
Efficiency and Early Fault Detection with Lower and Higher
Strength Combinatorial Interaction Testing

Justyna Petke
University College London

Gower Street, London
WC1E 6BT, UK

j.petke@ucl.ac.uk

Shin Yoo
University College London

Gower Street, London
WC1E 6BT, UK

shin.yoo@ucl.ac.uk

Myra B. Cohen
University of Nebraska-Lincoln

Lincoln
NE 68588-0115, USA
myra@cse.unl.edu

Mark Harman
University College London

Gower Street, London
WC1E 6BT, UK

mark.harman@ucl.ac.uk

ABSTRACT
Combinatorial Interaction Testing (CIT) is important be-
cause it tests the interactions between the many features
and parameters that make up the configuration space of
software systems. However, in order to be practically appli-
cable, it must be able to cater for soft and hard real-world
constraints and should, ideally, report a test priority order
that maximises earliest fault detection. We show that we
can achieve the highest strength CIT in 5.65 minutes on
average. This was previously thought to be too computa-
tionally expensive to be feasible. Furthermore, we show that
higher strength suites find more faults, while prioritisations
using lower strengths are no worse at achieving early fault
revelation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification

Keywords
Combinatorial Interaction Testing, Prioritisation, Empirical
Studies, Software Testing

1. INTRODUCTION
Combinatorial interaction testing is increasingly important

because of the increasing use of configurations as a basis for
the deployment of systems [21]. For example, software prod-
uct lines, operating systems and development environments
are all governed by large configuration parameter and feature

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

spaces for which Combinatorial Interaction Testing (CIT)
has proved a useful technique for uncovering faults.

However, in most CIT applications, the problem domain
is constrained: some interactions are simply infeasible due to
these constraints [2, 8,9, 14]. The nature and description of
such constraints is highly domain specific, yet taking account
of them is essential in order for CIT to be usable in practice.
Any CIT approach that fails to take account of constraints
will produce many test cases that are either unachievable in
practice or which yield expensively misleading results (such
as false positives).

Another type of constraint, often referred to as a soft
constraint [2] may also have a role to play. Soft constraints
are combinations of options that a tester believes do not need
to be tested together (based either on their knowledge of the
test subject and/or by a static analysis). Catering for such
constraints will not improve test effectiveness, but it may
improve efficiency. However, there has been little work on
CIT with this type of soft constraint.

The order in which the test cases are applied to the system
under test is also increasingly important for effective and
practical testing, both in general [30] and for CIT [1,4,25].
In many testing scenarios, the number of test cases makes a
naive ‘test all’ approach impractical. It is therefore important
that CIT should not merely find a set of test cases, but that
it should prioritise them so that faults are revealed earlier
in the testing process.

For CIT approaches to testing, it is known that higher-
strength interactions can reveal faults left uncovered by lower
strengths [17]. However, it is widely believed that only the
lowest strength (pairwise interactions) can be covered in
reasonable time; higher strengths, such as those up to 5- and
6-way feature interactions, have been considered infeasibly
expensive, even though they may lead to improved fault
revelation [17,21].

In this paper we study practical lower and higher strength
CIT approaches that take account of both real-world con-
straints and the necessary ordering required to prioritise test
cases. We present results from empirical studies that report
on the relationship between the achievement of lower and
higher interaction strengths, and their ability to find faults
for the constrained prioritised interaction problem. There
has been little previous work on the relationship between

constrained interaction problems and fault revelation, par-
ticularly with respect to soft constraints, and none on the
problem of ordering test cases for early fault revelation with
respect to constrained higher strength interactions.

This paper addresses this important gap in the literature.
We report on a series of empirical evaluations of constrained
prioritised higher strength interaction testing on multiple
versions of five programs from the Software-artifact Infras-
tructure Repository (SIR) [10]. Our results provide several
findings that are important to the scientific development of
interaction testing and also to practising testers.

The primary findings of the studies we report are:

1. We show that higher-strength CIT is feasible, confound-
ing ‘conventional wisdom’. This surprising result arises
because of the role played by constraints. We report
that, though they constrain the choice of test cases,
these same constraints can make higher-strength CIT
achievable in reasonable time.

2. We show that separate consideration of single and multi
valued parameters leads to significant runtime improve-
ments for prioritisation and interaction coverage.

3. We show the higher strength CIT is necessary to achieve
better fault revelation in prioritised CIT; our empirical
study reveals that higher strength CIT reveals more
faults than lower strengths. This means that for com-
prehensive testing, higher strength interaction suites
are both feasible and desirable.

4. We find that lower strength CIT naturally achieves
some degree of ‘collateral’ higher strength coverage,
and that it also performs no worse in terms of early
fault revelation. This means that we can use lower
strength prioritisation as a cheap way to find the first
fault.

Overall, taken together, our results are very promising
for the future of CIT research and practice. Our results
indicate that taking account of realistic testing scenarios (that
are typically constrained and necessitate test case ordering)
creates a problem that is amenable to high-strength CIT
techniques.

This will be a welcome message to the research commu-
nity, which has, hitherto, eschewed higher strength testing,
believing it to be too expensive. For the practising tester,
concerned with the problem of testing systems with large con-
figuration spaces, our results are equally encouraging. They
show that high-strength CIT is practical for comprehensive
testing, yet lower strengths can be relied upon to quickly
find the first faults.

2. BACKGROUND

2.1 Related Work
Combinatorial interaction testing (CIT) has been used

successfully as a system level test method [6, 7, 16,17,24–27,
29]. CIT combines all t-combinations of parameter inputs or
configuration options in a systematic way so that we know
we have tested a measured subset input (or configuration)
space. Research has shown that we can achieve high fault
detection rates given a small set of test cases [6, 17,25,29].

Many of the current research directions into this tech-
nique examine specialised problems such as the addition

Table 1: Overview of literature on fault detection,
prioritisation and constraints: extracted from [21].

