
An Alternative Characterization of Weak Order
Dependence

Torben Amtofta, Kelly Androutsopoulosb, David Clarkb, Mark Harmanb,
Zheng Lib

aDepartment of Computing and Information Sciences, Kansas State University, Manhattan
KS 66506, USA

bCREST, Department of Computer Science, King’s College London, Strand, London,
United Kingdom.

Abstract

Control dependence forms the basis for many program analyses, such as program
slicing. Recent work on control dependence analysis has led to new definitions
of dependence that can allow for reactive programs with their necessarily non–
terminating computations. One important such definition is the definition of
Weak Order Dependence, which was introduced to generalize classical control
dependence for a Control Flow Graph (CFG) without end nodes. In this paper
we show that for a CFG where all nodes are reachable from each other, weak
order dependence can be expressed in terms of traditional control dependence
where one node has been converted into an end node.

Keywords:
Control dependence, Programming languages

1. Introduction

Dependence analysis allows us to capture, formalise and investigate the po-
tential and actual interactions between parts of a software system. These inter-
actions may be complex. However, because a change potentially has an impact
upon its transitive dependents, understanding these dependencies is an impor-
tant part of assessing and managing the process of software development and
its improvement.

Dependence analysis has proved to be widely applicable, with application ar-
eas including program comprehension [10], software maintenance [9], testing and
debugging [3, 11], impact analyses [5, 20], virus detection [15], integration [4],
refactoring [14], restructuring, reverse engineering and reuse [6].

Email addresses: tamtoft@ksu.edu (Torben Amtoft), kellyandrou@googlemail.com
(Kelly Androutsopoulos), david.j.clark@kcl.ac.uk (David Clark), mark.harman@kcl.ac.uk
(Mark Harman), zheng.li@kcl.ac.uk (Zheng Li)

Preprint submitted to Information Processing Letters August 9, 2010



Typically research in dependence analysis has considered two primary forms
of dependence: data dependence and control dependence. Data dependence is
relatively uncontroversial. It occurs between two parts of the program which
define and then subsequently use a value. The value computed at the definition
is said to flow (by data dependence) to the site at which the value is used. The
using site is said to ‘(data) depend’ upon the defining site.

By contrast, control dependence has proved to be a more complex and sub-
tle property, that requires careful formulation. Early formulations of control
dependence such as Weiser’s ‘colour dominance’ [21], were superseded by a now
more standard definition, which was captured in terms of reachability and post
dominance in the Control Flow Graph(CFG) [8]. The definition of Ferrante, Ot-
tenstein and Warren became very widely accepted and was used by many other
authors, forming the basis for the popular Program Dependence Graph [16] and
System Dependence Graph [12].

However, traditional control dependence applies only to programs that are
able to terminate normally, i.e., that have CFGs with a unique end node. This
renders traditional control dependence inapplicable for handling computations
that purposefully do not terminate such as in embedded systems controllers,
operating systems and other forms of so-called ‘reactive systems’. Such systems
simply cannot be ignored; it is estimated that by 2010 there will be 16 billion
embedded systems worldwide, rising to 40 billion by 2020 [2].

Ranganath et al. [19] and Amtoft [1] address this problem by introducing new
definitions of control dependence for arbitrary CFGs, so as to handle CFGs with
zero end nodes (and even CFGs with multiple end nodes). Furthermore, the
authors categorise control dependence as being either non-termination sensitive
or non-termination insensitive.

Non-termination sensitive control dependence (NTSCD) [19] is sensitive to
non-termination and when used together with Decisive Order Dependence (DOD) [19]
leads to slices that preserve termination properties i.e. the observable behaviour
of the slice is infinite exactly when the original is.

Weak Order Dependence (WOD) [1] is insensitive to non-termination and
leads to slices that allow the termination domain to increase i.e. loops that do
not influence relevant values are sliced away. This definition has been shown
to generalise traditional notions of control dependence given in terms of CFGs
with a unique end node. However, it requires researchers to abandon the defi-
nitions and concepts with which they have been familiar for over two decades.
This paper seeks to overcome this conceptual difficulty by showing how this
new notion of control dependence can be re-formulated in terms of traditional
dependence for a wide class of Control Flow Graphs.

The class of Control Flow Graphs we consider is those for which every node is
reachable from every other node. This is a very wide class of graphs; it includes,
for example, those originally envisaged by Ferrante, Ottenstein and Warren in
their seminal paper on the Program Dependence Graph [8]. Some of our results
can even be applied to graphs that are not strongly connected, as long as the
nodes in question are reachable from all other nodes.

