
Automated Generation of State Abstraction
Functions using Data Invariant Inference

Paolo Tonella, Cu Duy Nguyen, Alessandro Marchetto
Fondazione Bruno Kessler, Trento, Italy
{tonella, cunduy, marchetto}@fbk.eu

Kiran Lakhotia, Mark Harman
University College London, UK
{k.lakhotia, mark.harman}@ucl.ac.uk

Abstract—Model based testing relies on the availability of
models that can be defined manually or by means of model
inference techniques. To generate models that include meaningful
state abstractions, model inference requires a set of abstraction
functions as input. However, their specification is difficult and
involves substantial manual effort. In this paper, we investigate
a technique to automatically infer both the abstraction functions
necessary to perform state abstraction and the finite state models
based on such abstractions. The proposed approach uses a combi-
nation of clustering, invariant inference and genetic algorithms to
optimize the abstraction functions along three quality attributes
that characterize the resulting models: size, determinism and
infeasibility of the admitted behaviors. Preliminary results on a
small e-commerce application are extremely encouraging because
the automatically produced models include the set of manually
defined gold standard models.

Keywords-Model inference; Abstraction functions; Model-
based testing; Search-based software engineering.

I. INTRODUCTION

Model-based testing (MBT) is an approach to automate test
case generation using a model of the application under test.
It has been applied successfully at different levels of testing
and in various application domains [4], [13]. One of the key
elements of MBT is the model that describes the behaviour
of the system under test (SUT). Such a model is supposed to
provide an abstract view of the SUT, by focusing on specific
aspects, e.g., the change of a system state at runtime. One
of the most frequently used kinds of models is the Finite
State Machine (FSM) model. In a FSM model, nodes represent
states of the SUT and can be determined, amongst other ways,
by the values of class attributes (in case of object-oriented
applications [15], [9]), or the values of graphical objects (in
case of GUI-based applications [1], [16], [12]). A transition of
a FSM represents an event or an action (e.g., a method call, an
event handler, etc.) that results in changing the system state.

A FSM of a SUT can be constructed at design time,
or inferred from the implementation by means of reverse
engineering techniques (e.g., it can be inferred from execution
traces). The former case involves manual specification and
maintenance effort, which is costly for systems that change
frequently. It is also inadequate for systems that can evolve
at runtime and where only partial knowledge is available at
design time. As a result, most of the recent research effort is
devoted to model inference techniques that automatically infer
models from execution traces [2], [3], [11], [14].

FSM-based models can be mined by means of two main
approaches: event sequence or state abstraction inference.
Event sequence abstraction takes advantage of regular lan-
guage mining algorithms, such as k-tail [2], or its variants
[11], [10] to produce a model that generalizes a set of event
sequences. State based abstraction maps the concrete (and
traced) states into abstract states, and events into transitions
between abstract states [3], [12]. The main disadvantage of
event sequence abstraction, as compared to state abstraction,
is that the resulting FSM contains states that are just place-
holders, while the behaviour is modelled exclusively by the
FSM paths. Obtaining a FSM whose states are meaningful
and representative of true states of the SUT is important for
many MBT approaches. In this paper, we focus only on state
abstraction for FSM inference.

Since the space of concrete states of a system at runtime is
virtually unbounded, a state abstraction mechanism to map
concrete states to a manageable number of abstract states
is needed. For instance, Marchetto et al. [12] utilize a set
of abstraction functions, while Dallmeier at al. [3] use an
inspection mechanism that requires implementing inspector
code. These approaches require manual effort to initially define
and later maintain the abstraction mechanisms applied to
execution traces in order to obtain the FSM.

In this paper, we propose a novel approach that can automat-
ically infer and refine state abstraction functions and optimize
their output model to meet a set of quality attributes. More
specifically, we apply a data-clustering algorithm to execution
traces with concrete states in order to group concrete states
into clusters. We then run invariant inference [5], [6] on each
cluster to infer a set of invariants for each cluster, and we
iteratively improve the clustering, using a Genetic Algorithm
(GA), so as to optimize the quality attributes of the associated
FSM model. Each distinct set of invariants produced for each
cluster at the end of the optimization represents an abstract
state and is used as the abstraction function that maps concrete
states to abstract ones. By applying these abstraction functions
to concrete input traces we generate the output (FSM) model.
To the best of our knowledge, this is the first approach that
tries to automatically infer both the abstraction functions and
the abstract model from execution traces.

