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Gaussian Random Variables

Definition
A Gaussian random variable X is completely specified by its
mean µ and standard deviation σ. Its density function is:

P[X = x ] =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)

Definition
A multivariate Gaussian random variable X is completely
specified by its mean µ and covariance matrix Σ (positive
definite and symmetric). Its density function is:

P[X = x ] =
1

(2π)k/2|Σ|1/2 exp
(
−1

2
(x − µ)′Σ−1(x − µ)

)
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Gaussian Process - Definition

Definition
A Gaussian process f (x) is a collection of random variables,
any finite number of which have a joint Gaussian distribution. A
Gaussian process is completely specified by its mean function
µ(x) and its covariance function k(x , y). For n ∈ N and
x1, . . . , xn:

(f (x1), . . . , f (xn)) ∼ N ((µ(x1), . . . , µ(xn)),K )

K :=

 k(x1, x1) k(x1, x2) . . .
k(x2, x1) k(x2, x2) . . .
. . .





Sampling from a GP
• Goal: Generate a draw from a GP with mean µ and

covariance K .
• Compute Cholesky decomposition of K , i.e.

K = LL>,

and L is lower triangular.
• Generate

u ∼ N (0, I).

• Compute
x = µ + Lu.

• x has the right distribution, i.e.

E(x − µ)(x − µ)> = LE[uu>]L> = K .

• Often numerical unstable: Add εI to the covariance.
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Example 1: Brownian Motion

• Most famous GP: Brownian Motion.
• Process on the real line starting at time 0 with value

f (0) = 0.
• Covariance: k(s, t) = min{s, t}.
• Brownian Motion is a Markov process. Means intuitively

that for times t1 < t2 < t3 the value of f (t3) conditional on
f (t2) is independent of f (t1).
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Example 2: Brownian Bridge

• A bridge is a stochastic process that is “clamped” at two
points, i.e. each path goes (w.p. 1) through two specified
points.

• Example: Brownian Bridge on [0,1] with f (0) = f (1) = 0.
• Covariance: k(s, t) = min{s, t} − st
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Example 3: Gauss Covariance

• Gauss covariance function:

k(x , y) = exp
(
− 1

2σ
||x − y ||22

)
.



Continuity and Differentiability of Sample Paths

• These three processes have continuous sample paths
(w.p. 1).

• The process with the Gauss covariance has furthermore
sample paths that are infinitely often differentiable (w.p. 1).

• Sample paths of Markov processes are very “rough” with a
lot of fluctuations. The sample paths of Brownian motion
are, for example, nowhere differentiable (w.p. 1).

• It is useful for modelling purposes to be able to specify the
smoothnes of a process in terms of how often the sample
paths are differentiable. The Matérn class of covariance
functions allows to do that.
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GP Prediction - A bit of history ...
Definition (Kolmogorov-Wiener prediction prob. (1941))
Given a zero mean GP on the real line with covariance function
k . What is the best prediction for the value of the process at
time τ > 0 given you observed the process on (−∞,0].

• Leads to the so called Wiener filter.
• The original motivation from Wiener was the targeting of air

planes.
• The prediction problem involving a continuum of

observations is difficult and a deep theory is underlying it.
• Small changes of the setting can make things significantly

more difficult. E.g. assume that you observe the process
only on a finite past (−T ,0]. A completely different
technique is needed to solve this problem.

• Still a topic with active research. The optimal filter can
currently only be computed in special cases.
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GP Prediction - A bit of history ...

• Another milestone: Kalman filter (1960)
• The Kalman filter approaches the problem differently:

• The Wiener filter uses the covariance function to construct
the optimal prediction.

• The Kalman filter uses a state-space model.
• It is easy to get the covariance from a state-space model.
• But it is difficult to construct a suitable state-space model

for a given covariance.

• The Kalman filter is an efficient approach to solve the
prediction problem, but you need a state-space description.
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GP Prediction - A bit of history ...
• During the “space age” a tremendous amount of money

was spent on Kalman filter research.
• Quotes from Wiki ...:

It was during a visit of Kalman to the NASA Ames
Research Center that he saw the applicability of his ideas
to the problem of trajectory estimation for the Apollo
program, leading to its incorporation in the Apollo
navigation computer.

