)
then flag=true else flag=false for some (side effect free) boolean expression C.

Step 2 Convert any if - then statements that contain a (nested) assignment of flag into if - then -
else statements. The added empty branch is filled by Case 5.3 of Step 5 with ‘bookkeeping’
code.

Step 3 Add variable counter=0 as an initialization prior to the loop.

Step 4 Add an assignment fitness=0 as an initialization prior to the loop.

Step 5 There are three cases for assignments to flag based on the paths through the loop body.

Case 5.1: If all leaves of the AST contain the assignment flag=false (i.e., entering the loop
means certain falseness), then the entire loop is treated as flag=!C assuming the original
loop is while(C). Otherwise, do the following for each leaf in the loop’s AST that assigns
to flag.

Case 5.2: flag is assigned true. Increment counter and assign value of counter to fitness
immediately after the assignment to flag.

Case 5.3: flag is assigned false.

Step 5.3.1 Create a set, sf, containing the critical branching nodes with respect to the
flag assignment, and a set sl containing the critical branching nodes with respect
to the loop statement. Let π be the set difference between sf and sl, with all loop

exit conditions removed from π.
Step 5.3.2 For every critical branching node in π, insert an increment for both counter

and fitness as the first instructions in the then or else branches of the node that
leads away from the flag assignment (i.e., the target of the branch CFG edge is not
post–dominated by the flag assignment), if and only if, the target of the branch
CFG edge is not post–dominated by another node in π. Do not add increments for
counter and fitness otherwise.

Step 5.3.3 Collect the set of conditions sc in π at which the assignment of false to flag
can be avoided, i.e., the conditions of those nodes in π that contain a branch CFG
edge whose target is post–dominated by the flag assignment. Step 5.3.1 ensures
that such a condition exists.

Step 5.3.4 For each condition c in sc do the following.

Step 5.3.4.1 Save the values of the variables used in c in well typed, local, tem-
porary variables for later use (local with respect to the function body, not the
enclosing block).

Step 5.3.4.2 Insert the call f = local(...) as the first instruction in the then or else
branch of the node containing c that leads towards the flag assignment (i.e.,
the target of the branch CFG edge is post–dominated by the flag assignment).
The function local is the standard local fitness function, and the temporary
variables, alongside the binary operator used in c form the arguments of the
function call local. As detailed in Section 4, the CIL infrastructure ensures c

does not contain any logical operators.
Step 5.3.4.3 Normalize f to a value between 0 and 1.
Step 5.3.4.4 Add f to the existing value of fitness immediately after the flag

assignment.
Step 5.3.4.5 Add an increment for counter immediately after the update to fit-

ness (in Step 5.3.4.4).

Step 6 Replace if(flag) with if(fitness==counter).

Step 7 Slice at the replacement predicate if(fitness==counter), introduced by Step 6.

Fig. 4. The Transformation Algorithm

ACM Journal Name, Vol. 2, No. 3, 06 2009.

120 · David Binkley et al.

current value of counter (after it has been incremented). This assignment overwrites
any previously accumulated fitness.

Case 5.3 addresses an ‘undesired’ assignment to flag. In this case flag is assigned
false. The Control Flow Graph (CFG) is used to identify the set of critical branching
nodes for the flag assignment in Step 5.3.1. Critical branching nodes are those
decision nodes in a CFG where the flow of control may traverse a branch which is
part of a path that can never lead to the flag assignment. In other words, these
are the nodes on which the flag assignment is control dependent. Note that the
transformation ignores those critical branching nodes, which are also critical for the
loop statement itself, as well as branching nodes which denote a loop exit condition.
Step 5.3.2 iterates over all critical branching nodes and checks if they contain a
branch CFG edge which is not post–dominated by either the flag assignment or any
other critical branching node for the flag assignment. For each critical branching
node which satisfies this requirement, Step 5.3.2 adds an increment of 1 to both
counter and fitness as the first instructions to the branch that is not part of the
path leading to the flag assignment. This also addresses the case when flag remains
unassigned during a path through the loop.

Next, Step 5.3.3 collects the conditions of those branching nodes, which contain
a branch CFG edge whose target is post–dominated by the flag assignment. For
each of those conditions, Step 5.3.4 implements the more fine–grained approach
producing a landscape more like that shown in the left of Figure 1. Smoothing of
the fitness landscape improves the search. Here, if no changes to fitness were made,
the resulting fitness landscape degenerates to the coarse–grained landscape shown
in the middle of Figure 1. Instead Step 5.3.4 implements the transformation shown
in Figure 3(c).

Steps 5.3.4.1 and 5.3.4.2 add the necessary instrumentation to compute a fitness
increment for the path taken by an input. The result of the fitness computation is
saved in a local variable, whose value is normalized in Step 5.3.4.3.

The key observation behind Steps 5.3.4.1− 5.3.4.3 is that an assignment of false
to flag occurs because a ‘wrong decision’ was taken earlier in the execution of
the program. The algorithm therefore backtracks to this earlier point. That is,
it finds a point at which a different decision (the decision c of Step 5.3.4) could
avoid the assignment of false to flag. The value calculated (in Step 5.3.4.2) for the
fitness increment in this case is based upon the standard approach to local fitness
calculation in evolutionary testing [Wegener et al. 2001].

Finally, Step 5.3.4.4 adds the fitness increment to fitness immediately after the
flag assignment, while Step 5.3.4.5 increments counter.

Step 6 replaces the use of flag with fitness==counter. Observe that the value of
fitness can only equal the value of counter in two cases: Either the last assignment
to flag in the loop was the value true and there has been no subsequent assignment
to flag, or the variable flag has not been assigned in the loop (so its value remains
true). In either case, the original program would have executed the true branch of
the predicate outside the loop which uses flag. In all other cases, flag would have
been false in the original program. For these cases, the value of fitness will be some
value less than that of counter. How close together their values are is determined
by how close the loop comes to terminating with flag holding the desired value true.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 121

Step 7 is an optional optimization step. It can be ignored, without effecting the
functional behaviour of the transformed program or the fitness landscape produced.
The motivation for Step 7 is to reduce the complexity of the program that is exe-
cuted. Since search–based testing requires repeated execution of the program under
test (in order to evaluate fitness of each test case considered), any speed–up will
improve the efficiency of the overall approach.

It is important to note that the transformed program need not be semantically
equivalent to the original. It is a new program constructed simply to mimic the be-
haviour of the original at the target branch. It does so in a way that ensures a more
attractive fitness landscape. The standard search algorithm (with no modification)
can be applied to the transformed program with the goal of finding test data to
execute the branch controlled by the newly inserted predicate fitness==counter.

Finally, if flag is assigned in several loops, nested one within the other, then the
algorithm is applied to the innermost loop first in order to obtain a fitness value for
the innermost loop. This value can then be used as a partial result for the fitness
of a single iteration of the enclosing loop. In this manner, the algorithm is applied
to each enclosing loop, to accumulate a total fitness value.

4. IMPLEMENTATION

The algorithm has been implemented in a tool which is based on the CIL [Necula
et al. 2002] infrastructure for C program analysis and transformation. CIL provides
a number of pre–defined program analysis modules, such as control and data flow
analysis. It also offers an extensive API (in Ocaml) to traverse the AST of the
parsed source code. The tool itself is provided as an Ocaml module and can be run
on any platform that has the Ocaml runtime installed.

4.1 Definition of Loop Assigned Flag

For the purpose of the tool, a flag f is considered to be loop–assigned, if and only
if it satisfies the following properties:

(1) The definition fdef of f is a descendant of the loop statement ls (i.e., a while

or for construct) in the AST

(2) There exists a definition free path for f from fdef to fuse, where fuse is a

predicate use of f

(3) fuse is not a descendant of ls in the AST. If it is, it must also be a descendant
of another loop statement ls’ in the AST.

Flags assigned within loops that arise in a CFG as part of unstructured code (e.g.,
via the use of goto statements) are not considered to be loop–assigned by the tool,
even though the algorithm proposed in Figure 4, in principle, does not necessitate
this restriction. As a consequence, the tool might consider more flags to be loop–
assigned than strictly necessary, while at the same time leaving loop–assigned flags
that arise from unstructured code untransformed.

4.2 Flag Identification

The C language does not contain a dedicated boolean data type, so the question
remains how to identify flag variables. Generally speaking, since the aim of the

ACM Journal Name, Vol. 2, No. 3, 06 2009.

122 · David Binkley et al.

testability transformation is to transform spikes in a fitness landscape, the trans-
formation algorithm does not need to identify flags in a semantically correct way.
The transformation can thus be applied to any variable whose use creates a spike
in the fitness landscape. A syntactic check on predicates often suffices to identify
such potential ‘problem uses’.