The remainder of this paper is organized as follows: Section
II introduces the proposed technique on a running example;
Section III provides the algorithmic details of the proposed



technique; Section IV discusses some preliminary experimen-
tal data, collected on the running example. The last section is
devoted to conclusions and future work.

II. MOTIVATING EXAMPLE AND DEFINITIONS

In this section we explain why the problem of defining an
abstraction function for state based model inference is intrin-
sically a multi-objective optimization problem. We do so by
resorting to a running example, the Cart web application (204
Java LOC; 4 classes). Although Cart is an extremely simplified
example of a rich-client web application, it holds many of the
key traits of existing e-commerce web applications.

Cart provides the typical client side operations implemented
to handle the shopping cart of an e-commerce web application.
Users can add or remove items to the shopping cart and they
can eventually check-out, by moving to a payment procedure.
The client side events that trigger such operations are respec-
tively add, rem and pay. The client side state consists of a
variable N , holding the number of items currently in the cart.
N is assigned the value −1 (null) when a user moves to the
payment procedure.

TABLE I
FOUR EXECUTION TRACES FOR THE Cart APPLICATION.

EVENT N
START 0
add 1
add 2
rem 1
pay -1
START 0
add 1
pay -1

EVENT N
START 0
add 1
add 2
add 3
add 4
rem 3
add 4
pay -1

EVENT N
START 0
add 1
rem 0
add 1
rem 0
add 1
add 2
pay -1

Table I shows the traces associated with four user sessions of
Cart. In the first session, the user adds an item to the (initially
empty) shopping cart, adds another item, removes an item and
then pays for the remaining item. The other user sessions in
the table read similarly.

TABLE II
OPTIMAL (TOP) AND SUB-OPTIMAL (BOTTOM) ABSTRACTION FUNCTIONS

FOR THE Cart APPLICATION.

A1 f(N) := {(N ≥ 0), (N = −1)}
A2 f(N) := {(N = 0), (N ≥ 1), (N = −1)}
A3 f(N) := {(N = 0), (N = 1), (N ≥ 2), (N = −1)}
A4 f(N) := {(N = 0), (N = 1), (N = 2), (N ≥ 3), (N = −1)}
A5 f(N) := {(0 ≤ N ≤ 1), (N ≥ 1), (N = −1)}
A6 f(N) := {(N = 0), (N 6= 0)}

Table II shows some examples of state abstraction functions
that can be applied to the traces of Cart to obtain a finite state
model of the web application client.

Definition 1 (State abstraction function). A state abstraction
function is a mapping from the space of the concrete states to
the powerset of the abstract states: f : C → 2S , where C is
the set of all concrete state values and S is the set of abstract
states.

The abstraction function A1 maps the concrete states of
variable N to a subset of the two abstract states {S1, S2}.
The first abstract state S1 is included in the set of abstract
states returned by f if N is greater than or equal to zero. S2

is included if N is −1. Abstraction function A5 includes the
first abstract state S1 if N is zero or 1, the second abstract state
S2 if N is greater than or equal to 1, and the third abstract
state if N is −1.

Notice that some of the abstraction functions in Table II are
deterministic, i.e., they always return a singleton set. In other
words, they partition the concrete state space. This is true of
abstraction functions A1−A4 and of A6. Abstraction function
A5 is non-deterministic in that it returns a set of states which
include the abstract states S1 and S2 when N is equal to 1.

If we apply the six abstraction functions in Table II to a
representative set of traces for the Cart application, which
includes the traces in Table I, we obtain the six finite state
models in Figure 1. When A1 is used, all concrete states
reached after add or rem transitions satisfy the condition of S1,
N ≥ 0, but not that of S2, N = −1. Hence, the transitions
labelled add, rem in Figure 1.A1 are self-transitions of the
abstract state S1. When transition pay is executed, the value of
N becomes −1, which is mapped to S2. Hence the transition
from S1 to S2 labelled pay.

When abstraction function A5 is used to process the last
trace in Table I, transition rem is triggered twice in a concrete
state where N = 1, resulting in N = 0. The source state for
this transition is f(1) = {S1, S2}, i.e., either state S1 or S2.
The target state for this transition is f(0) = {S1}, i.e., state S1

only. Hence, two abstract transitions label rem must be added
to the model, a self transition in S1 and a transition from S1

to S2. As another example, the transition add produces a non-
deterministic transition from S1 to both S1 and S2 if N is
initially zero (this happens initially in all traces of Table I),
because N = 1 satisfies both abstract states S1 and S2.