• And:
Kalman filters have been vital in the implementation of the
navigation systems of U.S. Navy nuclear ballistic missile
submarines; and in the guidance and navigation systems
of cruise missiles such as the U.S. Navy’s Tomahawk
missile; the U.S. Air Force’s Air Launched Cruise Missile; It
is also used in the guidance and navigation systems of the
NASA Space Shuttle and the attitude control and
navigation systems of the International Space Station.
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GP Prediction - A bit of history ...

• Two other fields where GP prediction has a long history are
geostatistics (1973) and meterology (1956).

• In geostatistics it is known under the name kriging.
• In these fields GP prediction was naturally restricted to 2

and 3 dimensional input spaces.
• In the 90s people began to use GPs in machine learning.
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GP Regression
• Bayesian assumption - our function is drawn from a GP:

f (x) ∼ GP(µ(x), k(x , y)).

• Remark: Distribution on a function space!
• Observation model:

y(x) = f (x) + ε,

where ε ∼ N (0, σn) is observation noise.
• Posterior process for m observations u1, . . . ,um (no

continuum of observations):

fpost (z) ∼ GP(µpost ,K post )

µpost (z) = k(z,u)>(K + σ2
nI)−1y

K post = k(z, z)− k(z,u)(K + σ2
nI)−1k(u, z),

where k(z,u) = (k(z,u1), . . . , k(z,um)).
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GP Regression - Relation to other Methods
• In the frequentiest world there exists a method called

Ridge Regression. In the linear case the idea is to solve:

min
w
||Aw − y ||2 + λ||w ||2.

• There exists a kernel version and its solution is equivalent
to the mean function of the GP.

• λ is in Ridge Regression a regularizer. In the GP setting
this is the observation noise.

• Also very similar to Support Vector Regression.
• Difference: The Bayesian setting gives “error bars”, i.e. the

variance estimate.
• However, these are no “true” error bars as they hold only

under the Bayesian assumption (which is rarely fulfilled).
• The error bars does not depend on the concrete

observations y , but only on the position of the observations
and on the number of observations.
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Pathwise Properties of GPs: Brownian Motion
• GPs are also extensively studied in probability theory.

Interesting are, for example, properties that hold for paths
(w.p. 1).

• Warm up: Brownian motion.
• We stated already two important properties.

• The sample paths are continuous (w.p. 1).
• They are nowhere differentiable (w.p. 1).

• Bounds on the maximum of a Brownian motion:

P[ sup
u∈[0,t]

|f (u)| ≥ b] ≤
√

t
2π

4
b

exp
(
−b2

2t

)
.

• Strong law of large numbers:

lim
t→∞

f (t)
t

= 0 (w.p. 1).

• How much does the paths oscilliate:
A sample path of a Brownian Motion is in no interval

monotone (w.p. 1).
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Pathwise Properties of GPs: General Case
• What about the sample paths of a GP with a given

covariance k?
• It seems hopeless at the first look to get results for the

general case.
• But deep results exist (!) that allow us to infer properties of

sample paths of general GPs on a compact input space.
• Milestone: R.M. Dudley 1967 gave a criterion for sample

path continuity and a way to bound the supremum of a GP
on its input space.

• His criterion is sufficient for a GP to be continuous, but not
necessary.

• Later Fernique and Talagrand derived sufficient and
necessary criterion.

• In particular, Talagrand managed to get upper and lower
bounds on the expected supremum of a GP on the same
order (up to a constant).
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Generic Chaining

• The original technique was quite demanding.
• Recently, Talagrand found a new technique called the

generic chaining.
• How does it work:
• We assume in the following that the process is zero mean,

i.e. f ∼ N (0, k).
• One of the central ideas is to use a canonical metric for a

GP. The canonical metric is:

d2(x , y) = E[(x − y)2] = k(x , x)− 2k(x , y) + k(y , y).

• Remark: the distance depends only on the covariance!
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Generic Chaining

• The idea is now to measure the size of the input space
(let’s call the space X ) with this canonical metric.

• The size is measured by partioning the space into Nn
many parts, where

N0 = 1 and Nn = 22n
if n > 0.