Below are two examples of source code constructs that often cause a spike in the
fitness landscape:

int foo(...){ int foo(...){
· · · · · ·
if(C) if(C)

flag = 0; buffer = malloc(...);
· · · · · ·
if(flag)//target if(buffer)//target
· · · · · ·

} }

Notice even though buffer is not a flag, the fitness landscape for the //target branch
in the right column exhibits the same features as the flag controlled branch in the
left column.

For the implementation described in this paper, a variable is considered to be a
flag if it is used inside a predicate in one of these ways:

(1) if (variable)

(2) if (!variable)

(3) if (variable == constant)

(4) if (variable != constant)

4.3 Flag Removal

Before applying the transformation algorithm, the parsed source code needs to be
simplified. To this end a number of CIL options, as well as some custom pre–
processing transformations are used.

By default CIL transforms compound predicates into equivalent if - then - else
constructs 2. For in-line predicates containing logical operators, CIL uses tem-
porary variables for its code transformation. Figure 5 illustrates the CIL code
transformations with examples.

Besides the transformation of compound predicates, the tool requires the follow-
ing code transformations prior to applying the flag transformation.

Simplify: This CIL option (–dosimplify) transforms the source code into simpler
three–address code.

Simple Memory Operations: This option (–dosimpleMem) uses well–typed tem-

2The flag Cil.useLogicalOperators enables the use of logical operators. The tool uses CIL in its
default mode where this flag is set to false.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 123

void foo(int a, int b) void foo(int a, int b)

{ {

if(a && b) if(a)

//target if(b)

} //target

}

original source code (a) CIL transformed source code(a)

void foo(int a, int b) void foo(int a, int b)

{ {

int c = a && b; int c, tmp;

} if(a)

if(b)

tmp = 1;

else

tmp = 0;

else

tmp = 0;

c = tmp;

}

original source code (b) CIL transformed source code (b)

Fig. 5. Two examples illustrating how CIL transforms compound predicates into single predicate
equivalents. The transformation works for both, predicates in conditional statements (see (a)),
and in-line predicates (see (b)).

porary variables in order to ensure each CIL lvalue involves at most one memory
reference.

Prepare Control Flow Graph (CFG): This option (–domakeCFG) converts all
break, switch, default and continue statements and labels into equivalent if and goto
constructs.

Uninline: This custom step converts all in-line predicates (without logical opera-
tors) into equivalent if - then - else statements. Further, this module also implements
Step 1 from Figure 4.

The implementation of Case 5.3.1 from Figure 4, requires control dependence
information for each statement. CIL provides a module to compute a function’s
CFG by identifying each statement’s control predecessor and successor, as well as
a module to compute the immediate dominator information for a statement. The
tool combines these two modules by first inverting the edges of the CFG (adding
a unique exit node when necessary), and then computing the immediate domina-
tor information for the inverted CFG. This is equivalent to computing the post
domination information for each statement. Based on the post dominator tree, the
control dependence information is computed for each statement in the AST.

Next, flags are collected by iterating over the CIL AST, performing a syntactic
check on if statements. The pre–processing steps ensure that all predicates appear
in the form of if statements. When a predicate matches the flag pattern described

ACM Journal Name, Vol. 2, No. 3, 06 2009.

124 · David Binkley et al.

in Section 2.2, information about the predicate and its parent statement (i.e., the
if statement) are stored in a hash table.

For each entry in the hash table, the tool uses the CIL reaching definitions module
to collect the set of definition statements for a flag reaching the predicate use of
the flag. For each of these definitions, the tool checks whether they occur within
a loop, and further that the flag use is not contained in the same loop. This is
achieved by traversing the CIL AST. Loop assigned flags are labeled as such.

For each loop based flag assignment, the control dependence information of the
containing statement is used to derive a local fitness function. An example is
given in Figure 3(d). All flag variables of a given type share the same local fitness
function. The necessary type information can easily be extracted via a call to
CIL’s typeof function, which returns the data type of its argument. Finally, the
statement containing the predicate use of the flag is transformed as described in
Step 6 of Figure 4.

The tool can be run in two modes. By default, the local fitness function is used
to ‘punish’ an assignment to flag, as illustrated in Figure 3(c). Sometimes a flag
assignment may be desired however, and thus the transformation can be used to
guide the test data generation process towards the statement containing the flag
assignment. In this mode, fitness is incremented by the local distance function (not
inverting its second parameter) in the branches avoiding the flag assignment.

4.4 Runtime

For the transformation to be applicable in practice, the tool should perform in
reasonable speed. The tool was therefore run on each of the test subjects used
in Section 5, and timing information was recorded via the GNU time utility. The
time measurements were collected on a HP Compaq 6715b laptop, with an AMD
Turion 64 processor, running Ubuntu Intrepid. For each test subject, the runtime
of the tool was recorded five times to allow for slight variations in the measurements
reported by time. The data, averaged over the five runs, is shown in Table I. The
tool did not require more than 2 seconds to apply the transformation to any of the
test subjects.

4.5 Limitations

Currently the tool only implements an intraprocedural transformation. As a result,
global flags are ignored by the tool, as are flags passed by reference. Furthermore,
the tool does not include any alias analysis and, as a consequence, does not handle
intraprocedural or interprocedural aliasing of flag variables. The tool further distin-
guishes between function assigned flags and other flags. Function assigned flags are
variables whose value depends on the return value of a function call. These types of
flags can be handled by a different testability transformation [Wappler et al. 2007].
Other kinds of flags include the loop–assigned flags addressed in this paper, and
simply assigned flags addressed by previous work [Alshraideh and Bottaci 2006;
Harman et al. 2004; Baresel and Sthamer 2003; Bottaci 2002b].

Both the algorithm presented in Figure 4 and the tool are incomplete in the
presence of unstructured flow of control within the body of loops. In the work of
Liu et al. [Liu et al. 2005] the authors present a synthetic example which illustrates
this incompleteness. In practice we only observed this limitation in 2 out of 17

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 125

Test Subject real user sys

synthetic examples 0.1252 0.0440 0.0568

EPWIC 0.3092 0.1888 0.0896

bibclean 0.1752 0.0816 0.0632

ijpeg 1.8326 1.7232 0.0584

time 0.1654 0.0760 0.0648

plot2d 1.7412 1.6128 0.0752

tmnc 0.1738 0.0920 0.0544

handle new jobs 0.1548 0.0664 0.0632

netflow 0.1454 0.0568 0.0648

moveBiggestInFront 0.1306 0.0648 0.0520

update shps 0.1664 0.0816 0.0608

Table I. Runtime of the transformation (in seconds) for the test subjects as reported by the time
utility. The measurements are averaged over five runs. The column real refers to the wall clock
time, user refers to the time used by the tool itself and any library subroutines called, while sys

indicates the time used by system calls invoked by the tool.

functions examined during the empirical study in Section 5. Nevertheless we aim
to resolve this issue in future versions of the tool.

5. EMPIRICAL ALGORITHM EVALUATION

This section presents two empirical evaluations of the transformation algorithm’s
impact. It first reports on the application of the transformation to the synthetic
‘needle in the haystack’ example from Figure 3(a). After this, it considers the
application of the transformation to a collection of flags extracted from several
production systems.

The synthetic benchmark program was chosen for experimentation because it
denotes the worst possible case for the search. Twenty versions of this program were
experimented with using no transformation, the coarse–grained transformation,
and the fine–grained transformation. In each successive version, the array size was
increased, from an initial size of 1, through to a maximum size of 40. As the size of
the array increases, the difficultly of the search problem increases; metaphorically
speaking, the needle is sought in an increasingly larger haystack. This single value
must be found in a search space, the size of which is governed by the size of the
array, a. That is, the test data generation needs to find a single value (all array
elements set to zero) in order to execute the branch marked /* target */.

The evaluation of the transformation on the twenty versions of the program was
done using both the Daimler Evolutionary Testing system [Baresel et al. 2002;
Wegener et al. 2001], and AUSTIN [Lakhotia et al. 2008]. For the test subjects
listed in Table II only AUSTIN was used to evaluate the transformation.

The Daimler Evolutionary Testing system is capable of generating test data for
C programs with respect to a variety of white box criteria. It is a proprietary
system, developed in–house and provided to Daimler developers through an internal
company web portal. A full description of the system is beyond the scope of this
paper. AUSTIN is a search–based test data generation tool for C programs and
uses a combination of the AVM and a set of constraint solving rules for pointers
and dynamic data structures.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

126 · David Binkley et al.