Authors Fault detect. Prioritisation Constraints

Bryce et al. [3] X X X

Cohen DM et al. [6] X

Cohen MB et al. [9] X X X

Grindal et al. [13] X

Kuhn et al. [17] X

Nie et el. [28] X

Schroeder et al. [27] X

of constraints between parameter values [2,8,13,20,24], or
re-ordering (prioritising) test suites to improve early cov-
erage [4, 5, 24–26]. Other work has studied the impact of
testing at increasing higher strengths (t > 2) [15,23].

In a recent survey by Nie et al. [21] CIT research is cate-
gorised by a taxonomy to show the areas of study. We have
extracted data from this table for 3 columns, fault detection,
constraints and prioritisation. We show this in Table 1 and
add a reference to one of the papers from that survey (the
survey may include more than one paper per name).

At first glance it might appear from Table 1 that there
has been broad coverage of these topics in previous work.
However, this is deceptive since most of these CIT aspects
are studied in isolation. There are no previous studies that
cross the boundaries of prioritisation, constraints and fault
detection.

2.2 Preliminaries
In this section we will give a quick overview of the notation

used throughout the paper. In particular, a Covering Array
(CA) is usually represented as follows:

CA(N ; t, vk1
1 vk2

2 ...vkm
m)

where N is the size of the array, t is its strength, sum of
k1, ..., km is the number of parameters and each vi stands for
the number of values for each of the ki parameters in turn.

Suppose we want to generate a pairwise interaction test
suite for an instance with 3 parameters, where the first and
third parameter can take 4 values and the second one can
only take 3 values. Then the problem can be formulated as:
CA(N ; 2, 413141).

Furthermore, in order to test all combinations one would
need 4 ∗ 3 ∗ 4 = 48 test cases, pairwise coverage reduces
this number to 16. Additionally, suppose that we have
the following constraints: first, only the first value for the
first parameter can be ever combined with values for the
other parameters, and second, the last value for the second
parameter can never be combined with values for all the other
parameters. Introducing such constraints reduces the size of
the test suite even further to 8 test cases. The importance
of constraints is evident even in this small example.

We differentiate between two types of constraints in this
work: hard and soft, terms first proposed by Bryce and
Colbourn [2]. Hard constraints exclude dependencies that
happen between parameter values. For instance, if turning on
8-bit arithmetic means that we cannot use a division function,
then these cannot be tested together. Much of the work on
constraints has focused on this type of constraints. Since the
challenge is to construct test suites that are guaranteed to

avoid these combinations, we cannot have them in our test
suites.

Soft constraints, on the other hand, have not, hitherto,
received as much attention. These constraints are combina-
tions of parameters that we do not need to test together (a
tester has decided that combining these parameter values
is not needed, but the test will still run if this combination
exists).

An example of such a parameter might be combining the
string match function in an empty file. While this might
be excluded because the tester believes it unlikely to find a
fault, the test case containing this pair still runs.

3. RESEARCH QUESTIONS
In real-world situations, it is often not feasible to test

combinations of the input parameters exhaustively. In these
situations, Combinatorial Interaction Testing can help reduce
the size of the test suite. Constraints may rule out certain
combinations of value-parameters, thereby reducing the size
of the test suite even further. The extent of this reduction
by constraints motivates our first research question:

RQ1: What is the impact of constraints on the sizes of the
models of covering arrays used for CIT?

Most of the literature and practical applications focus on
pairwise, and sometimes 3-way, interaction coverage. Par-
tially this is due to time inefficiency of the tools available.
Kuhn et al. stated in 2008 that “only a handful of tools
can generate more complex combinations, such as 3-way,
4-way, or more (..). The few tools that do generate tests
with interaction strengths higher than 2-way may require
several days to generate tests (..) because the generation
process is mathematically complex” [15]. However, recent
work in this area shows a promising progress towards higher
strength interaction coverage [12,15,18]. We want to know
how difficult it is to generate test suites that achieve higher-
strength interaction coverage when using a state-of-the-art
CA generation tool, and the role played by constraints. Thus
we ask:

RQ2: How efficient is the generation of higher-strength con-
strained covering arrays using state-of-the-art tools?

Greedy [6,18] and meta-heuristic search [12] are the two
most frequently used approaches for covering array gener-
ation [12]. Both involve a certain degree of randomness.
For instance, simulated annealing, a meta-heuristic search
technique, randomly selects a transformation, applies it, and
compares the new solution to the previous one to determine
which should be retained. Greedy algorithms are less ran-
dom, yet they nevertheless make random choices to break
ties. This motivates our next research question:

RQ3: What is the variance of the sizes of CAs across multiple
runs of a CA generation algorithm?

Prioritising according to pairwise coverage has been found
to be successful at finding faults quickly [5]. A question
arises: “what happens when we prioritise according to a
higher-strength coverage criterion?”. Note that any t-way
interaction also covers some (t− i)-way interactions. Thus
we want to investigate the relationships between the different
types of interaction coverage:

Table 2: Uncommented lines of code of sub-
jects/versions.

Subjects Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5 Ver. 6 Ver. 7

flex 9,581 10,297 10,319 11,470 10,366 - -
make 14,459 29,011 30,335 35,583 - - -
grep 9,493 10,017 10,154 10,173 10,102 - -
sed 5,503 9,884 7,161 7,101 13,419 13,434 14,477
gzip 4,604 5,092 5,102 5,240 5,754 - -

RQ4: What is the coverage rate of k interactions when pri-
oritising by t-way coverage?

– What is the coverage rate of pairwise interactions
when prioritising by higher-strength coverage?

– What is the coverage rate of t-way interactions
when prioritising by lower-strength coverage?

Testers often do not have enough time or resources to
execute all test cases from the given test suite, which is why
Test Case Prioritisation (TCP) techniques are important [30].
The objective of TCP is to order tests in such a way that
maximises the early detection of faults. This motivates our
final research question:

RQ5: How effective are the prioritised test suites at detecting
faults?

– Which strength finds all known faults first?

– Which strength provides the fastest rate of fault
detection?

– Does prioritising by pairwise interactions lead to
faster fault detection rates than when prioritising
by higher-strength interactions?

– Is there a ‘best’ combination when time constraints
are considered, for example, creating 4-way con-
strained covering arrays and prioritising by pair-
wise coverage?