• We formalize this idea with the following definition:

Definition
Given a set X an admissible sequence is an increasing
sequence (An) of partitions of X such that cardAn ≤ Nn.
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Generic Chaining Bound

Theorem (The generic chaining bound.)
For a zero mean Gaussian process f (x) we have for each
admissible sequence that

E sup
x∈X

f (x) ≤ 14 sup
x∈X

∑
n≥0

2n/2∆(An(x)).

• Here, An(x) is the set in the partition An in which x lies.
• ∆(A) = supx ,y∈A d(x , y) is the diameter of the set A

measured with the canonical metric d .
• The interesting property is here that only analytic objects

are involved - no stochastic elements are present!
• Furthermore: If E supx∈X f (x) <∞ then the GP has

continuous sample paths (w.p. 1)!
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Example: Brownian Motion

Exercise (need a volunteer): Prove sample path continuity of
the Brownian motion and derive a bound on its maximum!



Upper and Lower Bounds

• A corresponding lower bound exists. To state this we
define:

Definition
Given an input space X and the canonical metric d then

γ2(X ,d) = inf sup
x∈X

∑
n≥0

2n/2∆(An(x)).

• Difference: the infimum is taken over all admissible
sequences.

• γ2(X ,d) allows us to upper and lower bound the expected
supremum:

1
L
γ2(X ,d) ≤ E sup

x∈X
f (x) ≤ Lγ2(X ,d).



Upper and Lower Bounds

• A corresponding lower bound exists. To state this we
define:

Definition
Given an input space X and the canonical metric d then

γ2(X ,d) = inf sup
x∈X

∑
n≥0

2n/2∆(An(x)).

• Difference: the infimum is taken over all admissible
sequences.

• γ2(X ,d) allows us to upper and lower bound the expected
supremum:

1
L
γ2(X ,d) ≤ E sup

x∈X
f (x) ≤ Lγ2(X ,d).



Upper and Lower Bounds

• A corresponding lower bound exists. To state this we
define:

Definition
Given an input space X and the canonical metric d then

γ2(X ,d) = inf sup
x∈X

∑
n≥0

2n/2∆(An(x)).

• Difference: the infimum is taken over all admissible
sequences.

• γ2(X ,d) allows us to upper and lower bound the expected
supremum:

1
L
γ2(X ,d) ≤ E sup

x∈X
f (x) ≤ Lγ2(X ,d).



Upper and Lower Bounds

• A corresponding lower bound exists. To state this we
define:

Definition
Given an input space X and the canonical metric d then

γ2(X ,d) = inf sup
x∈X

∑
n≥0

2n/2∆(An(x)).

• Difference: the infimum is taken over all admissible
sequences.

• γ2(X ,d) allows us to upper and lower bound the expected
supremum:

1
L
γ2(X ,d) ≤ E sup

x∈X
f (x) ≤ Lγ2(X ,d).



Borell inequality

• There exist two important basic theorems for GPs:
1 The Borell inequality.
2 Slepian’s inequality.

• Borell links the probability of a deviation to the expected
supremum’s bound:

Theorem (Borell inequality)
Let f (x) be a centerd GP with sample paths being bounded
w.p. 1. Let ||r || = supx∈X r(x). Then

P[| ||r || − E||r || | > λ] ≤ 2 exp
(
−1

2
λ2

σ2
X

)
.
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Slepian’s inequality

• Slepian’s inequality is very intuitiv. It links the suprema
distribution of two related GPs:

Theorem (Slepian’s inequality)
Let f (x) and g(x) are centerd GPs with sample paths being
bounded w.p. 1,

Ef (x)2 = Eg(x)2

and
E(f (x)− f (y))2 ≤ E(g(x)− g(y))2

then for all λ:

P[sup
x

f (x) > λ] ≤ P[sup
x

g(x) > λ].
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• One application of the theory is to control the probability of
rare events, like what is the probability that a river crosses
a certain level.

• Rare events are also important for statistics, e.g. to bound
the generalization error.

• Another application is global optimization and Bandit
problems.

• Task: Find the optimum of a cost function where the cost
function is drawn from a GP:

f (x) ∼ GP(0, k).

• Idea: Try a number of points and control the probability that
the posterior process achieves a supremum greater than b.
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