The AVM was shown to be particularly effective when applied to the branch
coverage adequacy testing criterion [Harman and McMinn 2007]. It is a type of
hill climb which systematically explores the neighbourhood of each element in a
program’s input vector. The size of an element’s neighbourhood move changes
proportional to the number of successful moves for that element. Initially it consists
of the smallest increment (decrement) for an element type (e.g., ±1 for integers).
When a change in value leads to an improved fitness, the search tries to accelerate
in that direction by making ever increasing moves. The formula used to calculate

the size of a move is: mi = sit ∗ dir ∗ acci, where mi is the move for the ith input
variable, s is the repeat base (2 by default) and it the repeat iteration of the current

move, dir ∈ {−1, 1}, and acci the accuracy of the ith input variable. The accuracy
applies to floating point variables only. For all the experiments reported in this
study the precision for these variables was set to 2 digits.

When no further improvements can be found for an element, the search continues
by exploring the next element in the vector. Once the entire input vector has been
exhausted, the search recommences with the first element if necessary. In case
the search stagnates (i.e., no move leads to an improvement) the search restarts
at another randomly chosen location in the search space. This overcomes local
optima and enables the hill climb to explore a wider region of the search space.
A fitness budget, how many potential solutions the search is allowed to evaluate,
ensures the search terminates when no solution can be found. For the purpose of
this study, the fitness budget was set to 100, 000 evaluations for both AUSTIN and
the Daimler Evolutionary Testing System. Due to the stochastic nature of both
tools, the experiments were repeated 10 times to ensure robustness of the results
and to allow comparison of the variations between runs.

5.1 Synthetic Benchmarks

The analysis of the synthetic benchmark begins by applying the Daimler Evolution-
ary Testing system to the program without any transformation, after the coarse–
grained transformation (when Case 5.3 is ignored), and finally after the fine–grained
transformation. Figure 6 shows the results with the ‘no transformation’ case shown
at the top. To facilitate comparison, the three graphs use the same y–axis scale.
Figure 7 show a zoomed–in version of the graph for the fine–grained transformation.

The ‘no transformation’ case is largely uninteresting as it fails to find any test
data to cover the branch in all but two situations. The first of these is where the
array has size one. In this instance there is a 1 in 256 chance of randomly finding
the ‘special value’ in each of the ten runs. At array size two, the chances of hitting
the right value at random have diminished dramatically to 1 in 65, 536; only one of
the ten runs manages to find this needle. For all other runs, no solution is found. In
all cases, without transformation, the evolutionary search degenerates to a random
search. Such a random search has a minuscule chance of covering the target branch.

The coarse–grained technique achieves some success, but its trend for larger ar-
ray sizes is clearly rising and more importantly there is an accompanying increase
in the variation of the fitness evaluations. This increase in variability is a tell–tale
sign of increasing randomness in the nature of the search using the coarse–grained
approach. That is, where the landscape provides guidance, the evolutionary algo-

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 127

(a) No Transformation

(b) Coarse–Grained Transformation

(c) Fine–Grained Transformation

Fig. 6. Results over ten runs of the evolutionary search for each of the three approaches part 1.

rithm can exploit it, but when it does not, the search becomes a locally random
search until a way of moving off a local plateau is found. As is visually apparent,
the fine–grained technique outperforms the coarse–grained technique.

Also visually apparent in Figure 7 is the spike at array size ten in Run 2. This
outlier was investigated and can be explained as follows: The search has almost
found a solution with a similar number of fitness evaluations as the other nine runs.
That is, it solves the nine–element array size problem, but the tenth array element

does not reduce to zero for many additional generations. For instance, in the 40th

ACM Journal Name, Vol. 2, No. 3, 06 2009.

128 · David Binkley et al.

Fig. 7. Results over ten runs of the evolutionary search for the fine–grained transformation
approach close–up.

(a) No Transformation

(b) Fine–Grained Transformation

Fig. 8. Results over ten runs of the alternating variable method for the ‘no transformation’ and
fine–grained transformation approach.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 129

generation it has the value 6, but in the 1000th generation this has only reduced
to 2. There is a similar spike at array size 40 in Run 4 (again in the top graph).
Upon investigation, a similar behaviour was observed. The search finds a solution
for the array size 39 problem, but the search progresses very slowly with the final
array element. In both cases this behaviour arises from the role chance plays in
the underlying evolutionary search algorithm, rather than any properties of the flag
problem per se.

Next, AUSTIN was applied to the synthetic benchmark yielding similar results.
The results using no transformation and the fine–grained transformations are de-
picted in Figure 8. As with the Daimler Evolutionary Testing system, AUSTIN
fails to find any test data to cover the branch for array sizes greater than three
when working with the untransformed program. In one run the search manages
to cover the branch at an array size of three, in nine runs with an array size of
two, and in all runs when the array contains only one element. For AUSTIN to
cover the branch using the untransformed program, the search needs to either ran-
domly find the solution, or randomly choose a starting point which is exactly one
neighbourhood move away from the solution (e.g., a = {-1,0,0}, {1,0,0}, etc.).

For the fine–grained transformed program, AUSTIN requires far fewer fitness
evaluations than the Daimler Evolutionary Testing system to cover the target
branch. This is visually evident when comparing the y–axis scales of the chart
in Figure 7, which shows the Daimler Evolutionary Testing system results, with
that of the chart in Figure 8(b), which shows the AUSTIN results. This differ-
ence is consistent with the findings of Harman and McMinn who showed that a
relatively simple optimization algorithm, such as the AVM, can often outperform
a more complex search strategy [Harman and McMinn 2007].

The final two charts, shown in Figures 9 and 10, present the averages and stan-
dard deviations respectively over all ten runs for each of the three approaches using
the Daimler Evolutionary Testing system. The pattern for AUSTIN is similar. The
average for the ‘no transformation’ technique is almost uniformly the worst–case,
while its standard deviation is zero, in all but the cases for array size 1 and 2 (where
some random chances led to a successful search). The high standard deviation for
size 2 is evidence that the one solution was a random occurrence.

The qualitative assessment presented in Figure 6 and Figure 8 clearly suggests
that the fine–grained approach is better than the coarse–grained approach, which
in turn, is better than the ‘no transformation’ approach. The ‘trend’ of the fine–
grained transformation outperforming the ‘no transformation’ approach manifests
itself as the size of the problem increases. It is also the case that as the difficulty
of the problem increases (i.e., as the size of the array increases), the test data
generation process will get harder for both, the fine–grained and ‘no transformation’
approaches. This can be seen in Figure 8(b) and Figure 7. Despite this, the
fine–grained approach will always be able to offer the search guidance, whereas
the ‘no transformation’ approach remains a random search for the ‘needle’ in an
increasingly larger ‘haystack’.

To complement this qualitative assessment quantitatively, an assessment using
the Mann–Whitney test, a non–parametric test for statistical significance in the
differences between two data sets, is performed. Because the test is non–parametric,

ACM Journal Name, Vol. 2, No. 3, 06 2009.

130 · David Binkley et al.

Fig. 9. Averages over ten runs of the evolutionary search for each of the three approaches

Fig. 10. Standard deviation over ten runs of the evolutionary search for each of the three ap-
proaches

the data is not required to be normally distributed for the test to be applicable. The
test reports, among other things, a p–value. The p–value for the test that compares
the ‘no transformation’ results with the ‘coarse–grained transformation’ results and
that which compares the ‘coarse–grained transformation’ results with the ‘fine–
grained transformation’ results, all return p–values less than 0.0001 indicating that
the differences are ‘statistically significant at the 99% level’.

The results obtained from the synthetic benchmarks clearly show that the test
data generation process on the transformed (fine–grained) version outperforms the

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 131

Test subject Function under test

EPWIC run length encode zeros

bibclean
check ISBN
check ISSN

ijpeg

emit dqt
format message
next marker
pbm writepbmrowraw
write frame header

time getargs

plot2d CPLOT DetermineSeriesStatistics

tmnc rule I intercept

handle new jobs handle new jobs

netflow netflow

moveBiggestInFront moveBiggestInFront

update shps update shps

Table II. Test subjects

test data generation process on the untransformed version.

5.2 Open Source and Daimler Programs

In addition to the study of the synthetic program, which represents a problem
that is synthetically generated to be hard for search–based approaches to solve,
the seventeen C functions shown in Table II were used to evaluate the impact of
the testability transformation of Figure 4. These functions were extracted from a
combination of ten open–source and Daimler programs. Each of the seventeen is
first described in some detail to provide an indication of flag usage in each pro-
gram. This is followed by a discussion of the empirical results obtained using these
functions.