By answering these research questions, we aim to help the
developers and users of CIT tools in their decisions about
whether to adopt higher strength CIT.

4. EXPERIMENTAL SETUP
In order to answer the questions posed above, we conducted

the experiments presented in this section.

4.1 Constrained Testing Models
We have used five C subject programs: flex, make, grep,

sed and gzip. Their sizes in Uncommented Lines of Code,
measured with cloc1 are presented in Table 2. These are
obtained from the Software-artifact Infrastructure Repository
(SIR) [10].

We chose these subjects in order to compare our results
against the ones obtained previously in the literature (for
example, in the work of Qu et al. and Qu and Cohen [23,25]).
In this previous work, the unconstrained versions of the
subjects were used. Moreover, these five C subjects come
with test plans described in the Test Suite Specification
Language (TSL) [22].

We use TSL description to extract the relevant parameters
and values and to define our constraints. Since TSL is created

1
http://cloc.sourceforge.net

by a tester, it includes knowledge of the system that combines
both hard and soft constraints. TSL contains some single
valued parameters labeled as either error or single. These
are parameters that should be tested alone.

An example is turning on the “help” feature. While this
is a hard constraint, turning “statistics” on and off in flex
would be considered a soft constraint. The test developer
has decided that this feature is unlikely to interact with
others. We use the constraints from these TSL files without
modification for our experiments to mimic what a real user
would do (SIR was developed with this goal in mind).

This approach to evaluation also removes bias that would
come from our making decisions about which constraints to
retain or remove. For the generation of Covering Arrays, we
have only considered parameters having at least two possible
values2 This was to decrease the computation effort of the
CA generation tool we used.

We encoded all of the constraints as hard constraints so
that they do not appear in our test suite with the aim of
reducing the combinatorial space. In the resultant test suite,
all single valued parameters (i.e. parameters that contained
only one value that could be combined with other parameters)
were simply added to each of the test cases for completion.

4.2 CA Generation
We use the Covering Arrays by Simulated Annealing

(CASA) tool3 for the generation of Covering Arrays. CASA
is one of the few freely available CA generation tools that
can handle logical constraints explicitly specified by the user.
It is based on simulated annealing and is known to generate
smaller covering arrays than the greedy algorithms [12].

Another reason to use CASA is to avoid one potential
source of experimental bias. Most of the tools that are
based on the greedy algorithm also perform prioritisation
during the process of generating the covering array. This
occurs because the greedy algorithm always chooses the test
case that contains the largest number of uncovered t-tuples.
However, since our research questions include investigation of
the impact of reduced test suites on the fault detection rate as
well as the impact of various prioritisation criteria, we prefer
an algorithm that does not implicitly perform prioritisation
during its selection phase.

4.3 CA Prioritisation
After generating t-way covering arrays, we prioritise each

of these according to multiple t-way prioritisation criteria
(for 2 ≤ t ≤ 5). There are standard prioritisation algorithms
in the literature: Bryce and Memon [3], and Manchester et
al. [19], for example4.

For our experiments, we use a variation of the algorithm
by Bryce and Memon [3]. We note that this differs from the
code-coverage weighted prioritizaton of Qu et al. [25]. The
original algorithm iterates through test cases and retains
the one test case that covers the largest number of currently
uncovered t-tuples.

Note that, in the original algorithm, despite ties being
broken at random, the test cases later in the suite have a

2
We note here that some values were immediately prohibited by the

constraints. For example, if an ‘error’ constraint is found, there is no
need for checking it’s interaction with values for all the other param-
eters.
3
CASA is available at: http://cse.unl.edu/~citportal/tools/casa/.

4
Note that the two algorithms differ only at the pre-processing stage.

higher chance of getting picked. Consider the case when all
n tests cover the same amount of uncovered t-tuples. The
first test will be picked for the current maximum first.

However, the probability of it being actually picked is 0.5n,
since at each tie breaking point it has to win over the next test
case. Hence, we gather all test cases whose count of currently
uncovered t-tuples is maximal, and then pick one at random.
Thus each will be picked with probability 1/n. In order to
implement these modifications we add an array, holding all
the test suites which cover the same amount of uncovered
t-way interactions. Furthermore, we keep a Boolean mapping
from test cases to t-tuples to mark those currently uncovered
t-tuples contained by a given test case. We also record the
total number of currently uncovered t-tuples contained by a
given test case. These mappings were updated whenever a
new test case was marked as used in order to avoid constantly
re-calculating the number of uncovered t-tuples for each test
case. The pseudocode for the algorithm used is presented in
Algorithm 1.

Algorithm 1 Pseudocode for test suite prioritisation.

CA = test suite to prioritize
gather all valid t-tuples based on CA
mapping=[]
sums=[]
for all tests in CA do

mapping[test]=[True if t-tuplei in test, else False]
sums[test]=sum(mapping[test])

end for
bestTest = a test that covers the most unique t-tuples
add bestTest to TestSuite
selectedTestCount = 1
while selectedTestCount < size(CA) do

update sums, mapping
remove sums[bestTest], mapping[bestTest]
tCountMax = max(sums)
bestTests = []
for all tests in sums do

if sums[test] == tCountMax then
add test to bestTests

end if
end for
bestTest = random test from bestTests
add bestTest to TestSuite
selectedTestCount++

end while

4.4 Interaction Coverage Metric
To calculate the t-way interaction coverage of a given test

suite we use Algorithm 2. We noticed that all of our subjects
contain single valued parameters. Sometimes there are many
such single valued parameters, for example, 69% of all the
parameters in the case of flex. Consequently, a lot of the
same combinations of t-tuples are checked using Algorithm 2,
even though many are already covered by the first test case
selected. Therefore, we used the following combinatorial
identity which improves efficiency by dividing effort between
single valued and multi valued parameters:(

m + n

i

)
=

t∑
i=0

(
m

i

)(
n

t− i

)
where m and n are the numbers of single and multi valued
parameters respectively and t is the interaction strength.

Algorithm 2 Pseudocode for the rate of t-way coverage.

