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ABSTRACT
Automated program modification underlies two successful research
areas— genetic improvement and program repair. Under the generate-
and-validate strategy, automated program modification transforms
a program, then validates the result against a test suite. Much work
has focused on the search space of application of single fine-grained
operators — copy, delete, replace, and swap at both line and state-
ment granularity. This work explores the limits of this strategy. We
scale up existing findings an order of magnitude from small corpora
to 10 real-world Java programs comprising up to 500k LoC.

We systematically study the APM landscape, asking five research
questions: (1) What is the relative effectiveness of the conventional
edit operators: copy, delete, replace and swap? (2) How effective
is delete when used alone? (3) Which is more effective: line or
statement granular CDRS edits? (4) How much does effectiveness
drop with the number of edits in a patch? and (5) What is the corre-
lation between subject’s features and its plasticity — the likelihood
that applying APM to it will be effective?

We decisively show that the grammar-specificity of statement
granular edits pays off: its pass rate triples that of line edits and uses
10% less computational resources. We confirm previous findings
that delete is the most effective operator for creating test-suite
equivalent program variants. We go farther than prior work by
exploring the limits of delete’s effectiveness by exhaustively ap-
plying it. We show this strategy is too costly in practice to be used
to search for improved software variants.

We further find that pass rates drop from 12–34% for single
statement edits to 2–6% for 5-edit sequences, which implies that
further progress will need human-inspired operators that target
specific faults or improvements.

A program is amenable to automated modification to the extent
to which automatically editing it is likely to produce test-suite
passing variants. We are the first to systematically search for a code
measure that correlates with a program’s amenability to automated
modification (i.e. its plasticity). We found no strong correlations,
leaving the question open.

To summarise, our key contributions are:
• We formalise the cost of automated program modification;
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• We show that exhaustively applying delete generates a smooth
search space, suggesting that uniformly sampling delete appli-
cations may measure test suite adequacy and increase plasticity.

• We provide conclusive evidence that statement granular edits
are more effective than line;

• To spur future work, we propose plasticity, the problem of identi-
fying code amenable to APM, conduct preliminary experiments
that show how hard it is, and provide two lists of methods: those
particularly amenable and those particularly resistant to APM.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering.
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