EPWIC is an image compression utility. The selected function run length encode zeros
loops through a stream of data (encoded as a C string) and counts the number
of consecutive occurrences of 0. If a zero is found, a counter is incremented and
the flag found zero is set. The flag is initialized to 1 and the test problem is to
find inputs which avoid setting the flag to 0.

bibclean is a program used to check the syntax of BibTeX files and pretty print
them. Two functions were selected. The first, check ISBN, loops through an
input string to check whether it represents a valid ISBN number. It contains the
flag new ISBN, which is initialized to 1 and set to 0 at the start of every loop
iteration whenever its value is 1. The flag is reset to 1 in the body of the loop
only when a given number of parsed characters in the range 0 − 9, including ‘x’
and ‘X’, represent an invalid ISBN number, or, the string does not represent a
valid ISBN number at all, but contained more than 10 valid ISBN characters.
The test data generation challenge is to discover a string with more than 10 valid
ISBN characters which do not represent a valid ISBN number. The search has to
navigate through the entire input domain of the function, which is approximately
10120. The second function, check ISSN works exactly as check ISBN except that
ISSN instead of ISBN numbers are checked for.

ijpeg implements an image compression and decompression algorithm, of which five

ACM Journal Name, Vol. 2, No. 3, 06 2009.

132 · David Binkley et al.

functions were tested. The first, emit dqt, contains the flag prec. An array of 64
unsigned integers is iterated over. If an element exceeds the value 255, the flag
is set to true. The target branch is dependent on the flag being set to true.

The second function, format message, formats a message string for the most recent
JPEG error or message. It contains the flag isstring, which is used to check if
the format string contains the ‘%s’ format parameter. The test data generation
problem is to find an input string which contains the character sequence ‘%s’.

The third function, next marker, contains a loop assigned flag c, which is part of
the termination criterion for a do {} while() loop. An input buffer is traversed
and the current character assigned to c. The loop terminates if c is not equal
to 255, thus the challenge is to discover that an array of inputs is required that
contains the value 255 at least once.

The fourth function, pbm writepbmrowraw, contains the local variable bitshift of
type int which is initialized to 7. The inputs to the function are a file pointer,
a pointer to the start of a row in a matrix of unsigned character types, and the
number of columns in the row. A loop goes through each column and checks its
entry for a non–zero value. Whenever a non–zero character is encountered, the
value of bitshift is decremented by one. When bitshift takes on the value −1 it is
reset to 7. After the body of the loop, the function checks for bitshift not being
equal to 7. In this case the hard to cover target branch is the false outcome of
this check.

The final function, write frame header, contains the loop assigned flag is baseline,
which is initialized to 1 and assigned 0 in the body of the loop. The target branch
depends on the flag retaining its initial value. To complicate matters, the flag may
be initialized to 0 before the start of the loop if two properties of the function’s
input domain are true. This assignment is not part of the transformation per

se (apart from ensuring that the state of the flag is correctly represented by the
helper variables regardless of the path taken to reach the start of loop), thus it
remains an additional goal of the search algorithm to find inputs which avoid
initializing the flag to 0.

time is a GNU command line utility which takes as input another process (a pro-
gram) with its corresponding arguments and returns information about the re-
sources used by the process (e.g., the wall–clock and CPU time used). The
function getargs contains three loop assigned flags, outfile, append and verbose.
The function parses the command line arguments and sets the option flags ac-
cordingly. The challenge during the test data generation process is to find input
parameters encoded as strings, that are valid options, setting these flags.

plot2d is a small program that produces scatter plots directly to a compressed
image file. The core of the program is written in ANSI C. However the entire
application includes C++ code. Only the C part of the program was considered
during testing. The function CPLOT DetermineSeriesStatistics contains the loop
assigned flag computeStats, which is initialized with 1 and only ever assigned 1
in the body of the loop. The branch dependent on the false outcome of the flag
is therefore infeasible and the true branch trivially covered.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 133

tmnc is a C implementation of the TMN protocol. The function rule I intercept
loops through an array of sessions (containing, inter alias, information about the
initiator and responder), validating a session object. If the session is valid, a flag
is set.

handle new jobs is a job scheduler responsible for management of a set of jobs stored
in an array. Each job has a status and priority as well as additional data used
during job execution. This code is part of the Daimler C++ testing system itself:
it facilitates parallel execution of test processes. The input space is the job array
(the ‘data’ entries are unimportant for coverage). The test problem is to find
the right input data for the flag, check work, tested in the last condition of the
function. In order to execute the true branch of this conditional, the assignment
check work=1; in the for loop must be avoided in every iteration.

netflow is part of an ACM algorithm for performing net flow optimization. The
function has many input parameters configuring the net to be optimized, for
example connected nodes and connection capacity. The two parameters of the
function are low and high. The netflow function begins with some plausibility
checks on the input parameters. The flag variable violation is typical of a test
for special conditions which cannot be handled by the regular algorithm. As an
invalid input check, violation is set to true when low is set to a larger value than
high.

moveBiggestInFront is part of a standard sorting algorithm. A while loop processes
the elements of an array, checking whether the first element is the biggest. If
no such value exists, this constitutes a special case with the result that the flag
assignment is not executed in any iteration.

update shps is a navigation system used by Daimler in vehicular control systems.
The code has been modified to protect commercially sensitive information. How-
ever, these modifications do not affect the properties of the code with respect to
flag variable use. The navigation system operates on a ‘Shape Point Buffer’ which
stores information from a digital street map. Streets are defined by shape points.
The buffer contains map locations (points) near to the current location of the
car. For testing, the input space is formed from the set of shape point buffer data
stored in a global array and the position of the car supplied as the parameters
of the function. The function uses a flag, update points, to identify a situation
where an update is required. The flag is assigned inside a loop traversing the
shape point buffer. The flag becomes true if any shape point from the buffer is
outside a certain area. The target branch is hard to execute because input situ-
ations rarely lead to update points being assigned false. The search space for the
predicate if (!update points) is precisely the worst case flag landscape described
in Figure 1.

These seventeen functions capture the full range of difficulties for the search. At
the easy end of the spectrum, test data for the flag use in the predicate from plot2d
was always found in a single evaluation, both before and after transformation. Code
inspection revealed that every path through the loop (and in fact the function)
assigned true to the flag. Prior to the body of the loop, the flag is initialized to
true. After the loop, the function contains a check for the value true of flag. Since

ACM Journal Name, Vol. 2, No. 3, 06 2009.

134 · David Binkley et al.

the false branch of this check is clearly infeasible, it is not clear if this code was
written anticipating some structural addition; perhaps it is a bug.

At the other end of the spectrum, the evaluation budget was exhausted in both
the transformed and untransformed versions of three test subjects: getargs append,
getargs verbose, and next marker. The first of the three, getargs append, comes
from the command line argument processing of the program time. This example
uncovered a limitation in the current AUSTIN and Daimler tool implementations.
The tools do not properly handle C static variables, which are used to hold values
across multiple calls to a function. In this case, time uses the function getopt,
which records an index and look–ahead character in the static variables optind and
nextchar. These two static variables effectively prevent the search from returning to
a previous solution after exploring an inferior neighbour.

The second function getargs verbose, also from time, and the third next marker
from ijpeg both contain unstructured control flow. In this case an exit within the
loop; however, the impact of such control statements (e.g., a return statement)
would be similar. In essence, such statements prevent the search from exploiting
accumulated fitness information. In both cases, the search does not execute the
transformed predicate (created by Step 6 of the algorithm shown in Figure 4).

Observe that none of the aforementioned issues denote flag problems. Rather the
application of search–based testing techniques to real world programs has thrown
up subsidiary issue and barriers to test data generation that have nothing to do with
flags. It should be recognized that no ‘perfect’ solution to the test data generation
problem yet exists; all techniques have language features that present difficulties.
The purpose of this paper is to demonstrate that the barrier to search–based testing
raised by the presence of flag variables can be lowered by the testability transfor-
mation approach advocated in the paper. However, there will remain further work
required on these other issues of search–based testing.

The remaining thirteen functions fall in between these two extremes. In each
case, the transformation improves the search for test data. The average success
over all ten runs of each test subject is reported in the top of Figure 11. This
table and the one below it are sorted based on the number of fitness evaluations
performed using the untransformed program. Overall the transformation led to a
28% increase in successful test-date generation.

The lower table in Figure 11 shows the number of fitness evaluations used by
all ten runs for each program. This data is shown graphically in Figure 12, which
uses a log scale on the y–axis. Overall, the transformation leads to a 45% improve-
ment, reducing the total number of evaluations needed from 4, 589 to 2, 522, which
represents a statistically significant reduction (students t-test p-value = 0.031). It
produces an improvement for all but four of the test subjects. In several cases
the improvement is dramatic. For example, with the function moveBiggestInFront
the total number of evaluations drops from 9, 011 to 10. Even in cases where the
untransformed programs never exhausts its evaluation budget, there are large im-
provements. For example, with the function format message there is a 91% decrease
from 2, 811 to 245.