CA= a given test suite
coverage=number of t-way interactions covered
coverage[0]=0
tuples=uncovered t-tuples
for j=1 to size(CA) do

coverage[testj]=coverage[testj−1]
for all t-tuples in testj do

if t-tuple in tuples then
coverage[testj] += 1
remove t-tuple from tuples

end if
end for

end for
rate = coverage / number of all valid t-tuples * 100%

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (14 Test Cases)

In
te
ra
ct
io
n
C
ov
er
ag

e

make generated:3 ordered:2

cov. for str. 2 (APCC=89.26)
cov. for str. 3 (APCC=82.50)
cov. for str. 4 (APCC=73.47)
cov. for str. 5 (APCC=63.15)

Figure 1: Interaction coverage of 3-way covering ar-
ray for make prioritised by pairwise coverage.

To compare how quickly each prioritised test suite achieves
the interaction coverage of a specific strength, we define an
Average Percentage of Covering-array Coverage (APCC)
metric following the Average Percentage of Fault Detection
(APFD) metric [11]. Given m covering arrays to cover and
n test cases, let CAi be the index of the first test case that
covers the covering array CA. APCC is defined as follows:

APCC = (1 −
∑m

i CAi

nm
+

1

2n
) ∗ 100

APCC measures the area under curve for the plot of increas-
ing interaction coverage for a prioritised test suite. Figure 1
illustrates the metric using the test suite generated for make.
It takes 14 test cases to achieve 100% coverage for 3-way
interaction coverage. The test suite achieves 100% coverage
for both 3-way and pairwise interaction coverage.

4.5 Fault Detection
We measure the fault detection capability of each priori-

tised test suite. We use all available software versions of
the five subjects from SIR with seeded faults provided as
part of SIR. In order to avoid experimenter bias and ensure
repeatability we only used the faults provided with each of
the subject tested in SIR. For each of the test suites we
gathered the number of faults detected by every i tests.

Table 3: Unconstrained covering array sizes [23,25].

CIT Specification Size Size Size Size
t = 2 t = 3 t = 4 t = 5

flex
CA(N ; t, 243116161) 96 288 NA NA
grep
CA(N ; t, 413121312112141) 48 192 NA NA
make
CA(N ; t, 312251322141) 20 60 180 540

5. RESULTS
This section presents the results of all the experiments

conducted and answers the research questions. We address
the first three questions in the next subsection.

5.1 CA Generation Under Constraints
For flex, make and grep modified TSL descriptions were

used by Qu et al. and Qu and Cohen [23, 25] in order to
create unconstrained models. We note here that some param-
eter values were omitted, while some others were combined.
The reason for these modifications was to “obtain exhaustive
suites that retain close to the original fault detection abil-
ity” [25]. Qu et al. also note that “in a real test environment
an unconstrained TSL would most likely be prohibitive in
size and would not be used” [25]. The sizes of the covering
arrays generated for these modified files are presented in Ta-
ble 3. For flex and grep, the numbers for t = 4 and t = 5
were not provided, most probably due to time restrictions of
the CA generator used.

The sizes of the smallest constrained CA generated are
presented in Table 4. In the case of grep and make for t = 4
and t = 5, only the numbers of unique rows are reported.
The table also includes the number of tests in the original
exhaustive TSL test suite from SIR. Tables 3 and 4 provide
an answer to RQ1: constraints can reduce the size of CIT
models significantly.

The constrained CIT models we use are generated directly
from TSL descriptions from SIR and exclude the single valued
parameters. We ran the CASA tool twenty times on each
model on a Lenovo 3000 N200 laptop with an Intel Core
2 Duo processor, running at 1.66GHz with 2GB of RAM.
Figure 2 presents the runtime information and the sizes of
generated Covering Arrays.

Certain runs of CASA produced CAs with repeated rows
(marked with ** in Figure 2). Most runs took fewer than 20
minutes. However, for the 3-way criterion of grep and sed,
CASA was terminated after an hour: subsequently, we ran
CASA again, with the ‘known size’ parameter set to the best
result obtained within an hour in these two cases. These
runs are marked with * in Figure 2(a) and 2(b).

For comparison, we present the CIT models for the original
TSL files from SIR with all the constraints and parameter
order ignored in Table 5.

Results presented in this subsection provide strong evi-
dence that constraints play an important part in the efficiency
of covering array generation. At the modelling stage, con-
straints allow for certain values to be excluded from CIT
because, for instance, these correspond to error states or
cases that do not require further interaction (printing the
‘help’ message, for example).

fle
x_

pa
irw

is
e

fle
x_

th
re

ew
ay

fle
x_

fo
ur

w
ay

fle
x_

fiv
ew

ay

m
ak

e_
pa

irw
is

e

m
ak

e_
th

re
ew

ay

m
ak

e_
fo

ur
w

ay

m
ak

e_
fiv

ew
ay

gr
ep

_p
ai

rw
is

e

gr
ep

_t
hr

ee
w

ay
*

gr
ep

_f
ou

rw
ay

gr
ep

_f
iv

ew
ay

se
d_

pa
irw

is
e

se
d_

th
re

ew
ay

*

se
d_

fo
ur

w
ay

se
d_

fiv
ew

ay

gz
ip

_p
ai

rw
is

e

gz
ip

_t
hr

ee
w

ay

gz
ip

_f
ou

rw
ay

gz
ip

_f
iv

ew
ay

0

200

400

600

800

1000

CA generation runtimes

se
co

nd
s

(a) CA Generation Runtime

fle
x_

pa
irw

is
e

fle
x_

th
re

ew
ay

fle
x_

fo
ur

w
ay

fle
x_

fiv
ew

ay

m
ak

e_
th

re
ew

ay

m
ak

e_
fiv

ew
ay

m
ak

e_
pa

irw
is

e

m
ak

e_
fo

ur
w

ay

gr
ep

_p
ai

rw
is

e

gr
ep

_t
hr

ee
w

ay
*

gr
ep

_f
ou

rw
ay

**

gr
ep

_f
iv

ew
ay

**

se
d_

pa
irw

is
e

se
d_

th
re

ew
ay

*

se
d_

fo
ur

w
ay

**

se
d_

fiv
ew

ay
**

gz
ip

_p
ai

rw
is

e

gz
ip

_t
hr

ee
w

ay

gz
ip

_f
ou

rw
ay

gz
ip

_f
iv

ew
ay

0

1000

2000

3000

CA sizes

(b) CA Sizes

Figure 2: Boxplots of CA Generation Runtimes and CA Sizes

Table 6: Interaction coverage for the five subjects tested.

