
Testing Django Configurations Using
Combinatorial Interaction Testing

Justyna Petke

CREST Centre, University College London, UK
j.petke@ucl.ac.uk

Abstract. Combinatorial Interaction Testing (CIT) is important be-
cause it tests the interactions between the many parameters that make
up the configuration space of software systems. We apply this testing
paradigm to a Python-based framework for rapid development of web-
based applications called Django. In particular, we automatically create
a CIT model for Django website configurations and run a state-of-the-art
tool for CIT test suite generation to obtain sets of test configurations.
Our automatic CIT-based approach is able to efficiently detect invalid
configurations.

1 Introduction

Software testing is a challenging and highly important task. It is widely believed
that half the costs of software projects are spent on testing. Search-based soft-
ware engineering (SBSE) techniques have also been successfully applied to the
problem [6]. Moreover, over half of the literature on the whole field of SBSE is
concerned with testing [7]. In order to apply an automated test method to the
problem at hand, one might require information about the inner workings of the
system to be tested. Such white-box testing techniques [3, 8, 11, 16, 17] generate
test suites that systematically exercise the program, for instance, to cover all
program branches. These, however, require knowledge of inner workings of the
system under test, setup could take significant amount of time, while resultant
test suite might not be better than the one generated manually [4].

The vast majority of software systems can be configured by setting some top-
level parameters. For checking system behaviour under the different settings,
knowledge of the inner workings of such systems is not necessarily required.
This is a situation where black-box testing methods, such as Combinatorial In-
teraction Testing (CIT), come in handy. The aim of an automated technique for
software configurations is to generate a test suite that exercises various system
settings. Testing all possible combinations of parameters is infeasible in practice.
There exist, for instance, a model for the Linux kernel that contains over 6000
features that can be set1. Even if all these took Boolean values, 26000 configu-
rations would have had to be generated in order to test them all. In order to

1
Linux kernel feature model is available at: https://code.google.com/p/
linux-variability-analysis-tools/source/browse/2.6.28.6-icse11.dimacs?repo=formulas

2 Justyna Petke

avoid this combinatorial explosion problem, techniques such as CIT have been
introduced.

Combinatorial Interaction Testing (CIT) aims to test a subset of configu-
rations, yet preserve high fault detection rate when compared with a set of
all possible parameter combinations. It is a light-weight black-box testing tech-
nique that allows for efficient and effective automated test configuration genera-
tion [12]. Several studies have shown that CIT test suites are able to discover all
the known interaction faults of the system under test [1, 18, 10, 15]. Hence, we
have chosen this method to test Django, a very popular Python-based framework
for rapid development of web-based applications.

Django2 was designed to help developers create database-driven websites as
quickly as possible. Among popular sites using it are: Instagram, Mozilla and
The Washington Times. Django is written in Python and comes with its own
set of unit tests. A global settings file is also provided and contains parameters
that can be configured in any Django-based web application. The set of values
for some of the Django settings is potentially infinite, since they admit strings.
We have thus concentrated on Boolean parameters only. We used CIT to test
the various combinations of Django’s Boolean settings available and discovered
several invalid configurations.

2 Background

Combinatorial interaction testing (CIT) has been used successfully as a system
level test method [1, 2, 10, 9, 14, 15, 18]. CIT combines all t-combinations of pa-
rameter inputs or configuration options in a systematic way so that we know we
have tested a measured subset of the input or configuration space. A CIT test
suite is usually represented as a covering array (CA): CA(N ; t, vk1

1 vk2
2 ...vkm

m),
where N is the size of the array, t is its strength, sum of k1, ..., km is the number
of parameters and each vi stands for the number of values for each of the ki
parameters.

Suppose we want to generate a pairwise interaction test suite for an instance
with 3 parameters, where the first parameter can take 4 values, the second one
can only take 3 values and the third parameter can take 5 values. Then the
problem can be formulated as: CA(N ; 2, 413151). Furthermore, in order to test
all combinations one would need 4 ∗ 3 ∗ 5 = 60 test cases. If, however, we cover
all interactions between any two parameters, then we only need 20 test cases.
Such a test suite is called a 2-way or pairwise test suite.

There are several approaches for covering array generation. The two most
popular ones use either simulated-annealing (SA) or a greedy algorithm. The
SA-based approach is believed to produce smaller test suites, while the greedy
one is regarded to be faster [5]. A state-of-the-art CIT tool that implements an
SA-based algorithm is Covering Arrays by Simulated Annealing (CASA)3. It is
relatively mature in the CIT area, so we chose it for our experiments.

2
Django is available at: https://www.djangoproject.com/

3
CASA is available at: http://cse.unl.edu/~citportal/

Testing Django Configurations Using Combinatorial Interaction Testing 3

3 Setup

In order to generate a CIT test suite for Django, we need to first find the param-
eters that we can configure. The source distribution of Django comes with a top-
level settings file called global settings.py, an extract of which is shown in
Figure 1. There are 137 parameters defined. In order to ease tester effort we only
consider Boolean ones. Otherwise, we would have to inspect each non-Boolean
parameter to identify which values are allowed (theoretically each parameter of
type string can take infinitely many values). This can be done as a future step.