To complete the finite state model in Figure 1, each concrete
transition from the execution traces is mapped to a set of
abstract transitions that are represented as labelled edges in the
model. Specifically, given the concrete transition C1 →e C2

from concrete state C1 to concrete state C2, triggered by event
e, transitions S1 →e S2 are added to the model for all pairs
〈S1, S2〉 ∈ f(C1)× f(C2).

If we compare the quality of the finite state models A1−A6
from Figure 1, we can notice that there are several dimensions
to consider. First of all the size. Some models are smaller
and easier to understand, some are larger and more complex.
The degree on non-determinism of the model is another
important quality attribute. Deterministic models are capable
of discriminating the effects of a transition better than non-
deterministic models, which admit multiple possible effects. It
should be noted that using a deterministic abstraction function
does not ensure that the resulting model is deterministic. For
instance, the abstraction function A2 is deterministic, but the
associated model (see Figure 1.A2) has one non-deterministic
transition, associated with the event rem occurring in state S2.
In fact, the concrete state N = 1 belongs to S2, but also



S1 addrem

S2

pay

S1

S2

add

addrem

rem

S3

pay

S1

S2

add

S3

add

rem

S4

payaddrem

rem

pay

S1

S2

add

S3

add

rem

S5

pay

S4

add

rem

payaddrem

rem

pay

S1 addrem

S2

add

S3

payaddrem

rem

pay

S1

S2

addrem

addrempay

(A1) (A2) (A3) (A4) (A5) (A6)

Fig. 1. Finite state models obtained by applying the abstraction functions in Table II.

N = 2 (and any concrete value greater than or equal to 1) is
mapped to the same abstract state. When rem is executed in
the first concrete state (N = 1), the target state will be S1,
the state returned by f(0), while from the second concrete
state (N = 2) another abstract state is returned: S2, the only
element of f(1).

Another quality dimension, which is extremely important
when models are used for testing, is the degree of over-
approximation of the model. In fact, the model might admit
more behaviours than the system being modelled. This is a
major problem for model-based testing, since the infeasible
behaviours admitted by the model might be regarded as testing
targets which will never be achieved. Determining that they
are unachievable targets is undecidable in the general case.
Even for the many practical cases in which infeasibility can be
decided, the manual effort usually involved in such assessment
can be substantial. Model A1 in Figure 1 admits several
infeasible behaviours, associated with the execution of rem
in state S1 when the actual concrete state is N = 0. In fact,
the item removal operation is disabled in the Cart application
if no item is present in the cart. Models A2−A4 resolve this
issue, since they do not allow any rem operation in the initial
state S1, where N is zero.

A. Quality of the finite state models

In this section we introduce three metrics that can be used
to characterize the multi-dimensional quality of a finite state
model obtained through state abstraction. It should be noted
that these metrics are just one way to quantify the intuitive
notion of model quality, as introduced in the previous section.
Alternative metrics could be defined to capture the same
quality attributes. Moreover, our definition of the metrics in
this paper is such that lower values are preferred to higher
ones. Hence, the model inference problem can be reduced to
a multi-objective minimization problem.

For the size quality attribute, we use the metric SIZE:

Definition 2 (SIZE). Size of a finite state model is the number
of states that the model has.

An alternative characterization of this quality attribute might

count the number of transitions, instead of the states, or,
e.g., the number of independent paths. The simple quality
characterization offered by our SIZE metrics has been found
to be always adequate for the models investigated in our
experiments. The size of models A1 − A6 in Figure 1 is (2,
3, 4, 5, 3, 2).

For the quality attribute associated with the degree of non-
determinism, we use the metric NDET:

Definition 3 (NDET). NDET of a model is the number of
non-deterministic transitions in the model. A transition from
a state is non-deterministic if by following it more than one
target state is admitted by the model.

We have a non-deterministic transition whenever it is asso-
ciated with more than one target state when executed from a
given state. For instance, rem executed in state S2 of model
A2 (see Figure 1) may lead to S1 or S2, hence it contributes
to an increased value of NDET. Since this is the only non-
deterministic transition of A2, the final value of NDET for
A2 is 1. As another example, for A5 NDET is equal to two,
because of the transition rem in state S2 and of the transition
add in S1.