Subjects
Gen. Size Cov. for Strength

Subjects
Gen. Size Cov. for Strength

Crit. 2 3 4 5 Crit. 2 3 4 5

flex

2 26 - 98.52 95.38 90.84
grep

4 356 - - - 99.71
3 55 - - 99.58 98.41 5 436 - - - -
4 111 - - - 99.93

sed

2 58 - 92.03 81.68 71.37
5 180 - - - - 3 170 - - 98.85 96.48

make

2 7 - 94.60 84.47 71.88 4 324 - - - 100.00
3 14 - - 97.25 90.76 5 324 - - - -
4 30 - - - 98.94

gzip

2 18 - 97.56 93.00 87.08
5 64 - - - - 3 45 - - 99.62 98.61

grep
2 43 - 88.71 74.07 59.92 4 72 - - - 99.95
3 148 - - 97.41 92.28 5 144 - - - -

Table 4: Constrained CA sizes.

CIT specification Size Size Size Size TSL
t = 2 t = 3 t = 4 t = 5 full

flex
CA(N ; t, 22322451) 26 55 111 180 525
make
CA(N ; t, 210) 7 14 30 68 793
grep
CA(N ; t, 3241618142312151) 43 148 356 436 470
sed
CA(N ; t, 246110121412231) 58 170 324 324 360
gzip
CA(N ; t, 21331) 18 45 72 144 214

Table 5: Constrained and unconstrained CIT models
for subjects.

Constrained Unconstrained

flex (32 TSL constraints)
CA(N ; t, 263251) CA(N ; t, 2233452)
make (28 TSL constraints)
CA(N ; t, 210) CA(N ; t, 21434425161)
grep (58 TSL constraints)
CA(N ; t, 213343516181) CA(N ; t, 142133415171101131211)
sed (58 TSL constraints)
CA(N ; t, 27314161101) CA(N ; t, 11273143536182101)
gzip (69 TSL constraints)
CA(N ; t, 21331) CA(N ; t, 143828425161341)

Table 7: Runtimes of the prioritisation algorithm on
two CIT models of flex.

Pairwise CA for flex Prior. Prior.
(26 Test Cases) Strength Time (sec.)

Without single valued params. t = 2 0.051
With single valued params. t = 2 0.238

Without single valued params. t = 3 0.097
With single valued params. t = 3 18.249

Without single valued params. t = 4 0.197
With single valued params. t = 4 1079.809

Without single valued params. t = 5 0.251
With single valued params. t = 5 >20min

Excluding single valued parameters allows further model
reduction without compromising the test suite. These can
be added to each row of the CA generated in the post-
processing stage, relieving the tool of the need to consider
tuples involving such single valued parameters.

The significance of these reductions can be seen in Table 4.
The number of test cases generated decreases significantly
when compared to the full TSL suite. In the case of make,
5-way coverage is achieved with only 68 tests, while the
exhaustive test suite contains 793 test cases.

With regard to the generation effort of CASA, in some
cases the variation between runtimes has been significant.
This may stem from the different seeds used for the stochastic
simulated annealing. At each run, the algorithm starts with a
randomly generated solution, which might be either very close
to or very far from the actual solution. CASA determines
the size of CAs in a stochastic way: it is possible that it gets
‘stuck’ and works harder on some problems because of a bad
starting point.

However, all runs (including ones for higher strength CAs)
finished in under 20 minutes, showing that state-of-the-art
CA generation tools can cope high higher strength CA gen-
eration under constraints (RQ2). Unlike execution time, we
observe little variance in CA sizes between the different runs
of CASA (Figure 2(b)), providing an answer to RQ3. These
two observations provide supporting evidence for the best
practice, which is to perform a few runs of the tool with
predetermined time-out and then to select the smallest CA
generated.

5.2 Prioritisation and Interaction Coverage
This section addresses RQ4. Following the best practice

outlined in Section 5.1, we chose 20 smallest Covering Ar-
rays, out of the CAs we generated, for the combination of
the subjects (flex, make, grep, sed and gzip) and t-way in-
teraction coverage criteria (2 ≤ t ≤ 5). Note that these only
contain the multi-value parameters (single valued parameters
having been removed). Subsequently, we ordered each of
these according to pairwise, 3-way, 4-way and 5-way coverage
using the greedy algorithm presented in Algorithm 1. This
produces 80 CAs.

Excluding single valued parameters also allows significant
speed-up for prioritisation. For example, 20 out of 29 param-
eters for flex are single valued. We report, in Table 7, the
runtimes of Algorithm 1 for CIT models of flex with and
without the single valued parameters.

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (7 Test Cases)

In
te
ra
ct
io
n
C
ov
er
ag

e

make generated:2 ordered:2

cov. for str. 2 (APCC=78.31)
cov. for str. 3 (APCC=66.67)
cov. for str. 4 (APCC=54.56)
cov. for str. 5 (APCC=43.34)

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentage of Test Suite (64 Test Cases)

In
te
ra
ct
io
n
C
ov
er
ag

e

make generated:5 ordered:5

cov. for str. 2 (APCC=97.53)
cov. for str. 3 (APCC=95.99)
cov. for str. 4 (APCC=93.70)
cov. for str. 5 (APCC=90.40)

Figure 3: Comparing APCC for pairwise and 5-way
CAs for make.

Prioritising the same CA according to interaction coverage
for different strengths produces significantly different permu-
tations of test cases. Table 8 shows the permutations of the
pairwise CA of make according to different strength criteria.