Traditional control dependence is a relation between two nodes, in which one

2



node controls the execution of another. By contrast, weak order dependence,
which captures not only the traditional control dependence but also the ordering
relationships between nodes in irreducible regions of a CFG, requires a ternary
relation. The fundamental insight that underlies our re-formulation is that
capturing control dependence in the presence of ordering relations requires the
participation of three nodes simply because one of the three has to play the
role of a ‘local pseudo end node’. Using this insight, we are able to reformulate
Weak Order Dependence (a ternary relation) in terms of traditional control
dependence (a binary relation).

The contribution of this paper is a formal proof of the equivalence of our
reformulation of the Weak Order Dependence Relation in terms of traditional
control dependence, in the style of Ferrante, Ottenstein and Warren. This
reformulation allows us to think of the new notions of control dependence in
terms of the more familiar control dependence used, for example, in the System
Dependence Graph [12] and in Weiser’s Program slicing algorithm [22].

2. Preliminaries

A Control Flow Graph (CFG) is a pair (V,E) where V is the set of nodes,
and E ⊆ V × V is the set of edges. If (n,m) ∈ E we say that there is an edge
from n to m, and that m is a successor of n.

Given a CFG G, a path from node a to node b is a sequence of nodes, n1..nk

where a = n1 and b = nk, such that for all i ∈ 1 . . . k − 1, G contains an edge
from ni to ni+1. We say that the path is non-trivial if k > 1, and we say that b
is reachable from a if there is a path from a to b.

Definition 1. An end node of a CFG is a node e such that

• e has no outgoing edges, and

• e is reachable from all nodes.

Fact 1. A CFG can have at most one end node.

For a node q in a CFG G, we define G/[q→·] as the CFG that results from
removing all outgoing edges from q. More formally, we have

Definition 2. Given G = (V,E) with q ∈ V , G/[q→·] = (V,E′) where E′ =
{(n,m) ∈ E | n ̸= q}.

Fact 2. Assume that in G, q is reachable from all other nodes. Then G/[q→·]
has q as an end node.

We now recall the standard notion of control dependence, formulated for a graph
with an end node.

Definition 3. Consider a CFG G with end node e.

3



• We say that m postdominates n if all paths from n to e contain m;

• we say that m strictly postdominates n if m postdominates n and n ̸= m.

Note that e postdominates all nodes.

Definition 4. Consider a CFG G with end node e. We say that n
cd→ m in G

if

1. m does not strictly postdominate n, and

2. there is a non-trivial path n..m where m postdominates all nodes but n.

Lemma 3. Let G have end node e. If n
cd→ m in G then n ̸= e and m ̸= e.

Proof: Since there is a non-trivial path from n to m, n has an outgoing edge,
and hence n ̸= e. Since e postdominates all nodes, we thus infer that e strictly
postdominates n, and hence m ̸= e. 2

We recall the definition given in [1] of weak order dependence, applicable for
arbitrary CFGs:

Definition 5. Given a CFG, we write a
wod→ b, c if

1. there is a path from a to b not containing c,

2. there is a path from a to c not containing b, and

3. a has a successor d such that either

• b is reachable from d and all paths from d to c contain b, or

• c is reachable from d and all paths from d to b contain c.

Fact 4. If a
wod→ b, c then a,b,c are distinct nodes.

3. Weak Order Dependence is Control Dependence

Lemma 5. Given G with nodes a,b,c where b and c are both reachable from all

nodes in G. If a
wod→ b, c in G then either

• a
cd→ b in G/[c→·], or

• a
cd→ c in G/[b→·].

(By Fact 2, G/[c→·] has end node c, and G/[b→·] has end node b.)

Proof: We know (Fact 4) that a, b, c are distinct nodes. Without loss of gener-
ality, we can assume1 that a has a successor d such that

1If d had been such that all paths from d to b contained c then we would prove that a
cd→ c

holds in G/[b→·].

4



b is reachable from d, and all paths from d to c contain b (1)

and we shall prove that a
cd→ b holds in G/[c→·]. Since a

wod→ b, c entails that
there is a path in G from a to c not containing b, we see that

in G/[c→·], b does not postdominate a. (2)

By (1) there exists a minimal path π from d to b; note that

b does not occur in any proper prefix of π. (3)

We now infer that π does not contain c. For assume, in order to get a contra-
diction, that π does contain c; since c ̸= b there would be a proper prefix of π
that contains c and by (1) thus also b but this contradicts (3).

Thus π is a path in G/[c→·]. Since a ̸= c we see that

in G/[c→·] there is a path aπ from a to b. (4)

We shall now prove that

in G/[c→·], all nodes in π are postdominated by b. (5)

We therefore assume that in G/[c→·] there is a path π1 from n to c where n is
part of π, and must establish that π1 contains b.