These results have to be treated with statistical caution. We take the average
results of 10 runs for each flag use of each predicate in each function studied. These

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 135

Covered Branches
untrans trans

Program Function -formed -formed

time getargs append 0 0
time getargs verbose 0 0
ijpeg next marker 0 0
ijpeg write frame header 0 10
netflow netflow 0 10
moveBiggestInFront moveBiggestInFront 3 10
tmnc rule I intercept 2 4
EPWIC run length encode zeros 10 10
ijpeg format message 10 10
bibclean check ISBN 10 10
bibclean check ISSN 10 10
ijpeg emit dqt 10 10
time getargs outfile 10 10
update shps update shps 10 10
handle new jobs handle new jobs 10 10
ijpeg pbm writepbmrowraw 10 10

plot2d CPLOT DetermineSeriesStatistics 10 10

average 6.2 7.9
percent improvement 28%

Fitness Evaluations
untrans trans percent

Program Function -formed -formed savings reduction

time getargs append 10,000 10,000 0 0%
time getargs verbose 10,000 10,000 0 0%
ijpeg next marker 10,000 10,000 0 0%
ijpeg write frame header 10,000 412 9588 96%
netflow netflow 10,000 61 9939 99%
moveBiggestInFront moveBiggestInFront 9,011 10 9001 100%
tmnc rule I intercept 8,767 8,451 316 4%
EPWIC run length encode zeros 3,401 2,066 1335 39%
ijpeg format message 2,811 245 2566 91%
bibclean check ISBN 1,385 543 842 61%
bibclean check ISSN 843 664 179 21%
ijpeg emit dqt 835 145 690 83%
time getargs outfile 478 218 260 54%
update shps update shps 271 45 226 83%
handle new jobs handle new jobs 202 6 196 97%
ijpeg pbm writepbmrowraw 7 5 2 29%
plot2d CPLOT 1 1 0 0%

average 4,589 2,522
percent improvement 45%

Fig. 11. Results from empirical study of functions extracted from open source software

ACM Journal Name, Vol. 2, No. 3, 06 2009.

136 · David Binkley et al.

Fig. 12. Chart of data from second empirical study

average values form a sample from two paired populations: the ‘with treatment’
population and the ‘without treatment population’ for flag uses in predicates. In
this case, ‘with treatment’ means with some form of transformation aimed to im-
prove the test data generation process.

The samples involved in this test are not (and, indeed, cannot be) sampled in
an entirely random and unbiased manner. They are samples from the space of all
possible loop–assigned flag uses in all predicates in all functions in all C programs.
There is even an issue here as to what constitutes the ‘population’; should it be, for
example, all C programs possible; all those currently written, or all those in use in
production systems? These questions bedevil any attempt to make reliable claims
for statistical significance of results for studies involving samples of program code.
In using the statistical tests, we are merely seeking to give a rough indication of the
strength of the results for the programs studied, rather than to make claims about
the behaviour of untried predicates in programs as yet unconsidered in the study.

6. EMPIRICAL VALIDATION

This section investigates the existence of loop–assigned variables ‘in the large’; that
is it considers if flags occur widely in practice. This is important to validate the
existence of the loop–assigned flag problem: if flags are not prevalent then there

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 137

Total With Total Total With Total
Program Predicates flags flags Program Predicates flags flags

EPWIC-1 435 104 107 gnugo 2584 687 731
a2ps 1886 677 754 go 2982 489 570
acct 349 168 179 ijpeg 1042 189 199
barcode 235 83 98 indent-1.10.0 537 140 172
bc 298 99 105 li 364 94 99
byacc 620 298 309 named 5794 1820 2080
cadp 480 174 175 ntpd 1904 552 595
compress 59 10 12 oracolo2 541 379 382
cook-c incl 706 218 228 prepro 530 374 377
cook-cook 2203 732 768 replace 54 13 13
cook-cook bom 564 194 202 sendmail-8.7.5 3198 1026 1161

cook-cookfp 510 176 183 snns-batchman 4858 1811 2201
cook-cooktime 518 185 200 snns-convert2snns 4394 1496 1829
cook-file check 462 169 176 snns-ff bignet 4450 1527 1876
cook-find libs 458 163 169 snns-isnns 4398 1499 1832
cook-fstrcmp 467 166 173 snns-linknets 4541 1527 1865
cook-make2cook 683 254 271 snns-netlearn 4386 1495 1828
cook-roffpp 505 179 185 snns-netperf 4387 1495 1828
copia 15 7 16 snns-pat sel 4396 1494 1827
csurf-packages 2043 924 979 snns-snns2c 4600 1541 1874
ctags 1063 336 387 snns-snnsbat 4669 1636 1995
cvs 6053 2617 2817 snns-td bignet 4451 1531 1879
diffutils 909 365 442 snns-ui main 6433 2118 2512
ed 619 228 302 space 503 345 348
empire 5294 1240 1406 spice 7254 2368 2478
espresso 1043 290 305 termutils 218 99 107
findutils 686 257 309 tile-forth-2.1 193 50 54
flex2-4-7 584 317 364 time-1.7 40 17 17
flex2-5-4 706 378 432 userv-0.95.0 679 222 241
ftpd 1765 723 823 wdiff.0.5 164 88 125
gcc.cpp 650 187 203 which 77 30 35
gnubg-0.0 497 113 119 wpst 989 482 516
gnuchess 1001 212 277 total 119,976 40,877 47,121

Fig. 13. Predicates and flags in the 65 programs

would be little point in trying to remove them.
The investigation makes use of the dependence graphs output by Codesurfer,

a deep structure analysis tool [Grammatech Inc. 2002]. Traversing dependence
edges in a program’s dependence graph simplifies the discovery of loop–assigned flag
variables. In all, 65 programs (including both Daimler and open source programs),
with a total of 119, 976 predicates were analysed. The programs studied range from
utilities with as few as fifteen predicates to the electronic circuit simulation program
spice containing 7, 254 predicates.

Results for the programs are shown in Figures 13, 14 and 15. The data presented
in these figures may be useful to other researchers addressing the flag problem. It
can be used to assess the kinds of flags used and their prevalence in a reasonably
large corpus of code. In this way the data provides base line information about how
prevalent the problem is and the various precise forms taken by the flag problem.
Other researchers can also use these data to determine whether their code base is
similar to that used in this study. This may be valuable to determine the degree

ACM Journal Name, Vol. 2, No. 3, 06 2009.

138 · David Binkley et al.

Total Loop Simple Single
Program Flags Flags gf pf bf la ca oa cas ma pa cnst ?f

EPWIC-1 107 21 11 18 0 32 1 0 0 20 4 0 0
a2ps 754 69 85 155 4 284 9 5 19 121 0 3 1
acct 179 19 82 13 2 34 2 22 1 4 0 0 0
barcode 98 16 3 7 0 49 0 0 2 10 11 0 0
bc 105 21 10 38 0 23 0 0 0 11 2 0 0
byacc 309 18 96 5 0 158 0 0 1 16 15 0 0
cadp 175 13 14 106 0 31 0 0 0 10 1 0 0
compress 12 0 6 0 0 5 0 0 0 1 0 0 0
cook-c incl 228 56 36 32 0 65 3 5 4 27 0 0 0
cook-cook 768 81 122 90 0 340 23 5 7 82 18 0 0
cook-cook bom 202 47 35 25 0 60 4 5 4 22 0 0 0

cook-cookfp 183 45 29 22 0 52 3 5 4 23 0 0 0
cook-cooktime 200 51 28 24 0 52 3 5 4 27 6 0 0
cook-file check 176 40 28 19 0 51 3 5 4 25 1 0 0
cook-find libs 169 40 28 19 0 49 3 5 4 21 0 0 0
cook-fstrcmp 173 44 28 19 0 49 3 5 4 21 0 0 0
cook-make2cook 271 51 54 33 0 80 3 5 4 35 6 0 0
cook-roffpp 185 47 30 22 0 52 3 5 4 22 0 0 0
copia 16 0 10 0 0 6 0 0 0 0 0 0 0
csurf-packages 979 36 75 515 2 269 0 0 1 48 22 11 0
ctags 387 76 27 34 2 185 6 1 4 50 0 2 0
cvs 2817 202 531 470 1 834 39 111 16 372 239 2 3
diffutils 442 49 69 89 1 116 3 4 8 70 33 0 1
ed 302 41 72 58 1 68 0 4 3 48 7 0 3
empire 1406 216 273 203 3 400 43 4 2 229 33 0 0
espresso 305 45 116 27 0 69 0 3 13 30 2 0 2
findutils 309 27 21 95 1 97 2 4 7 55 0 0 0
flex2-4-7 364 24 206 28 0 42 0 9 0 45 10 0 0
flex2-5-4 432 7 242 41 0 59 0 14 0 38 31 0 1
ftpd 823 108 356 52 1 132 83 15 0 53 23 0 0
gcc.cpp 203 51 52 29 0 40 0 8 0 17 6 0 0
gnubg-0.0 119 15 51 25 0 16 1 1 1 6 2 1 3
gnuchess 277 31 37 78 0 82 1 2 7 25 6 8 2
gnugo 731 52 158 239 1 167 2 12 2 68 19 11 0
go 570 98 34 66 0 238 0 0 5 118 10 1 0
ijpeg 199 17 16 55 0 86 0 0 1 21 3 0 1
indent-1.10.0 172 40 52 5 0 19 0 6 0 40 10 0 0
li 99 19 4 31 0 22 0 0 1 8 10 4 2
named 2080 271 91 495 8 733 44 15 14 293 116 0 6