For the quality attribute associated with the degree of over-
approximation we use the metric INFEASk:

Definition 4 (INFEASk). INFEASk of a model is the num-
ber of infeasible execution sequences among all possible
sequences of length 1 to k generated from the model.

Since in general the number of infeasible sequences ad-
mitted by a model is infinite (see A1 in Figure 1 where any
sequence of rem transitions alone is infeasible), we consider
only sequences up to a maximum length k. Once these are
generated, we determine whether they are feasible or not by
executing them against the system being modelled. If the
system does not accept them (e.g., by returning an error),
the sequence is regarded as infeasible. Since the number
of sequences up to length k increases exponentially with
k, in practice relatively small values of k can be used. Of
course, keeping k as high as possible given the computational
resources available, ensures that the quality of models is



discriminated using a larger sample of sequences. In our
experiments we used a value of k = 7. Another difficulty
with this metric is the assessment of infeasibility for a specific
sequence, among those having a length between 1 and k. In
fact, the system might reject a sequence in a given execution
context (e.g., for a given parameter or input value), but it
may accept it in another one. In general, such assessment is
undecidable, hence we recognize that in practice this metric
can only be approximated. Its precise value will be unknown
for arbitrary systems. However, in our experiments we found
that the approximations introduced by small values of k, and
by the heuristic assessment of infeasibility, do not affect the
usability of this metric for the purpose of making comparative
evaluations of the quality of alternative models produced by
automated state abstraction.

TABLE III
QUALITY METRICS FOR THE FINITE STATE MODELS IN FIGURE 1.

Model SIZE NDET INFEAS7

A1 2 0 186
A2 3 1 58
A3 4 1 16
A4 5 1 2
A5 3 2 186
A6 2 1 337

Table III shows the values of the quality metrics for the
finite state models in Figure 1. Since one model could be better
than another model in one dimension, but not in another, we
resort to the notion of dominance to define a set of optimal
models (i.e., the Pareto-front in multi-objective optimization).
We say model M1 dominates model M2 (M1 ≺M2) if along
all dimensions M1 is better than or equal to M2 (with at least
one dimension on which a strict inequality holds):

M1 ≺M2 iff SIZE(M1) ≤ SIZE(M2) ∧
NDET(M1) ≤ NDET(M2) ∧
INFEASk(M1) ≤ INFEASk(M2) ∧
(SIZE(M1) < SIZE(M2) ∨
NDET(M1) < NDET(M2) ∨
INFEASk(M1) < INFEASk(M2))

The Pareto front of the optimal models is then defined as
the set of non-dominated models. In our running example
(see Table III) the following dominance relations hold: A1
≺ A5, A1 ≺ A6, A2 ≺ A5. Hence, models A1−A4 are non-
dominated; when compared between each other, none of them
is superior to the other in all dimensions. For instance, A1 has
a smaller size and number of non-deterministic transitions than
all the other models, but it is the worst in terms of infeasible
sequences. A2 − A4 are equal for what concerns the degree
of non-determinism, but while their size increases, making
them increasingly more complex, the number of infeasible
sequences is correspondingly reduced. Hence, a compromise
must be made, in this case between size of the model and
number of infeasible behaviours admitted by the model.

III. APPROACH

Our approach aims at automatically generating abstraction
functions that can be used for state-based model inference.

Abstraction functions are obtained by applying data invariant
inference (e.g., Daikon [6]) to the concrete states observed
in the execution traces. A concrete state is a variable-value
mapping observed at a given execution point. In practice,
projections of the actual concrete states (instead of complete
concrete states) might be traced, for scalability reasons. Con-
crete states can be represented as tuples of values, where the
position in the tuple determines the related state variable. The
tuple representation of concrete states is used by the clustering
algorithms. For instance, the initial concrete state of Cart is
always N = 0 (tuple 〈0〉), hence the invariant (N = 0) can be
easily determined if data invariant inference is applied to the
initial state appearing in all available traces. However, in the
general case, data invariant inference is applied to a collection
(a multiset) of concrete states (tuples). Hence, the problem is
how to find cohesive groups of concrete states to be considered
together during invariant inference.

The problem can be formulated as a partitioning problem
over the space of the concrete states: Given a set of concrete
states, find a partition such that the invariants obtained from
each subset in the partition produce an optimal model when
used as abstraction functions.