Table 6 reports the interaction coverage achieved by each
of the 80 CAs. For each CA generated for t-way strength,
we measure the interaction coverage for t′-way strength (2 ≤
t′ ≤ 5). A t-way strength CA, by definition, achieves 100%
interaction coverage for strengths lower than t (therefore we
omit these from Table 6).

For all subject programs, pairwise CAs achieve at least
about 60% collateral 5-way interaction coverage. This pro-
vides an answer to the top level RQ4: the presence of con-
straints increases the collateral coverage for higher-strength
interaction coverage. Note that, for coverage calculation,
single valued parameters need to be added back to the CAs
in order to produce full test suites.

To answer the subquestions of RQ4 on prioritisation, we
prioritised each of the 20 CAs according to four different
prioritisation criteria (2-, 3-, 4-, and 5-way interaction cov-

Table 9: APCC values for the five subjects tested.

Subjects
Gen. Prio. APCC for Strength

Subjects
Gen. Prio. APCC for Strength

Crit. Crit. 2 3 4 5 Crit. Crit. 2 3 4 5

flex

2 2 91.17 85.37 78.63 71.46

grep

4 2 97.69 93.67 88.34 82.43
2 3 90.87 85.16 78.65 71.74 4 3 97.62 94.76 90.47 85.13
2 4 90.32 84.55 78.05 71.19 4 4 97.36 94.55 90.75 86.10
2 5 89.93 84.31 77.95 71.19 4 5 97.18 94.35 90.57 85.97

flex

3 2 95.95 92.83 88.76 83.94

grep

5 2 98.11 94.46 89.77 84.73
3 3 95.71 92.75 89.08 84.77 5 3 97.99 95.70 92.18 87.74
3 4 95.37 92.26 88.55 84.29 5 4 97.93 95.66 92.57 88.77
3 5 94.73 91.57 87.88 83.70 5 5 97.67 95.43 92.41 88.71

flex

4 2 97.99 96.39 94.21 91.49

sed

2 2 85.86 72.17 59.34 48.58
4 3 97.86 96.38 94.42 91.96 2 3 85.83 72.35 59.70 49.04
4 4 97.72 96.17 94.20 91.81 2 4 85.40 71.94 59.40 48.85
4 5 97.45 95.77 93.71 91.29 2 5 84.96 71.68 59.30 48.85

flex

5 2 98.70 97.68 96.22 94.35

sed

3 2 95.22 88.74 81.24 73.72
5 3 98.66 97.77 96.57 95.00 3 3 95.18 89.51 82.74 75.65
5 4 98.53 97.55 96.33 94.82 3 4 95.06 89.38 82.66 75.66
5 5 98.38 97.36 96.10 94.58 3 5 94.92 89.34 82.72 75.78

make

2 2 78.31 66.67 54.56 43.34

sed

4 2 97.49 93.10 87.98 82.95
2 3 78.51 67.42 55.51 44.25 4 3 97.50 94.59 90.85 86.63
2 4 78.51 67.42 55.51 44.25 4 4 97.43 94.55 90.95 86.96
2 5 78.51 67.42 55.51 44.25 4 5 97.35 94.48 90.90 86.95

make

3 2 89.26 82.50 73.47 63.15

sed

5 2 97.48 93.28 88.36 83.44
3 3 89.20 82.72 74.01 63.87 5 3 97.47 94.58 90.83 86.59
3 4 89.17 82.67 73.96 63.85 5 4 97.48 94.60 91.00 87.01
3 5 88.65 82.24 73.67 63.66 5 5 97.40 94.52 90.95 87.02

make

4 2 95.04 91.59 86.56 79.87

gzip

2 2 83.44 75.32 67.33 59.79
4 3 94.95 91.62 86.76 80.17 2 3 83.45 75.38 67.46 59.99
4 4 94.95 91.83 87.21 80.86 2 4 83.37 75.38 67.51 60.07
4 5 94.95 91.90 87.31 80.95 2 5 82.83 74.89 67.12 59.78

make

5 2 97.65 95.89 93.12 89.22

gzip

3 2 93.01 88.90 84.30 79.42
5 3 97.61 96.05 93.61 90.04 3 3 93.10 89.09 84.61 79.83
5 4 97.64 96.08 93.77 90.42 3 4 93.10 89.09 84.59 79.79
5 5 97.53 95.99 93.70 90.40 3 5 93.08 89.04 84.52 79.71

grep

2 2 79.69 63.04 48.32 36.58

gzip

4 2 95.86 93.24 90.06 86.51
2 3 78.76 62.76 48.33 36.67 4 3 95.86 93.36 90.34 86.96
2 4 79.29 63.03 48.51 36.82 4 4 95.85 93.32 90.28 86.87
2 5 78.21 62.49 48.28 36.74 4 5 95.85 93.32 90.28 86.87

grep

3 2 94.23 86.15 76.33 66.27

gzip

5 2 97.93 96.53 94.70 92.56
3 3 93.98 87.17 78.36 68.77 5 3 97.93 96.69 95.15 93.34
3 4 93.57 86.89 78.27 68.86 5 4 97.93 96.69 95.18 93.46
3 5 93.49 86.74 78.17 68.87 5 5 97.93 96.68 95.16 93.41

Table 8: Permutations of the test suite for make
which achieves pairwise interaction coverage.

make 2-way CA

t-way Prioritisation Permutation

t = 2 T6, T2, T5, T1, T0, T3, T4

t = 3 T3, T4, T0, T1, T2, T5, T6

t = 4 T1, T5, T2, T0, T3, T4, T6

t = 5 T4, T0, T3, T1, T2, T5, T6

erage), resulting in 80 prioritised CAs. The results from
the prioritisation are aggregated using APCC (defined in
Section 4.4) in Table 95.

The variation in APCC between the different strengths of
prioritisation criteria is observed to have very little effect. It
caused less than 2% variation, and this variation decreases
as the strength of the test suite increases, as can be seen in
Figure 3.

This provides answers to the two subquestions in RQ4:
it seems that there is no clear advantage to be gained by
prioritising by interactions of higher/lower strength. Note

5The complete data and all APCC plots are available at the
companion webpage: http://www0.cs.ucl.ac.uk/staff/s.
yoo/cit/cit.html.

that whenever the next test case adds a new 3-way interaction
to the test suite, it does not necessarily mean that a new
pairwise interaction has been added.