Fig. 14. Part 1 of 2: Loop–assigned flags from 65 programs. Column headings are defined in Part
2 of the table.

to which subsequent work replicates the findings reported here.
In Figure 13, the data reported for each program consists of the total number

of predicates in the program, the number of predicates that include one or more
flags, and the total number of flags. Comparing the last two columns, most flag–
containing predicates include a single flag. Figures 14 and 15 show a break down
of the flags into twelve categories. Of particular interest is the third column, which
shows loop–assigned flags. In the 65 programs, a total of 47, 121 flags were found in
all predicates, of these 14% are loop–assigned. Thus, the problem studied herein is
relevant, as a significant proportion of the flags used were found to be loop–assigned.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 139

Total Loop Simple Single
Program Flags Flags gf pf bf la ca oa cas ma pa cnst ?f

ntpd 595 70 203 62 1 142 10 13 0 66 28 0 0
oracolo2 382 16 1 46 0 281 0 0 0 38 0 0 0
prepro 377 16 1 46 0 277 0 0 0 37 0 0 0
replace 13 7 0 0 0 6 0 0 0 0 0 0 0
sendmail-8.7.5 1161 161 142 167 8 362 32 19 37 172 59 2 0
snns-batchman 2201 312 534 167 0 649 21 10 20 241 231 16 1
snns-convert2snns 1829 300 442 133 0 605 22 9 0 216 86 16 0
snns-ff bignet 1876 301 456 137 0 626 21 9 0 224 86 16 0
snns-isnns 1832 302 441 132 0 606 21 9 0 219 86 16 0
snns-linknets 1865 318 442 132 0 621 21 10 0 218 86 17 0
snns-netlearn 1828 300 441 132 0 607 21 9 0 216 86 16 0

snns-netperf 1828 300 441 132 0 605 21 9 0 216 88 16 0
snns-pat sel 1827 300 441 132 0 605 21 9 0 217 86 16 0
snns-snns2c 1874 308 444 132 0 638 21 12 0 216 86 17 0
snns-snnsbat 1995 302 471 140 0 619 21 47 0 268 110 17 0
snns-td bignet 1879 302 456 137 0 626 21 9 0 226 86 16 0
snns-ui main 2512 334 745 213 0 755 26 10 4 299 110 16 0
space 348 16 1 7 0 283 0 0 0 41 0 0 0
spice 2478 513 161 390 0 881 3 17 54 382 76 1 6
termutils 107 23 8 23 0 39 0 0 0 11 3 0 2
tile-forth-2.1 54 6 9 10 0 23 0 2 0 4 0 0 0
time-1.7 17 3 4 5 0 4 0 0 0 1 0 0 0
userv-0.95.0 241 12 30 12 0 147 21 2 0 11 6 0 0
wdiff.0.5 125 8 71 8 0 15 0 0 0 17 6 0 0
which 35 0 11 3 0 8 0 6 1 6 0 0 0
wpst 516 29 36 240 0 152 0 0 1 30 16 12 0

Percent 100% 14% 20% 13% <1% 33% 1% 1% <1% 12% 4% <1% <1%

Fig. 15. Part 2 of 2: Loop–assigned flags from 65 programs. Column headings are as follows
gf - global flags not assigned to in the module,
pf - parameter flags not assigned to in the module,

bf - combination of unassigned global and parameter used (e.g., if(f==g))
la - single assignment to a local variable
ca - single assignment from the result of a call
oa - other single assignments
cas - parameters assignment from within conditional
ma - multiple reaching assignments to the flag exist
pa - assignments through a pointer
cnst - flags with constant value while(true)
?f - unknown flags

7. RELATED WORK

Many internationally accepted testing standards [British Standards Institute 1998a;
Radio Technical Commission for Aeronautics 1992] either recommend or require
branch adequate testing for quality assurance and safety. These standards apply in
particular to embedded system controllers, where flag use is common. Generating
test data by hand in order to meet these standards is tedious and error–prone even
though most embedded code is relatively simple in structure; thus, automated test
data generation has been a sustained topic of interest for the past three decades.

Past techniques used for generating test data automatically include symbolic

ACM Journal Name, Vol. 2, No. 3, 06 2009.

140 · David Binkley et al.

execution [Clarke 1976; King 1976], dynamic symbolic execution [Godefroid et al.
2005; Cadar and Engler 2005; Sen et al. 2005; Tillmann and de Halleux 2008;
Burnim and Sen 2008; Xie et al. 2009; Cadar et al. 2008], constraint solving [DeMillo
and Offutt 1993; Offutt 1990; Offutt et al. 1999], the chaining method [Ferguson
and Korel 1996] and evolutionary testing [Schultz et al. 1993; Jones et al. 1996;
Michael et al. 2001; Mueller and Wegener 1998; Pargas et al. 1999; Pohlheim and
Wegener 1999; Tracey et al. 1998b; Godefroid and Khurshid 2002].

The loop–assigned flag problem discussed in this paper is relevant for all these
methods. Symbolic execution formulates predicates as mathematical expressions
with the aid of symbolic variables, which are then passed to an automated reasoner
when used as part of a test data generation process. Loops force conservative ap-
proximation about loop–assigned variables, because they may be non–deterministic.
Constraint solving techniques, which back propagate path information from predi-
cates to form the constraints on the inputs suffer from a similar problem. Dynamic
symbolic execution aims to overcome many of the problems typically associated
with symbolic execution. To date, most variations of dynamic symbolic execution
are based on exploring all feasible execution paths; they do not have the capability
of targeting specific branches. Hence, branches controlled by loop–assigned flags
may not be covered if the dynamic symbolic execution gets ‘stuck’ in unbounded
loops, or, they may take a very long time to be covered. For example, CUTE [Sen
et al. 2005] fails to find test data within 1000 iterations for the synthetic example
shown in Figure 3(a) with an array size of 10 or greater 3. This is because the
number of feasible paths increases to more than 1024. By comparison, the AVM
takes, on average, 386.6 fitness evaluations (evaluations correspond to iterations in
CUTE), to cover the target branch for an array size of 10.

Finally, the chaining approach also suffers from the loop–assigned flag problem.
It tries to identify sequences of nodes in a programs control flow graph which need
to be executed in order to reach a specified target branch. Loop–assigned variables
may lead to ‘infinite’ chains or result in loss of information, because it is not known
a–priori how often a node inside a loop needs to be executed.

For a subset of a C–like language, Offutt et al. introduce a dynamic variant of
constraint solving that performs dynamic domain reduction [Offutt et al. 1999].
The algorithm can be applied to the flag problem. First a path to the target is
selected for execution. Then the domains of each input variable are refined as
execution follows this path. Domain refinement takes place at assignments and
decision statements. For example, if the domain of a and b were both 1 · · · 10
before if (a != b), then in the true branch of the if statement, a and b would be
assigned the domains 1 · · · 5 and 6 · · · 10 respectively.

Loops are handled in a similar fashion by marking the loop predicates and dy-
namically reducing the input domain of the variables involved in loop constraints.
However, the domain reduction requires knowing a–priori a path to the target.
Thus, for this dynamic domain reduction technique to cover the flag controlled
branch in the program shown in Figure 3(a) requires that it first select the path
through the body of the loop which avoids each assignment to flag. Because this

3CUTE was run with the -r option in order to initialize (primitive) inputs with random numbers.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 141

section is done essentially by chance and the set of feasible paths is large, this may
take some time.

Flags often present the worst case scenario to search based test data generation
techniques. In particular when only very few sub–paths will result in a flag taking
on one of its two values. In contrast, the approach presented in this paper is able to
offer the search coarse and fine–grained guidance. This makes the approach more
applicable to the flag problem in the presence of loop–assigned flags.

SBT in the presence of flags has been studied by four different authors [Bottaci
2002a; Baresel and Sthamer 2003; Harman et al. 2004; Liu et al. 2005]. Bottaci [Bottaci
2002a] aims to establish a link between a flag use and the expression assigning a
flag. This is done by storing the fitness whenever a flag assignment occurs so it can
be used later on.

Baresel and Sthamer [Baresel and Sthamer 2003] use a similar approach to
Bottaci. Whereas Bottaci’s approach is to store the values of fitness as the flag
is assigned, Baresel and Sthamer use static data analysis to locate the assignments
in the code, which have an influence on the flag condition at the point of use. Bare-
sel and Sthamer report that the approach also works for enumeration types and
give results from real–world examples, which show that the approach reduces test
effort and increases test effectiveness.