The number of possible partitions is exponential with the
size of the concrete state space. Hence it cannot be explored
exhaustively. Moreover, the relation between a given partition
and the optimality of the resulting model is so indirect that
no analytical solution can be found. Hence, we turn to Search
Based Software Engineering (SBSE) to find an approximate
solution to the problem [8], [7]. Specifically we use clustering
to produce an initial set of candidate solutions which is then
evolved by a multi-objective genetic algorithm.

A. Algorithm
Algorithm 1 shows the key steps for the computation of

invariants, associated with clusters of concrete states, and for
the optimization of such invariants, in terms of the multi-
dimensional quality metrics of the associated models.

Clustering is applied initially (at Step 2), to seed the
genetic algorithm used for multi-objective optimization with
a reasonably good starting solution. In fact, the space of
possible partitions is so large (exponential with the number
of concrete states) that a randomly generated partition would
require substantially more optimization effort than a solution
obtained from clustering, in which cohesive groups of concrete
states are already formed. Any clustering algorithm can be
used in this step. We experimented with both agglomerative
clustering and k-means, as implemented in the Weka1 data
mining library. To obtain a diverse population of initial individ-
uals, clustering parameters have been varied so as to produce
multiple clustering solutions. For instance, with k-means this
involves varying the value of k; with agglomerative clustering
it involves varying the cut level.

In Step 3, each partition produced by clustering is en-
coded as a sequence of integers. Such a sequence repre-
sents the chromosome of the individuals that are evolved

1http://www.cs.waikato.ac.nz/ml/weka/



Algorithm 1 Abstraction function inference
Input T : execution traces; each trace t ∈ T is a sequence of pairs
〈e, c〉, where e is an event and c : X → V is a concrete state,
i.e., a variable-value (X → V ) map

Output set of {I1(X), I2(X), ...}: set of optimal state abstraction
functions, each a set of boolean predicates defined over variables
X

1: Let C := 〈c1, ..., cn〉 be the set of all unique concrete states
appearing in T

2: Apply clustering to partition C into the cohesive subsets
C1, C2, ...

3: Encode each partition as a sequence of integers ch = 〈i1, ..., in〉
4: Seed the initial population Pop with the partitions (individuals)

ch
5: while search budget still available do
6: Compute the invariants I1, I2, ... for the clusters C1, C2, ... of

each individual ch
7: Optimize the invariants
8: Generate a model M for each individual ch using its state

invariants I1, I2, ...
9: Compute (SIZE(M ), NDET(M ), INFEASk(M )) for each

model M
10: Determine the non-dominated models and update the Pareto

front
11: Apply genetic operators to evolve the current population Pop
12: end while
13: Return the Pareto front of optimal state abstraction functions

by the genetic algorithm. In the Cart example, we may
get the following two partitions from clustering: P1 =
{{N=0, N=1, N=2, N=3, N=4}, {N=−1}} and P2 =
{{N=0}, {N=1, N=2, N=3, N=4}, {N=−1}}. Let C =
〈N=−1, N=0, N=1, N=2, N=3, N=4〉 be the sequence of
all concrete states. Then, partition P1 can be encoded as
the following chromosome: ch1 = 〈2, 1, 1, 1, 1, 1〉, meaning
that the first concrete value of C is assigned to the second
cluster of P1, while all the other following values from C are
assigned to cluster number 1. Similarly, if we encode P2 into
a chromosome, we get: ch2 = 〈3, 1, 2, 2, 2, 2〉.

In Step 6 we employ data invariant inference (specifically,
Daikon2), to obtain a predicate (invariant) that characterizes
each cluster of each individual. In our running example, we
may obtain invariants (N ≥ 0) and (N = −1) for the two
clusters of P1; (N = 0), (N > 0) and (N = −1) for the three
clusters of P2. It should be noted that Daikon must be applied
to the multiset (where repeated occurrences of the same value
are permitted) of concrete states that belong to each cluster,
such that the multiplicity of occurrence of each state value
is taken into account in the measure of confidence that is
internally used by Daikon to filter the candidate invariants.

Based on our experience with the invariants inferred by
Daikon for clusters of concrete states, we found it useful to
apply the following invariant optimizations (at Step 7):

• Whenever two clusters have the exact same invariants,
they are merged and regarded as a single cluster with the
given invariant.

• Whenever the invariants I1, I2 of two clusters are satisfied

2http://groups.csail.mit.edu/pag/daikon/

by the exact same set of concrete states, the two clusters
are merged into one and associated with the invariant
I1∨I2. Note that we chose the OR over the AND operator,
because our aim is to obtain models that generalize
observed behaviours. The AND operator would have been
more restrictive, since it only accepts a subset of the OR
behaviours.