However, whenever a new 2-way interaction is added, then
automatically new 3-way, 4-way and 5-way interactions are
covered. Therefore, in terms of interaction coverage, pri-
oritising by the lowest strength (the pairwise interaction
criterion) will often prove to be sufficient, as our results
confirm. However, a further question arises as to whether
the same observation will hold for fault detection rates. This
is the question to which we turn in the next section.

5.3 Fault Detection
This section addresses RQ5. Table 10 presents the per-

centage of detected faults after 25%, 50%, 75%, and 100%
of each test suite is executed, aggregated over all versions
of subject programs. With flex, grep, and sed, CAs with
higher generation strength do detect more faults when ex-
ecuted in their entirety. In all cases, the number of faults
detected by test cases covering at least two parameters was
found to be identical in the case of t-way covering arrays and
full TSL test suites provided in SIR.

Thus, we achieve the same fault detection by using a
smaller number of tests. For flex, this was achieved with
4-way covering arrays, for make we just needed pairwise

Table 10: Percentage of detected faults for all versions of 5 subjects.

Subjects
Gen. Prio. % of Test Suite Executed

Subjects
Gen. Prio. % of Test Suite Executed

Crit. Crit. 25% 50% 75% 100% Crit. Crit. 25% 50% 75% 100%

flex

2 2 86.0 88.0 90.0 92.0

flex

4 2 94.0 94.0 98.0 100.0
2 3 92.0 92.0 92.0 92.0 4 3 96.0 98.0 98.0 100.0
2 4 66.0 90.0 90.0 92.0 4 4 92.0 96.0 98.0 100.0
2 5 90.0 90.0 92.0 92.0 4 5 92.0 94.0 98.0 100.0

flex

3 2 94.0 94.0 94.0 94.0

flex

5 2 96.0 100.0 100.0 100.0
3 3 90.0 94.0 94.0 94.0 5 3 96.0 100.0 100.0 100.0
3 4 88.0 94.0 94.0 94.0 5 4 94.0 100.0 100.0 100.0
3 5 74.0 92.0 94.0 94.0 5 5 94.0 94.0 98.0 100.0

make

2 2 50.0 100.0 100.0 100.0

make

4 2 100.0 100.0 100.0 100.0
2 3 100.0 100.0 100.0 100.0 4 3 100.0 100.0 100.0 100.0
2 4 100.0 100.0 100.0 100.0 4 4 100.0 100.0 100.0 100.0
2 5 100.0 100.0 100.0 100.0 4 5 100.0 100.0 100.0 100.0

make

3 2 100.0 100.0 100.0 100.0

make

5 2 100.0 100.0 100.0 100.0
3 3 100.0 100.0 100.0 100.0 5 3 100.0 100.0 100.0 100.0
3 4 100.0 100.0 100.0 100.0 5 4 100.0 100.0 100.0 100.0
3 5 100.0 100.0 100.0 100.0 5 5 100.0 100.0 100.0 100.0

grep

2 2 91.67 91.67 91.67 91.67

grep

4 2 91.67 100.0 100.0 100.0
2 3 83.33 91.67 91.67 91.67 4 3 91.67 91.67 100.0 100.0
2 4 83.33 83.33 83.33 91.67 4 4 100.0 100.0 100.0 100.0
2 5 75.0 83.33 83.33 91.67 4 5 91.67 100.0 100.0 100.0

grep

3 2 91.67 91.67 100.0 100.0

grep

5 2 100.0 100.0 100.0 100.0
3 3 91.67 100.0 100.0 100.0 5 3 100.0 100.0 100.0 100.0
3 4 91.67 91.67 100.0 100.0 5 4 91.67 91.67 91.67 100.0
3 5 83.33 91.67 100.0 100.0 5 5 91.67 100.0 100.0 100.0

sed

2 2 90.48 90.48 90.48 95.24

sed

4 2 85.71 95.24 100.0 100.0
2 3 80.95 85.71 90.48 95.24 4 3 95.24 100.0 100.0 100.0
2 4 85.71 95.24 95.24 95.24 4 4 95.24 95.24 100.0 100.0
2 5 76.19 90.48 95.24 95.24 4 5 90.48 100.0 100.0 100.0

sed

3 2 85.71 90.48 95.24 100.0

sed

5 2 95.24 95.24 95.24 100.0
3 3 90.48 100.0 100.0 100.0 5 3 95.24 100.0 100.0 100.0
3 4 90.48 100.0 100.0 100.0 5 4 95.24 95.24 100.0 100.0
3 5 90.48 90.48 95.24 100.0 5 5 85.71 100.0 100.0 100.0

gzip

2 2 80.0 100.0 100.0 100.0

gzip

4 2 100.0 100.0 100.0 100.0
2 3 100.0 100.0 100.0 100.0 4 3 100.0 100.0 100.0 100.0
2 4 80.0 100.0 100.0 100.0 4 4 100.0 100.0 100.0 100.0
2 5 80.0 80.0 100.0 100.0 4 5 100.0 100.0 100.0 100.0

gzip

3 2 80.0 100.0 100.0 100.0

gzip

5 2 100.0 100.0 100.0 100.0
3 3 80.0 100.0 100.0 100.0 5 3 100.0 100.0 100.0 100.0
3 4 100.0 100.0 100.0 100.0 5 4 100.0 100.0 100.0 100.0
3 5 100.0 100.0 100.0 100.0 5 5 100.0 100.0 100.0 100.0

coverage; for grep, 3-way coverage; for sed, 3-way as well.
For gzip, it was sufficient to generate a pairwise covering
array to detect the same faults as the full TSL suite.

Partially answering RQ5, we have found no consistency
between the different prioritisation strategies. This might
be partially due to the small number of faults available (up
to 16 involving multi-valued parameters). However, pair-
wise coverage scaled well in comparison to higher strength
coverage prioritisation criteria.