In G/[c→·] there thus is a path π0π1 from d to c where π0 is a proper prefix
of π. But this is also a path in G, so by (1) we infer that π0π1 contains b. But
by (3), π0 cannot contain b. Hence π1 contains b, establishing (5).

From (2,4,5) we see that a
cd→ b does hold in G/[c→·]. 2

4. Control Dependence is Weak Order Dependence

Lemma 6. Given G with nodes a,b,c where a ̸= c and where b is reachable from

all nodes in G. If a
cd→ c in G/[b→·] then a

wod→ b, c in G.

Note that we need the assumption a ̸= c since
cd→ may relate a node to itself

while
wod→ never does that.

Proof: From G/[b→·] having b as end node, by Lemma 3 we infer from a
cd→ c

that c ̸= b and a ̸= b. Thus a, b, c are distinct nodes.

From a
cd→ c and a ̸= c we see that in G/[b→·], c does not postdominate a.

Thus

there is a path in G from a to b that does not contain c. (6)

In G/[b→·] there is a non-trivial path from a to c where c postdominates all nodes
but a. We infer that a has a successor d such that

in G/[b→·], c is reachable from d, and all paths from d to b contain c. (7)

We infer that in G/[b→·] there is a path from d to c that does not contain b, and
since a ̸= b thus

5



there is a path in G from a through d to c that does not contain b. (8)

We shall now prove that

all paths in G from d to b contain c. (9)

But if π is a path in G from d to b, it has a (not necessarily proper) prefix π1

such that π1 is also a path from d to b but b does not occur in any proper prefix
of π1. Hence π1 is a path in G/[b→·] from d to b, so by (7) we see that π1 contains
c. But then also π contains c, establishing (9).

From (6,8,9) we see that a
wod→ b, c does hold in G. 2

5. Equivalence Between Closures

Definition 6. Given a CFG G = (V,E). With S a subset of V , we say that S

is closed under
wod→ if a ∈ S whenever a

wod→ b, c for b, c ∈ S.

Definition 7. Given a CFG G = (V,E), and let S be a subset of V with the
property that all nodes in S are reachable from all nodes in V . We then say that

S is →closed under
cd→ if a ∈ S whenever for b, c ∈ S we have a

cd→ b in G/[c→·] .

Theorem 1. Given a CFG G = (V,E). Let S ⊆ V satisfy that all nodes in S

are reachable from all nodes in V . Then S is closed under
wod→ iff S is →closed

under
cd→.

Proof: For the “if” direction, we assume a
wod→ b, c with b, c ∈ S, so as to show

a ∈ S. By Lemma 5, applicable since b, c are reachable from all nodes in V ,

either a
cd→ b holds in G/[c→·] or a

cd→ c holds in G/[b→·]. But in both cases, a ∈ S

follows from S being →closed under
cd→.

For the “only if” direction, we assume a
cd→ b holds in G/[c→·] for b, c ∈ S,

so as to show a ∈ S. If a = b, the claim is trivial. Otherwise, by Lemma 6, we

have a
wod→ b, c, and a ∈ S follows from S being closed under

wod→ . 2

6. Related Work

In the introduction, we discuss two ways in which control dependence defini-
tions may vary: they may require program CFGs to have a unique end node, or
not; or they may be non-termination sensitive or insensitive. Table 1 compares
the control dependence definitions in the literature according to these variations.

Except for WOD [1] and NTSCD [19] that apply to arbitrary CFGs, all other
definitions of control dependence for programs require CFGs to have a unique
end node.

We discuss the main definitions in the literature based on their sensitivity
to non-termination.

6



Table 1: Comparison of control dependence definitions.

Non-Termination Unique End Node Arbitrary CFG
Insensitive Weiser [21] WOD [1]

Ferrante et al. [8, 12]
Sensitive Podgurski and Clarke [18, 17] NTSCD and DOD [19]

The earliest definition of control dependence is Weiser’s, that is derived from
the dependence that Denning and Denning called ‘implicit information flow’ [7].
This dependence captures the influence a predicate p has over a node, n when
p ‘controls’ whether n is either definitely executed (by selecting one of the two
branches emerging from p), or whether it is possibly avoided (by selecting the
other branch emerging from p).

Ferrante et al. [8, 12] redefine control dependence in terms of a Control Flow
Graph requiring it to have an entry and end node, such that all nodes can reach
the end node. However, this is not realistic for programs that may, deliberately
and of necessity, fail to terminate; such programs may not have an end node in
their flow graph.