• If the model generated from the set of invariants I1, I2, ...
contains pairs of nodes 〈n1, n2〉 that can be merged
according to the k-tail principle [2] (i.e., they cannot be
distinguished based on the paths of length k that start
from them), the pairs of invariants In1

, In2
associated

with two such nodes are replaced by In1
∨ In2

and the
corresponding clusters are merged.

Once invariants are available for the clusters of each in-
dividual, we use them as the abstraction functions needed
for state-based model inference (Step 8). Concrete states in
the available execution traces are mapped to abstract states
by determining which invariants they satisfy. Transitions are
added to the inferred model for each action reported in the
traces. For an action between a source concrete state and a
target concrete state, transitions are added between all abstract
states satisfied by the source concrete state and all abstract
states satisfied by the target concrete state. An example of this
construction is reported in Section II for the Cart application.

Models for the current population Pop are evaluated using
the quality metrics SIZE, NDET and INFEASk (Step 9). These
metrics have been described and motivated in Section II. In
Step 10, optimal solutions (i.e., non-dominated solutions) are
recorded in the Pareto-front, which is eventually returned by
the algorithm (at Step 13).

Step 11 applies genetic operators to evolve the current
population of individuals. First, a selection operator is used
to produce a new population in which individuals associated
with good quality metrics SIZE, NDET and INFEASk are
preserved, while individuals with poor metric values are dis-
carded. We adopted pairwise tournament selection, in which
the dominance relation is used to decide the winner of the tour-
nament. After selection, surviving individuals are mutated and
crossed-over, to explore alternative partitions of the concrete
state space. We used the following mutation operators:

• MOVE: Randomly re-assign a concrete state to a differ-
ent (existing or new) cluster.

• MERGE: Merge two randomly chosen clusters.
• SPLIT: Split a cluster into two, by randomly assigning

concrete states to either of the two new clusters.

All three operators could be improved by taking into ac-
count the distance between concrete states used by clustering.
For instance, MOVE may choose the closest cluster for the
concrete state being re-assigned, instead of a random cluster.
MERGE may select the two closest clusters, instead of two
randomly selected clusters. SPLIT may re-apply clustering to
the cluster being split, to obtain two or more new sub-clusters.
We intend to investigate these variants in our future work.

With respect to crossover, we use a standard single-point



crossover. Given our representation of the chromosomes as
a sequence of integers, a single-point crossover ensures only
valid partitions of concrete states are generated. Note that in
our current implementation we do not number partitions a
priori. Therefore it is possible that our crossover operator
results in offspring that have a very different partitioning
compared to their parents. As part of our future work we will
investigate numbering partitions consistently prior to applying
the crossover operator.

The algorithm terminates when the search budget is over
(see Step 5). This can be expressed in terms of maximum
number of fitness evaluations allowed or a time out for the
algorithm. Another alternative is to stop the search when
no improvement is observed (no change in the Pareto-front)
during the last G generations.

IV. CASE STUDY

We experimented with the simple application Cart, pre-
sented in Section II, where it is used as a running example,
for a preliminary validation of our approach. The aim of our
experiments was to answer the following research questions:
RQ1 (Role of optimization): How does the Pareto-front pro-
duced by the genetic algorithm differ from the initial solution
produced by clustering alone?
RQ2 (Quality): What is the quality of the models produced
by our approach, compared to manually defined models of the
same application?

The first research question, RQ1, deals with the contribution
of the genetic algorithm to the computation of the optimal
abstraction functions. The question is whether clustering alone
(i.e., clustering followed by invariant inference and invari-
ant optimization) is enough to produce the final abstraction
functions returned by the proposed algorithm. To answer this
research question we compare the Pareto front available imme-
diately after clustering to the one returned by the algorithm at
the end of its execution. Specifically, we measure the number
of dominated solutions in the initial Pareto front and the
number of new solutions in the final Pareto front.