Whether a user’s session cookie expires when the Web browser is closed.
SESSION_EXPIRE_AT_BROWSER_CLOSE = False
The module to store session data
SESSION_ENGINE = ’django.contrib.sessions.backends.db’

Fig. 1. An extract from Django’s global settings.py file.

We construct a CIT model for global settings.py automatically by count-
ing the number of Boolean parameters. There are 23 such parameters. Hence
the CIT model is: CA(t; 223). We produce test configurations for t = 2 and
t = 3 using the CASA tool, that is, we produce a pairwise test suites and a test
suite that covers all value combinations between any three parameters. Higher-
strength CIT is feasible [13], however, pairwise testing is the most popular both
in the literature as well as in the industry. 3-way testing is not as frequently used
and there are only few studies focusing on higher-strength CIT4.

Next, we automatically construct multiple copies of the setting.py file based
on the CIT test configurations that will be substituted in turn with the default
settings file that is created whenever a Django project is started. We first ran the
unit test suite to check if all tests pass. We do not know whether these exercise
all possible Django configurations. Next, we evaluate each CIT test case by first
running the Django development server. Afterwards we re-run the tests and
invoked two websites: ‘Welcome to Django’ page and the ‘polls’ website, which
is the default website used in Django tutorials5. We chose these two webpages
since they are the most basic ones and hence any fault-triggering test case for
these will likely produce a fault for more complex webpages. We use MacBook
Air with 1.7 GHz Intel Core i7 processor and 8GB of RAM.

We emphasise that each step is automated (except for voting which could be
automated as well): from parameter extraction through model generation and
test case generation to actual testing of the system. Therefore, the whole process
could potentially be applied to any other configurable software system, without
knowledge of the inner workings of such a system.

4
This is partially due to the fact that the higher interaction strength t is required, the larger the
number of test cases that need to be generated. Pairwise testing is believed to be good enough,
especially since several empirical studies have shown that 6-way testing can discover all the known
faults [10].

5
Django tutorials are available at: https://www.djangoproject.com/

4 Justyna Petke

4 Results

The source distribution of Django comes with its own test suite. It is composed
of unit tests that perform 9242 checks on the MacBook Air laptop used. Thus,
we first ran the existing test suite to check if all of them pass. It is possible that
some of these test various Django configurations, but we have not investigated
this. The original test suite did not reveal any faults.

The CASA tool, which uses simulated-annealing, produced 8 test configura-
tions that cover all pairwise interactions between the 23 parameters extracted
from global settings.py settings file in less than a second. 223 tests would
have been needed to test all possible combinations of parameter settings. 3-way
test suite was created within 42 seconds. The CIT test suites generated are the
smallest possible for the chosen criteria6. We have created the default project,
as presented in part 1 of Django’s ‘Writing your first Django app’ tutorial, and
substituted the settings.py file with the automatically generated variants in
turn. In 4 out of 8 configurations, from the pairwise test suite, an error occurred.
An explanation, however, was provided by Django as shown in Figure 2.

Django version 1.9.dev20150502163522, using settings ’mysite.settings’
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
CommandError: You must set settings.ALLOWED_HOSTS if DEBUG is False.

Fig. 2. An error caught by Django.

Before moving forward, we have added a constraint to the CIT model that
the parameter ‘ALLOWED HOSTS’ must be set to ‘[‘127.0.0.1’, ‘localhost’]’ if
the ‘DEBUG’ parameter is False. We re-generated and re-run the tests and they
all passed. Next, we invoked the ‘Welcome Page’ after starting the server for each
of the different test setting configurations generated using CASA. We repeated
the experiment with the ‘polls’ website described in the Django tutorial. If the
voting page opened properly, we also posted a vote. Since our results were similar
for both ‘Welcome Page’ and ‘polls’ websites, we report only those for the ‘polls’
website. We mention differences where applicable.

Our experiments revealed that most of the combinations of configuration
values were invalid. For the pairwise test suite 6 out of the 8 test configurations
did not allow for the ‘polls’ webpage to be invoked. In particular, in 4 cases HTTP
error 301 was thrown and the website did not load within pre-specified amount
of time (10 seconds). In 2 cases security HTTP error 400 was thrown with the
following message: ‘You’re accessing the development server over HTTPS, but
it only supports HTTP.’

The 3-way test suite for the ‘polls’ website consisted of 23 test cases. 4 runs
produced correct results; 11 produced HTTP error 301 and timed-out; and se-
curity HTTP error 400 was observed 6 times. Additionally, two configurations
triggered an error that only occurred when invoking the ‘polls’ webpage, but not
the ‘Welcome to Django’ one. It was triggered by pressing the voting button,
causing redirection to ‘Forbidden page’ and throwing HTTP error 403.