Harman et al. [Harman et al. 2004] illustrate how a testability transformation
originating from an amorphous slicing technique can be used to transform flag
containing programs into flag–free equivalents. They achieve this by substituting a
flag use with the condition leading to, as well as the definition of a flag, with the
aid of temporary variables.

Liu et al. [Liu et al. 2005] present an approach for unifying fitness function
calculations for non–loop assigned flags, and consider the problem of loop–assigned
flags in the presence of break and continue statements [Liu et al. 2005].

Three of the approaches share a similar theme: they seek to connect the last
assignment to the flag variable to the use of the flag at the point where it controls the
branch of interest. In Bottaci’s approach the connection is made through auxiliary
instrumentation variables, in that of Baresel and Sthamer it is made through data
flow analysis and, in the approach of Harman et al. , a literal connection is made
by substitution in the source code.

The algorithm presented in Figure 4 and the approach by Liu et al. could be
thought of as a combination of the approaches of Bottaci and Harman et al. They
share the use of auxiliary ‘instrumentation variables’ with Bottaci’s approach, but
use these in a transformed version of the original program using transformations
like the approach of Harman et al.

Alshraideh and Bottaci [Alshraideh and Bottaci 2006] proposed an approach to
increase diversity of population–based test data generation approaches, for situa-
tions where the fitness function results in plateaux. This partly addresses issues
relating to plateaux by increasing the chances that random mutations will move
the population off the plateau. One of the underlying features of the flag problem
is the way in which plateaux are present. In the case of hard–to–test flags, the
landscape is formed of one very large plateau (with a tiny spike; the needle in the
haystack) and, even with increased diversity, the search–based approach reduces to

ACM Journal Name, Vol. 2, No. 3, 06 2009.

142 · David Binkley et al.

random search.
A preliminary version of the fine–grained transformation advocated in the present

paper, made use of a bushing and blossoming technique [Baresel et al. 2004]. Bush-
ing takes a program which may contain if - then statements, and replaces these
with if - then - else statements. It also copies in the rest of the code sequence from
the block into the then and else branches of the conditional. Blossoming pushes
the assignment statements within a bushed tree to the leaves of the tree. When
combined, bushing and blossoming have the effect of converting the AST of the
code sequence into a binary tree, in which the internal nodes are predicates and the
leaves are a sequence of assignments. The advantage of bushing and blossoming
is that the transformed AST contains one leaf for each path. This considerably
simplifies the case–based analysis from Figure 4. However it also introduces new
levels of nesting, and, as a study by McMinn et al. [McMinn et al. 2005] shows,
this causes problems in an evolutionary search. Thus it was decided not to include
bushing and blossoming in the implementation described in Section 4, and only
transform if - then into if - then - else statements, minimizing the levels of nesting
introduced by the transformations.

All of the evolutionary approaches can benefit from general improvements in ge-
netic algorithms. For example, Godefroid and Khurshid consider a framework for
exploring very large state spaces often seen in models for concurrent systems [Gode-
froid and Khurshid 2002]. They describe an experiment with an implementation
based on the VeriSoft tool. They experiment with heuristics that improved the
genetic algorithm’s mutation operators and also show how Partial–order reduction
can allow a greater search space to be considered.

Finally, from a transformation standpoint, the algorithm presented here is in-
teresting as it does not preserve functional equivalence. This is a departure from
most prior work on program transformation, but it is not the first instance of non–
traditional–meaning preserving transformation in the literature. Previous examples
include Weiser’s slicing [Weiser 1979] and the ‘evolution transforms’ of Dershowitz
and Manna [Dershowitz and Manna 1977] and Feather [Feather 1982]. However,
both slices and evolution transforms do preserve some projection of traditional
meaning. The testability transformation introduced here does not; rather, it pre-
serves an entirely new form of meaning, derived from the need to improve test data
generation rather than the need to improve the program itself.

8. SUMMARY

This paper presents a testability transformation that handles the flag problem for
evolutionary testing. Unlike previous approaches, the transformation introduced
here can handle flags assigned in loops. Also, unlike previous transformation ap-
proaches (either to the flag problem or to other more traditional applications of
transformation) the transformations introduced are not meaning preserving in the
traditional sense; rather than preserving functional equivalence, all that is required
is to preserve the adequacy of test data.

An implementation of the algorithm is discussed. The implementation is based on
CIL, an infrastructure for C program analysis and transformations. The modular
nature of both CIL and the tool allows the system to be extended in the future and

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 143

incorporate different transformation algorithms, thus forming an effective transfor-
mation tool, geared toward improving evolutionary testing.

The behaviour of the algorithm is evaluated with two empirical studies that in-
volve a synthetic program and functions taken from open source programs. The
synthetic examples are used to illustrate how two variations of the algorithm per-
form for different levels of difficulty. The results show that the approach scales well
to even very difficult search landscapes, for which test data is notoriously hard to
find. The worst case considered involves finding a single adequate test input from
a search space of size 2320. Despite the size and difficulty of this search problem,
the search–based testing approach, augmented with the transformation algorithm
introduced here, consistently finds this value.

The paper also presents evidence that the flag problem considered herein arises
naturally in a variety of real world systems. It uses results from a separate empirical
study to show that the flag problem considered is prevalent among those uses of
flags found in a suite of real world programs.

REFERENCES

Alshraideh, M. and Bottaci, L. 2006. Using program data-state diversity in test data search.
In Proceedings of the 1st Testing: Academic & Industrial Conference - Practice and Research
Techniques (TAICPART ’06). 107–114.

Baresel, A., Binkley, D., Harman, M., and Korel, B. 2004. Evolutionary testing in the
presence of loop-assigned flags: a testability transformation approach. In Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2004,
Boston, Massachusetts, USA, July 11-14, 2004, G. S. Avrunin and G. Rothermel, Eds. ACM,
108–118.

Baresel, A. and Sthamer, H. 2003. Evolutionary testing of flag conditions. In Genetic and
Evolutionary Computation (GECCO-2003). LNCS, vol. 2724. Springer-Verlag, Chicago, 2442–
2454.

Baresel, A., Sthamer, H., and Schmidt, M. 2002. Fitness function design to improve evo-
lutionary structural testing. In GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference. Morgan Kaufmann Publishers, New York, 1329–1336.

Binkley, D. W. and Gallagher, K. B. 1996. Program slicing. In Advances in Computing,
Volume 43, M. Zelkowitz, Ed. Academic Press, 1–50.

Bottaci, L. 2002a. Instrumenting programs with flag variables for test data search by genetic
algorithms. In GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Con-
ference. Morgan Kaufmann Publishers, New York, 1337–1342.

Bottaci, L. 2002b. Instrumenting programs with flag variables for test data search by genetic
algorithms. In GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Con-

ference, W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke,
and N. Jonoska, Eds. Morgan Kaufmann Publishers, New York, 1337–1342.

Briand, L. C., Labiche, Y., and Shousha, M. 2005. Stress testing real-time systems with
genetic algorithms. In Genetic and Evolutionary Computation Conference, GECCO 2005,
Proceedings, Washington DC, USA, June 25-29, 2005, H.-G. Beyer and U.-M. O’Reilly, Eds.
ACM, 1021–1028.

British Standards Institute. 1998a. BS 7925-1 vocabulary of terms in software testing.

British Standards Institute. 1998b. BS 7925-2 software component testing.

Burnim, J. and Sen, K. 2008. Heuristics for scalable dynamic test generation. Tech. Rep.
UCB/EECS-2008-123, EECS Department, University of California, Berkeley. Sep.

Cadar, C., Dunbar, D., and Engler, D. R. 2008. KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, R. Draves and R. van Renesse,
Eds. USENIX Association, 209–224.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

144 · David Binkley et al.

Cadar, C. and Engler, D. R. 2005. Execution generated test cases: How to make systems code

crash itself. In Model Checking Software, 12th International SPIN Workshop, San Francisco,
CA, USA, August 22-24, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3639.
Springer, 2–23.

Clark, J., Dolado, J. J., Harman, M., Hierons, R. M., Jones, B., Lumkin, M., Mitchell,

B., Mancoridis, S., Rees, K., Roper, M., and Shepperd, M. 2003. Reformulating software
engineering as a search problem. IEE Proceedings — Software 150, 3, 161–175.

Clarke, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE
Transactions on Software Engineering 2, 3 (Sept.), 215–222.

Darlington, J. and Burstall, R. M. 1977. A tranformation system for developing recursive
programs. Journal of The ACM 24, 1, 44–67.

DeMillo, R. A. and Offutt, A. J. 1993. Experimental results from an automatic test generator.
ACM Transactions of Software Engineering and Methodology 2, 2 (Mar.), 109–127.