The second research question involves a user-centric assess-
ment of the quality of the returned models. The question is
whether a manually defined Gold Standard (GS) model for the
subject application is similar to, or substantially different from
the optimal models produced by the proposed algorithm. To
answer this question, three of the authors of this paper agreed
on the abstraction functions for the subject application (to
avoid any bias, this was done before running our algorithm).
The GS FSMs for Cart are reported in Figure 1, models
A1 − 4. After executing the abstraction function inference
algorithm, we determined the position of the GS FSMs with
respect to the Pareto front produced by the algorithm, to
see if the GS belongs to the Pareto-front, i.e., whether the
proposed approach can produce the manually defined models
by automatically inferring the abstraction functions.

A. Experimental Setup
For the validation study carried out in this paper we

randomly generated 1, 828 execution traces from our Cart

application. The size of each execution trace varied between
4 and 28 events. For clustering we used the agglomerative
hierarchical clustering algorithm available in Weka. In order
to obtain a diverse set of initial clusters with which to seed
the genetic algorithm, we ran Weka 10 times, varying the
number of output clusters so that we ended up with 10
different clusters of concrete states. Each cluster was generated
using the following Weka settings: Number of clusters, −N ,
one of [2, ..., 10], link type −L = Single, distance function
−A = weka.core.EuclideanDistance −R first− last.

The GA was then configured to maintain a population of
100 candidate solutions. After each generation 10 parents were
select for reproduction using a pairwise tournament selection.
We applied a one-point crossover operator to the selected
parents which produces 10 offspring solutions. Each offspring
then had a 60% chance of being mutated. We randomly
applied one of the three mutation operators described earlier.
As described in Step 7 of Algorithm 1, we merge nodes that
share the same k-tail as an additional optimization step. We
chose k to be equal to 2 when merging nodes.

Our GA uses an elitist re-insertion strategy for updating
the current population to the next generation. If an offspring
dominates an existing member of the population (according to
our quality metrics), then the old member of the population is
replaced by the offspring. We also maintain a separate archive
(i.e. the pareto front) for all non-dominated solutions the GA
found during the duration of the search.

The GA was allowed to run for a maximum of 100 genera-
tions. If the Pareto front had not been updated in more than 20
generations (i.e. the search is likely to have stagnated), then
the search was terminated. We repeated the GA runs 30 times,
using different random number seeds, in order to reduce the
risk of obtaining chance results.

B. Results and Discussions

We first investigated the quality of the models generated by
clustering alone. Initially every cluster corresponds to a state
in the FSM. The FSM is then further optimized as described
in Step 7 of Algorithm 1. Table IV shows the attributes of
these optimized FSMs according to our three metrics.

TABLE IV
RESULTS FOR RQ1-PART 1: THIS TABLE SHOWS THE DIFFERENT MODELS
AND THEIR QUALITY ATTRIBUTES GENERATED BY CLUSTERING ALONE.

SIZE INFEAS7 NDET
2 2137 4
3 2137 12
4 2137 24
5 679 40
6 679 56
7 450 78
8 58 63
9 58 89

10 14 119

One problem with using only clustering to generate the
FSMs is that one has to decide the number of clusters a
priori. If too few clusters are specified, the resulting model
generalizes the behaviour of an application too much. Thus, it



TABLE V
RESULTS FOR RQ1-PART 2: THIS TABLE SHOWS A COMPARISON BETWEEN
MODELS GENERATED BY CLUSTERING IN COMBINATION WITH A GA AND

CLUSTERING ALONE.

Type Avg. solutions Avg. Avg. Avg.
on Pareto front SIZE INFEAS7 NDET

Clustering 0 6.00 927.67 53.89
Clustering
+ GA 3.13 3.03 81.73 1.13

is possible to generate many infeasible sequences from such
models. This is illustrated by the second column in Table IV.
On the other hand, if too many clusters are used to generate
a model, the models tend to exhibit more non-deterministic
behavior. As can be seen (from Table IV), the number of non-
deterministic sequences in a model increases as the size of the
model increases.

We next looked at how the models obtained from clustering
compare to models generated by Algorithm 1. Table V shows
that clustering alone is not sufficient to generate partitions such
that the invariants obtained from each subset in the partition
produces an optimal model when used as an abstraction func-
tion. None of the solutions generated through clustering alone
are on the Pareto-front of models for our Cart application. In
contrast, if we combine clustering with a genetic algorithm,
our technique is able to find 4 models on the Pareto-front.
These models correspond to models A1 to A4 in Figure 1.
The models found by the genetic algorithm have a very low
level of non-determinism (i.e. 1.13 sequences on average). The
number of infeasible sequences that can be generated from
these models is also low compared to models of similar size
(e.g., rows 1− 3 in Table IV) found by clustering alone.