6
The smallest known test suite sizes for various CIT models are available at: http://www.public.
asu.edu/~ccolbou/src/tabby/catable.html

Testing Django Configurations Using Combinatorial Interaction Testing 5

We tried to find the minimal configurations causing each type of error. We
first extracted configurations that were set to the same values in all the set-
tings files causing the same type of error. We then compared these against
the default settings to find changes. In the case of the HTTP 301 error, there
was only one line that all the relevant settings files had in common, namely
‘PREPEND WWW = True’, which was set to ‘False’ in the default settings
file. We checked that indeed it was the cause of the HTTP 301 error. More-
over, we found a post online from a user of Django, who had encountered the
same problem. It took him 5 days to figure out the root cause of this error
manually. Using the same approach, we found that the security HTTP error 400
was caused by ‘SECURE SSL REDIRECT = True’ and ‘Forbidden page’ HTTP
403 errors were caused by ‘CSRF COOKIE SECURE = True’. This is not to
say that the three configurations are always invalid. In Django documentation
for ‘PREPEND WWW’ parameter, for instance, it states ‘This is only used if
CommonMiddleware is installed’.

This small experiment has shown that even though Django server seems to
be well-tested, one needs to be careful when modifying the default settings. CIT
can provide a quick way of finding invalid configurations for a particular Django
project.

5 Conclusions

Many real-world software systems are highly configurable. Combinatorial inter-
action testing (CIT) techniques have been developed specifically for such sys-
tems. CIT test suites cover all interactions between any set of t parameters.
Different parameter values can be set, for instance, via modifying a top-level
settings file. An example of such a system is a very popular framework for rapid
web development called Django. By applying CIT techniques to test basic web-
sites written in Django automatically we discovered that under many test con-
figurations invoking a basic website produces errors. Moreover, each step of our
approach is (or could be) automated and does not involve any knowledge of the
inner workings of the Django system. Therefore, it can be applied to any other
configurable software system.

References

1. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on Software
Engineering 23(7), 437–444 (1997)

2. Cohen, M.B., Colbourn, C.J., Gibbons, P.B., Mugridge, W.B.: Constructing test
suites for interaction testing. In: Proceedings of the International Conference on
Software Engineering. pp. 38–48 (May 2003)

3. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software
Eng. 39(2), 276–291 (2013), http://doi.ieeecomputersociety.org/10.1109/

TSE.2012.14

6 Justyna Petke

4. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: International Symposium on
Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013.
pp. 291–301 (2013), http://doi.acm.org/10.1145/2483760.2483774

5. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Software Engineering
16(1), 61–102 (2011)

6. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges
for search based software testing (keynote). In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation (2015)

7. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 11 (2012),
http://doi.acm.org/10.1145/2379776.2379787

8. Harman, M., McMinn, P.: A theoretical and empirical study of search-based test-
ing: Local, global, and hybrid search. IEEE Trans. Software Eng. 36(2), 226–247
(2010), http://doi.ieeecomputersociety.org/10.1109/TSE.2009.71

9. Kuhn, D.R., Okun, V.: Pseudo-exhaustive testing for software. In: SEW. pp. 153–
158. IEEE Computer Society (2006)

10. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Software Eng. 30(6), 418–421 (2004)

11. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.,
Verif. Reliab. 14(2), 105–156 (2004), http://dx.doi.org/10.1002/stvr.294

12. Petke, J., Cohen, M., Harman, M., Yoo, S.: Practical combinatorial interaction
testing: Empirical findings on efficiency and early fault detection. Software Engi-
neering, IEEE Transactions on PP(99), 1–1 (2015)

13. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Efficiency and early fault detec-
tion with lower and higher strength combinatorial interaction testing. In: Euro-
pean Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, ESEC/FSE’13. pp. 26–36. ACM, Saint
Petersburg, Russian Federation (August 2013)

14. Qu, X., Cohen, M.B., Rothermel, G.: Configuration-aware regression testing: an
empirical study of sampling and prioritization. In: Proceedings of the International
Symposium On Software Testing and Analysis. pp. 75–86 (2008)

15. Qu, X., Cohen, M.B., Woolf, K.M.: Combinatorial interaction regression testing:
A study of test case generation and prioritization. In: ICSM. pp. 255–264. IEEE
(2007)

16. Tillmann, N., de Halleux, J.: White-box testing of behavioral web service contracts
with Pex. In: Proceedings of the 2008 Workshop on Testing, Analysis, and Ver-
ification of Web Services and Applications, held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2008), TAV-WEB 2008, Seattle, Washington, USA, July 21, 2008. pp. 47–48 (2008),
http://doi.acm.org/10.1145/1390832.1390840

17. Tonella, P.: Evolutionary testing of classes. In: Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2004, Boston,
Massachusetts, USA, July 11-14, 2004. pp. 119–128 (2004), http://doi.acm.org/
10.1145/1007512.1007528

18. Yilmaz, C., Cohen, M.B., Porter, A.: Covering arrays for efficient fault characteriza-
tion in complex configuration spaces. IEEE Transactions on Software Engineering
31(1), 20–34 (Jan 2006)

