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Abstract—Combinatorial Interaction Testing (CIT) has gained
a lot of attention in the area of software engineering in the
last few years. CIT problems have their roots in combinatorics.
Mathematicians have been concerned with the NP-complete
problem of finding minimal covering arrays (in other words,
minimal CIT test suites) since early nineties. With the adoption
of these techniques into the area of software testing, an important
gap has been identified - namely consideration of real-world
constraints. We show that indeed finding an efficient way of
handling constraints during search is the key factor in wider
applicability of CIT techniques.

I. INTRODUCTION

Many real-world software systems are highly configurable.
It is usually infeasible to test all the possible configurations.
In order to avoid running into this combinatorial explosion
problem, Combinatorial Interaction Testing (CIT) techniques
have been developed specifically for such systems. CIT com-
bines all t-combinations of parameter inputs or configuration
options in a systematic way so that we know we have tested a
measured subset of the input or configuration space. Different
parameter values can be set, for instance, via user interface.
An example would be web browser configurations, as shown
in Table I.

TABLE I
WEB BROWSER CONFIGURATIONS

Load content Notify pop-up Cookies Warn before Remember
blocked add-ons install downloads

Allow Yes Allow Yes Yes
Restrict No Restrict No No
Block Block

Historically, CIT problems come from the field of combi-
natorics and are usually represented as a covering array (CA):
CA(N ; t, vk1

1 vk2
2 ...vkm

m ), where N is the size of the array, t
is its strength, sum of k1, ..., km is the number of parameters
and each vi stands for the number of values for each of the ki
parameters in turn. Suppose we want to generate a pairwise
interaction test suite for an instance presented in Table I. It
has 5 parameters, two of which can take 3 values (‘Allow’,
‘Restrict’ and ‘Block’), while others have two choices of
values (‘Yes’ and ‘No’). The pairwise CIT problem is then
formulated as: CA(N ; 2, 31213122). Furthermore, in order to
test all combinations one would need 3 ∗ 2 ∗ 3 ∗ 2 ∗ 2 = 72 test
cases. If, however, we cover all interactions between any two
parameters, then we only need 9 test cases. Such a test suite
is called a 2-way or pairwise test suite. The goal is to find

the smallest covering array (or, in other words, CIT test suite)
that covers all possible combinations of values, i.e. interactions
between any set of t parameters.

Generation of a minimal CIT test suite is a very challenging
task, in fact, the complexity is NP-complete. Therefore, exact
methods, like the one by Hnich et al. from 2006 [1] have
not been as successful as heuristics in real-world applications.
There are several approaches for covering array generation.
The two most popular ones use either simulated-annealing
(SA) or a greedy algorithm. The SA-based approach is be-
lieved to produce smaller test suites, while the greedy one is
regarded to be faster [2]. Among other search-based methods
for CIT test suite generation are genetic and ant colony
algorithms [3]. A comprehensive survey on Combinatorial
Interaction Testing has been conducted by Nie and Leung
in 2011 [4]. More recently, Khalsa and Labiche reported the
abundance of tools and algorithms available for CIT [5].

There have been several studies showing that CIT test suites
are able to discover all the known interaction faults of the
system under test [6], [7], [8], [9]. More importantly, CIT
is a light-weight, black-box testing technique. It is able to
efficiently test and identify the cause of faults in a real-
world system without any knowledge of the inner workings of
the system under test. Thereofore, Combinatorial Interaction
Testing has been used successfully as a system level test
method [6], [7], [8], [9], [10], [11], [12], [13].

II. CONSTRAINTS IN CIT

Even though CIT has been successful in discovering existing
faults, in situations where there are hundreds of parameters like
in the case of Software Product Lines [14], sometimes genera-
tion of even pairwise interaction test suite is a challenging task.
Furthermore, such a test suite might be simply too big to be
used in practice. Furthermore, until recently, higher-strength
CIT testing, that is, 3-way, 4-way and higher, was deemed
unfeasible in real-world situations [15].

However, in most CIT applications, the problem domain
is constrained: some interactions are simply infeasible due
to these constraints [1], [16], [17], [18]. The nature and
description of such constraints is highly domain specific, yet
taking account of them is essential in order for CIT to be
usable in practice. Any CIT approach that fails to take account
of constraints will produce many test cases that are either
unachievable in practice or which yield expensively misleading
results (such as false positives). An example of such a hard



constraint for the example shown in Table I is: “Warn before
add-ons install” must always be turned on, that is, it can only
take the “Yes” value.

Another type of constraint, often referred to as a soft
constraint [16] may also have a role to play. Soft constraints
are combinations of options that a tester believes do not need
to be tested together (based either on their knowledge of the
test subject and/or by a static analysis). Catering for such
constraints will not improve test effectiveness, but it may
improve efficiency. An example would be testing the “find”
function that searches through a file looking for a particular
pattern. If an empty file is supplied, it is not necessary to
test searches of all possible patterns of words, since, given an
empty file, an error should be thrown in each case. However,
there has been little work on CIT with this type of soft
constraint.

By prohibiting certain parameter-value interactions, con-
straints may significantly reduce the search space for a CIT
test suite generation algorithm. This has been exemplified in
recent work [15]. In particular, it has been shown that it is the
combination of soft and hard constraints that allows for a very
popular CIT-test generation algorithm, based on simulated-
annealing, to scale to real-world problems. Furthermore, it
made higher-strength testing, in particular, testing of all value-
combinations of any 5 parameters, feasible.

III. FUTURE RESEARCH DIRECTIONS

Even though Combinatorial Interaction Testing is a rela-
tively mature research area, the constraint handling techniques
leave room for improvement. Last years’ survey of CIT
tools [5] reveals that many tools simply do not implement
any constraint handling method. One of the challenges has
been efficient integration of constraint handling within the
search process. For example, when using a heuristic such
as simulated-annealing, a test case mutation can result in
constraint violation. Therefore, an additional check needs to
be made.

Arguably the first method deployed is the one that filters
forbidden interactions. In other words, a list of disallowed
parameter-value combinations is kept in memory. Each gen-
erated test case is then verified against this set of forbidden
assignments and/or disallowed interactions are prevented dur-
ing the search process. For example, the greedy-based ACTS
tool [19], implements this method.

Alternatively one can choose a Boolean satisfiability or
constraint solver to resolve constraints [2], [20]. However,
these tools have been used as black-boxes. Especially in
the case of constraint solvers, the right configuration might
drastically speed-up the solving process.

We believe that further research into constraint handling
methods during search in generation of Combinatorial Inter-
action Testing test suites can not only speed-up existing tools,
but also reveal new algorithms efficient for higher-strength CIT
testing.
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