Dershowitz, N. and Manna, Z. 1977. The evolution of programs: A system for automatic
program modification. In Conference Record of the Fourth Annual Symposium on Principles
of Programming Languages. ACM SIGACT and SIGPLAN, ACM Press, 144–154.

Feather, M. S. 1982. A system for assisting program transformation. ACM Transactions on
Programming Languages and Systems 4, 1 (Jan.), 1–20.

Ferguson, R. and Korel, B. 1996. The chaining approach for software test data generation.
ACM Transactions on Software Engineering and Methodology 5, 1 (Jan.), 63–86.

Godefroid, P. and Khurshid, S. 2002. Exploring very large state spaces using genetic algo-
rithms. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, Grenoble, France.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: directed automated random testing.
ACM SIGPLAN Notices 40, 6 (June), 213–223.

Grammatech Inc. 2002. The codesurfer slicing system.

Harman, M. 2007. The current state and future of search based software engineering. In Future
of Software Engineering 2007, L. Briand and A. Wolf, Eds. IEEE Computer Society Press, Los
Alamitos, California, USA, 342–357.

Harman, M., Hu, L., Hierons, R. M., Wegener, J., Sthamer, H., Baresel, A., and Roper,

M. 2004. Testability transformation. IEEE Transactions on Software Engineering 30, 1 (Jan.),
3–16.

Harman, M. and Jones, B. F. 2001. Search based software engineering. Information and
Software Technology 43, 14 (Dec.), 833–839.

Harman, M. and McMinn, P. 2007. A theoretical and empirical analysis of genetic algo-
rithms and hill climbing for search based structural test data generation. In Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and Analysis, ISSTA To
Appear.

Holland, J. H. 1975. Adaption in Natural and Artificial Systems. MIT Press, Ann Arbor.

Jones, B., Sthamer, H.-H., and Eyres, D. 1996. Automatic structural testing using genetic
algorithms. The Software Engineering Journal 11, 299–306.

Jones, B. F., Eyres, D. E., and Sthamer, H. H. 1998. A strategy for using genetic algorithms
to automate branch and fault-based testing. The Computer Journal 41, 2, 98–107.

King, J. C. 1976. Symbolic execution and program testing. Communications of the ACM 19, 7
(July), 385–394.

Korel, B. 1990. Automated software test data generation. IEEE Transactions on Software
Engineering 16, 8, 870–879.

Lakhotia, K., Harman, M., and McMinn, P. 2008. Handling dynamic data structures in search
based testing. In GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation. ACM, Atlanta, GA, USA, 1759–1766.

Lakhotia, K., McMinn, P., and Harman, M. 2009. Automated test data generation for coverage:
Haven’t we solved this problem yet?. In Testing: Academic & Industrial Conference, Practice
And Research Techniques (TAIC PART09). IEEE Computer Society Press, To Appear.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

FlagRemover: Transforming Loop Assigned Flags · 145

Liu, X., Lei, N., Liu, H., and Wang, B. 2005. Evolutionary testing of unstructured programs in

the presence of flag problems. In APSEC. IEEE Computer Society, 525–533.

Liu, X., Liu, H., Wang, B., Chen, P., and Cai, X. 2005. A unified fitness function calculation
rule for flag conditions to improve evolutionary testing. In 20th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach,
CA, USA, D. F. Redmiles, T. Ellman, and A. Zisman, Eds. ACM, 337–341.

McMinn, P. 2004. Search–based Software Test Data Generation: A Survey. Software Testing,
Verification and Reliability 14, 2, 105–156.

McMinn, P., Binkley, D., and Harman, M. 2005. Testability transformation for efficient au-
tomated test data search in the presence of nesting. In UK Software Testing Workshop (UK
Test 2005). Sheffield, UK.

Michael, C., McGraw, G., and Schatz, M. 2001. Generating software test data by evolution.
IEEE Transactions on Software Engineering 12 (Dec.), 1085–1110.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. MIT Press.

Mueller, F. and Wegener, J. 1998. A comparison of static analysis and evolutionary testing
for the verification of timing constraints. In 4th IEEE Real-Time Technology and Applications
Symposium (RTAS ’98). IEEE, Washington - Brussels - Tokyo, 144–154.

Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. 2002. CIL: Intermediate lan-
guage and tools for analysis and transformation of C programs. Lecture Notes in Computer
Science 2304, 213–228.

NIST. 2002. The economic impacts of inadequate infrastructure for software testing. Planning
Report 02-3.

Offutt, A. J. 1990. An integrated system for automatically generating test data. In Proceed-
ings of the First International Conference on Systems Integration, R. T. Ng, Peter A.; Ra-
mamoorthy, C.V.; Seifert, Laurence C.; Yeh, Ed. IEEE Computer Society Press, Morristown,
NJ, 694–701.

Offutt, A. J., Jin, Z., and Pan, J. 1999. The dynamic domain reduction approach to test data
generation. Software Practice and Experience 29, 2 (January), 167–193.

Pargas, R. P., Harrold, M. J., and Peck, R. R. 1999. Test-data generation using genetic
algorithms. The Journal of Software Testing, Verification and Reliability 9, 263–282.

Partsch, H. A. 1990. The Specification and Transformation of Programs: A Formal Approach
to Software Development. Springer.

Pohlheim, H. Genetic and evolutionary algorithm toolbox for use with Matlab.

Pohlheim, H. and Wegener, J. 1999. Testing the temporal behavior of real-time software mod-
ules using extended evolutionary algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference. Vol. 2. Morgan Kaufmann, San Francisco, CA 94104, USA, 1795.

Puschner, P. and Nossal, R. 1998. Testing the results of static worst–case execution-time

analysis. In 19th IEEE Real-Time Systems Symposium (RTSS ’98). IEEE Computer Society
Press, Madrid, Spain, 134–143.

Radio Technical Commission for Aeronautics. 1992. RTCA DO178-B Software considera-
tions in airborne systems and equipment certification.

Schultz, A., Grefenstette, J., and Jong, K. 1993. Test and evaluation by genetic algorithms.
IEEE Expert 8, 5, 9–14.

Sen, K., Marinov, D., and Agha, G. 2005. CUTE: a concolic unit testing engine for C. In
ESEC/SIGSOFT FSE, M. Wermelinger and H. Gall, Eds. ACM, 263–272.

Tillmann, N. and de Halleux, J. 2008. Pex-white box test generation for.NET. In TAP,
B. Beckert and R. Hähnle, Eds. Lecture Notes in Computer Science, vol. 4966. Springer, 134–
153.

Tip, F. 1994. A survey of program slicing techniques. Tech. Rep. CS-R9438, Centrum voor
Wiskunde en Informatica, Amsterdam.

Tracey, N., Clark, J., and Mander, K. 1998a. Automated program flaw finding using simulated
annealing. In International Symposium on Software Testing and Analysis. ACM/SIGSOFT,
73–81.

ACM Journal Name, Vol. 2, No. 3, 06 2009.

146 · David Binkley et al.

Tracey, N., Clark, J., and Mander, K. 1998b. The way forward for unifying dynamic test-

case generation: The optimisation-based approach. In International Workshop on Dependable
Computing and Its Applications (DCIA). IFIP, 169–180.

Wappler, S., Baresel, A., and Wegener, J. 2007. Improving evolutionary testing in the pres-
ence of function–assigned flags. In Testing: Academic & Industrial Conference, Practice And
Research Techniques (TAIC PART07). IEEE Computer Society Press, 23–28.

Ward, M. 1994. Reverse engineering through formal transformation. The Computer Jour-
nal 37, 5, 795–813.

Wegener, J., Baresel, A., and Sthamer, H. 2001. Evolutionary test environment for automatic
structural testing. Information and Software Technology Special Issue on Software Engineering
using Metaheuristic Innovative Algorithms 43, 14, 841–854.

Wegener, J., Grimm, K., Grochtmann, M., Sthamer, H., and Jones, B. F. 1996. Systematic
testing of real-time systems. In 4th International Conference on Software Testing Analysis and
Review (EuroSTAR 96).

Wegener, J. and Mueller, F. 2001. A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Systems 21, 3, 241–268.

Wegener, J., Sthamer, H., Jones, B. F., and Eyres, D. E. 1997. Testing real-time systems
using genetic algorithms. Software Quality 6, 127–135.

Weiser, M. 1979. Program slices: Formal, psychological, and practical investigations of an auto-
matic program abstraction method. Ph.D. thesis, University of Michigan, Ann Arbor, MI.

Weiser, M. 1984. Program slicing. IEEE Transactions on Software Engineering 10, 4, 352–357.

Xie, T., Tillmann, N., de Halleux, P., and Schulte, W. 2009. Fitness-guided path exploration
in dynamic symbolic execution. In Proc. the 39th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN 2009).

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. 2, No. 3, 06 2009.