TABLE VI
RESULTS FOR RQ2: OCCURRENCE OF THE GS MODELS A1− 4 IN THE

PARETO FRONTS PRODUCED BY THE PROPOSED TECHNIQUE

GS Model Pareto fronts including the GS
A1 100%
A2 86.67%
A3 26.67%
A4 100%

Table VI shows the percentage of Pareto fronts produced
by the proposed approach that contain models defined as GS
models for the Cart application. The non-dominated model A3
is produced relatively infrequently by our algorithm because
the mutation and crossover operators we are using give it a
very low chance of being generated. We plan to investigate
further and improve our genetic operators in the future. The
capability of the proposed technique to produce exactly the
same FSM models that an expert would define for the Cart
application is very encouraging and indicates that automated
inference of abstraction functions has the potential to bridge
the gap between model construction and MBT.

V. CONCLUSIONS AND FUTURE WORK

We have presented an approach to generate state abstraction
functions from clusters of concrete states and to optimize the

FSM models generated from such functions. Optimization is
carried out by a multi-objective genetic algorithm that takes
into account three quality attributes of the models, size, non-
determinism and infeasibility.

On a small e-commerce application, Cart, the proposed
algorithm was able to generate exactly the same FSM models
that some of the authors defined as gold models for the target
application. Such models are not trivial to obtain automatically,
since clustering of the concrete states alone resulted always
in sub-optimal models. These results are quite encouraging,
indicating that the approach has potential and is viable.

As future work we will conduct additional experiments
on larger applications. We will also investigate alternative
clustering algorithms and different genetic operators used by
the multi-objective optimization.

ACKNOWLEDGEMENT
Mark Harman, Kiran Lakhotia, Alessandro Marchetto, Cu Duy Nguyen and

Paolo Tonella are funded through the EU project FITTEST (ICT-2009.1.2 no
257574). REFERENCES

[1] A. Andrews, J. Offutt, and R. Alexander, “Testing Web Applications by
Modeling with FSMs,” Software and System Modeling, Vol 4, n. 3, pp.
326–345, 2005.

[2] A. Biermann and J. Feldman, “On the synthesis of finite-state machines
from samples of their behavior,” IEEE Trans. on Computers, vol. 21,
no. 6, 1972.

[3] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining object
behavior with ADABU,” in WODA, Shangai, China, May 2006, pp. 17–
24.

[4] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos,
“A survey on model-based testing approaches: a systematic review,” in
WEASELTech. New York, NY, USA: ACM, 2007, pp. 31–36.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. on Softw. Eng., vol. 27, no. 2, pp. 1–25, 2001.

[6] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1–3,
pp. 35–45, Dec. 2007.

[7] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys, vol. 45, no. 1, p. Article 11, November 2012.

[8] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based software
engineering: Techniques, taxonomy, tutorial,” in Empirical software en-
gineering and verification: LASER 2009-2010, B. Meyer and M. Nordio,
Eds. Springer, 2012, pp. 1–59, LNCS 7007.

[9] Y. Kim, H. Hong, D. Bae, and S. Cha, “Test cases generation from uml
state diagrams,” Software, IEE Proceedings -, vol. 146, no. 4, pp. 187
–192, aug 1999.

[10] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic, “Using
dynamic execution traces and program invariants to enhance behavioral
model inference,” in ICSE - NIER Track, 2010.

[11] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” in ICSE, 2008.

[12] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of ajax web
applications,” in ICST, Lillehammer, Norway, April 2008, pp. 121–131.

[13] M. Shafique and Y. Labiche, “A systematic review of model based testing
tool support,” Carleton University, Canada, Tech. Rep. Technical Report
SCE-10-04, May 2010.

[14] P. Tonella, A. Marchetto, D. C. Nguyen, Y. Jia, K. Lakhotia, and
M. Harman, “Finding the optimal balance between over and under
approximation of models inferred from execution logs,” in ICST, 2012,
pp. 21–30.

[15] C. D. Turner and D. J. Robson, “The state-based testing of object-
oriented programs,” in ICSM. Montreal, Canada: IEEE Computer
Society, September 1993, pp. 302–310.

[16] X. Yuan and A. M. Memon, “Using GUI run-time state as feedback to
generate test cases,” in ICSE. Washington, DC, USA: IEEE Computer
Society, May 23–25, 2007, pp. 396–405.


