
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Program Transformation Landscapes
for Automated Program Modification Using Gin

Justyna Petke
University College London

UK
j.petke@ucl.ac.uk

Brad Alexander
University of Adelaide

Australia
bradley.alexander@adelaide.edu.au

Earl T. Barr
University College London

UK
e.barr@ucl.ac.uk

Alexander E.I. Brownlee
University of Stirling

UK
alexander.brownlee@stir.ac.uk

Markus Wagner
Monash University

Australia
markus.wagner@monash.edu

David R. White
University of Sheffield

UK

ABSTRACT
Automated program modification underlies two successful research
areas— genetic improvement and program repair. Under the generate-
and-validate strategy, automated program modification transforms
a program, then validates the result against a test suite. Much work
has focused on the search space of application of single fine-grained
operators — copy, delete, replace, and swap at both line and state-
ment granularity. This work explores the limits of this strategy. We
scale up existing findings an order of magnitude from small corpora
to 10 real-world Java programs comprising up to 500k LoC.

We systematically study the APM landscape, asking five research
questions: (1) What is the relative effectiveness of the conventional
edit operators: copy, delete, replace and swap? (2) How effective
is delete when used alone? (3) Which is more effective: line or
statement granular CDRS edits? (4) How much does effectiveness
drop with the number of edits in a patch? and (5) What is the corre-
lation between subject’s features and its plasticity — the likelihood
that applying APM to it will be effective?

We decisively show that the grammar-specificity of statement
granular edits pays off: its pass rate triples that of line edits and uses
10% less computational resources. We confirm previous findings
that delete is the most effective operator for creating test-suite
equivalent program variants. We go farther than prior work by
exploring the limits of delete’s effectiveness by exhaustively ap-
plying it. We show this strategy is too costly in practice to be used
to search for improved software variants.

We further find that pass rates drop from 12–34% for single
statement edits to 2–6% for 5-edit sequences, which implies that
further progress will need human-inspired operators that target
specific faults or improvements.

A program is amenable to automated modification to the extent
to which automatically editing it is likely to produce test-suite
passing variants. We are the first to systematically search for a code
measure that correlates with a program’s amenability to automated
modification (i.e. its plasticity). We found no strong correlations,
leaving the question open.

To summarise, our key contributions are:
• We formalise the cost of automated program modification;

ICSE 2024, April 2024, Lisbon, Portugal
2023. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

• We show that exhaustively applying delete generates a smooth
search space, suggesting that uniformly sampling delete appli-
cations may measure test suite adequacy and increase plasticity.

• We provide conclusive evidence that statement granular edits
are more effective than line;

• To spur future work, we propose plasticity, the problem of identi-
fying code amenable to APM, conduct preliminary experiments
that show how hard it is, and provide two lists of methods: those
particularly amenable and those particularly resistant to APM.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering.

KEYWORDS
Automated Program Modification , Genetic Improvement , Auto-
mated Program Repair , Search-Based Software Engineering
ACM Reference Format:
Justyna Petke, BradAlexander, Earl T. Barr, Alexander E.I. Brownlee,MarkusWag-
ner, and David R. White. 2023. Program Transformation Landscapes for
Automated Program Modification Using Gin . In Proceedings of 46th Interna-
tional Conference on Software Engineering (ICSE 2024). ACM, New York, NY,
USA, 1 page. https://doi.org/XXXXXXX.XXXXXXX

1 PUBLICATION INFORMATION
The manuscript1 was accepted to the Empirical Software Engineer-
ing (EMSE) journal onMay 23rd. This was a journal first submission.
The paper has not been presented at, and is not under consideration
for, journal-first programs of other conferences. All our scripts and
data are available in the following repository: https://github.com/a
utomatedprogrammodification/automatedprogrammodification/.

ACKNOWLEDGMENTS
This work was funded by the UKRI EPSRC grants EP/P023991/1 and
EP/J017515/1; Carnegie Trust grant RIG008300; Australian Research
Council projects DE160100850, DP200102364, and DP210102670,
and by gifts from Facebook and Google. For the purpose of open
access, the authors have applied a Creative Commons Attribution
(CC BY) license to any Accepted Manuscript version arising.

1https://link.springer.com/article/10.1007/s10664-023-10344-5
1

https://orcid.org/0000-0002-7833-6044
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://orcid.org/
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://github.com/automatedprogrammodification/automatedprogrammodification/
https://github.com/automatedprogrammodification/automatedprogrammodification/

	Abstract
	1 Publication information
	Acknowledgments