The first non-termination sensitive definition of control dependence was
given by Podgurski and Clarke [18, 17] in 1989 who observed that it is pos-
sible for a predicate p to influence the execution of a node n simply by making
infinitely many choices (at p) to traverse a branch that leads back to p before
n is executed. In this way, a predicate can ‘choose’ to fail to terminate and,
thereby, exclude the execution of some other node that p would otherwise fail
to control.

Kamkar [13] (p. 166) argues that for some applications of slicing it will be
necessary for slicing to use the termination sensitive form of dependence.

7. Conclusion and Future Work

In this paper we show how recent notions of control dependence for non-
terminating computations can be re-formulated in terms of traditional notions
of control dependence. More precisely, when a,b,c are distinct, a is weakly order
dependent on b and c if and only if a is either control dependent on b when
all outgoing edges from c have been removed, or control dependent on c when
all outgoing edges from b have been removed. This is important because of the
fundamental importance of control dependence in many other program analyses
such as program slicing.

As a corollary to this work, we would like to explore how NTSCD (augmented
with DOD) relates to Podgurski and Clarke’s notion of control dependence [18,
17], and see if one can be expressed in terms of another.

7



Acknowledgements

This research work is supported in part by EPSRC Grant EP/F059442/1,
AFOSR, NSF, Rockwell Collins and NSFC Grant 60903002.

[1] T. Amtoft. Slicing for modern program structures: a theory for eliminating
irrelevant loops. Information Processing Letters, 106(2):45–51, 2008.

[2] ARTEMIS consortium. The embedded computing systems initiative
(ARTEMIS), 2007.

[3] D. W. Binkley. The application of program slicing to regression testing.
Information and Software Technology, 40(11 and 12):583–594, 1998.

[4] D. W. Binkley, S. Horwitz, and T. Reps. Program integration for lan-
guages with procedure calls. ACM Transactions on Software Engineering
and Methodology, 4(1):3–35, 1995.

[5] S. E. Black. Computing ripple effect for software maintenance. Journal of
Software Maintenance and Evolution: Research and Practice, 13:263–279,
2001.

[6] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program slicing.
Information and Software Technology Special Issue on Program Slicing,
40(11 and 12):595–607, 1998.

[7] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, 1977.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, July 1987.

[9] K. B. Gallagher and J. R. Lyle. Using program slicing in software mainte-
nance. IEEE Transactions on Software Engineering, 17(8):751–761, Aug.
1991.

[10] M. Harman, D. W. Binkley, and S. Danicic. Amorphous program slicing.
Journal of Systems and Software, 68(1):45–64, Oct. 2003.

[11] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer, A. Baresel,
and M. Roper. Testability transformation. IEEE Transactions on Software
Engineering, 30(1):3–16, Jan. 2004.

[12] S. Horwitz, T. Reps, and D. W. Binkley. Interprocedural slicing using
dependence graphs. ACM Transactions on Programming Languages and
Systems, 12(1):26–60, 1990.

[13] M. Kamkar. Interprocedural dynamic slicing with applications to debugging
and testing. PhD Thesis, Department of Computer Science and Informa-
tion Science, Linköping University, Sweden, 1993. Available as Linköping
Studies in Science and Technology, Dissertations, Number 297.

8



[14] R. Komondoor and S. Horwitz. Semantics-preserving procedure extraction.
In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL-00), pages 155–169, N.Y., Jan.
19–21 2000. ACM Press.

[15] A. Lakhotia and P. Singh. Challenges in getting formal with viruses. Virus
Bulletin, Sept. 2003.

[16] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in software development environments. Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environment, SIGPLAN Notices, 19(5):177–184, 1984.

[17] A. Podgurski. The signicance of program dependences for software testing,
de- bugging, and maintenance. PhD thesis, Computer and Information
Science Department, University of Massachusetts, Amherst, 1989.

[18] A. Podgurski and L. Clarke. A formal model of program dependences and
its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering, 16(9):965–79, 1990.

[19] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B. Dwyer.
A new foundation for control dependence and slicing for modern program
structures. ACM Transactions on Programming Languages and Systems,
29(5), 2007.

[20] X. Ren, B. G. Ryder, M. Störzer, and F. Tip. Chianti: a change im-
pact analysis tool for Java programs. In G.-C. Roman, W. G. Griswold,
and B. Nuseibeh, editors, 27th International Conference on Software En-
gineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages
664–665. ACM, 2005.

[21] M. Weiser. Program slices: Formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, University
of Michigan, Ann Arbor, MI, 1979.

[22] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

9