Since higher strength CAs contain a larger number of test
cases, comparing fault detection rates against percentages
of test suite executed is not fair for lower strength CAs. Ta-
ble 11 presents the fault detection rate information against
actual numbers of test cases executed, allowing direct com-
parison over all CAs: it shows the percentage of detected
faults after multiples of 10 test case executions (CAs smaller
than the given number of executions are marked with -). It
provides a mixed response to the remainder of RQ5: there
is no dominant prioritisation criterion with respect to fault
detection rate after specific number of test executions, as
lower strength CAs produce fault detection rates comparable
to those of higher strengths.

This suggests the following recommendation for best prac-
tice in Prioritised Combinatorial Interaction Testing: given

sufficient time and resources for testing, higher strength CAs
under constraints are feasible and detect more faults. How-
ever, with limited time, lower strength CAs still provide a
reliable fault detection rate.

6. CONCLUSIONS
In this paper we examined the constrained prioritised in-

teraction testing problem for higher strengths, presenting
results for multiple versions of five systems and interaction
strengths from 2-way (pairwise) to 5-way interactions. Han-
dling constraints and prioritisation are both important in
order to make testing practical.

Real systems are typically constrained. Hard constraints
must be accounted for to avoid the generation of inapplicable
or misleading test cases, but soft constraints also can con-
tribute to reducing the test space. Real testers also require
prioritised set of test cases because they may not have time
to simply apply all test cases available to them.

Therefore, to investigate these more practical forms of
Combinatorial Interaction Testing, we report results for con-
strained prioritised interaction testing. More specifically,
we study the relationship between interaction strength and
faults found.

Table 11: Percentage of detected faults up to multiples of 10 test case executions.

Subjects
Gen. Prio. Num. of Test Cases Executed

Subjects
Gen. Prio. Num. of Test Cases Executed

Crit. Crit. 10 20 30 40 50 60 Crit. Crit. 10 20 30 40 50 60

flex

2 2 88.0 90.0 - - - -

flex

4 2 86.0 94.0 94.0 94.0 94.0 98.0
2 3 92.0 92.0 - - - - 4 3 88.0 96.0 96.0 96.0 96.0 98.0
2 4 70.0 90.0 - - - - 4 4 88.0 92.0 92.0 92.0 92.0 96.0
2 5 90.0 92.0 - - - - 4 5 86.0 92.0 92.0 94.0 94.0 98.0

flex

3 2 92.0 94.0 94.0 94.0 94.0 -

flex

5 2 94.0 96.0 96.0 96.0 98.0 98.0
3 3 90.0 94.0 94.0 94.0 94.0 - 5 3 88.0 90.0 92.0 96.0 96.0 96.0
3 4 88.0 94.0 94.0 94.0 94.0 - 5 4 94.0 94.0 94.0 94.0 98.0 98.0
3 5 72.0 74.0 92.0 94.0 94.0 - 5 5 92.0 92.0 94.0 94.0 94.0 94.0

make

2 2 - - - - - -

make

4 2 100.0 100.0 - - - -
2 3 - - - - - - 4 3 100.0 100.0 - - - -
2 4 - - - - - - 4 4 100.0 100.0 - - - -
2 5 - - - - - - 4 5 100.0 100.0 - - - -

make

3 2 100.0 - - - - -

make

5 2 100.0 100.0 100.0 100.0 100.0 100.0
3 3 100.0 - - - - - 5 3 100.0 100.0 100.0 100.0 100.0 100.0
3 4 100.0 - - - - - 5 4 100.0 100.0 100.0 100.0 100.0 100.0
3 5 100.0 - - - - - 5 5 100.0 100.0 100.0 100.0 100.0 100.0

grep

2 2 91.67 91.67 91.67 91.67 - -

grep

4 2 75.0 83.33 83.33 83.33 91.67 91.67
2 3 83.33 83.33 91.67 91.67 - - 4 3 75.0 83.33 91.67 91.67 91.67 91.67
2 4 83.33 83.33 83.33 83.33 - - 4 4 75.0 83.33 91.67 100.0 100.0 100.0
2 5 75.0 83.33 83.33 83.33 - - 4 5 83.33 83.33 91.67 91.67 91.67 91.67

grep

3 2 91.67 91.67 91.67 91.67 91.67 91.67

grep

5 2 75.0 83.33 83.33 83.33 83.33 91.67
3 3 83.33 91.67 91.67 91.67 91.67 91.67 5 3 75.0 83.33 91.67 91.67 91.67 91.67
3 4 83.33 91.67 91.67 91.67 91.67 91.67 5 4 83.33 91.67 91.67 91.67 91.67 91.67
3 5 58.33 83.33 83.33 83.33 83.33 91.67 5 5 75.0 75.0 75.0 75.0 83.33 83.33

sed

2 2 80.95 90.48 90.48 90.48 90.48 -

sed

4 2 71.43 76.19 80.95 85.71 85.71 85.71
2 3 61.9 85.71 85.71 90.48 95.24 - 4 3 61.9 80.95 90.48 95.24 95.24 95.24
2 4 66.67 90.48 95.24 95.24 95.24 - 4 4 71.43 85.71 85.71 90.48 95.24 95.24
2 5 61.9 85.71 90.48 90.48 95.24 - 4 5 71.43 71.43 90.48 90.48 90.48 90.48

sed

3 2 76.19 85.71 85.71 85.71 90.48 90.48

sed

5 2 66.67 95.24 95.24 95.24 95.24 95.24
3 3 42.86 85.71 90.48 90.48 90.48 90.48 5 3 76.19 90.48 95.24 95.24 95.24 95.24
3 4 80.95 85.71 85.71 90.48 95.24 95.24 5 4 80.95 80.95 85.71 90.48 95.24 95.24
3 5 71.43 76.19 76.19 90.48 90.48 90.48 5 5 80.95 80.95 80.95 80.95 85.71 85.71

gzip

2 2 100.0 - - - - -

gzip

4 2 100.0 100.0 100.0 100.0 100.0 100.0
2 3 100.0 - - - - - 4 3 100.0 100.0 100.0 100.0 100.0 100.0
2 4 100.0 - - - - - 4 4 100.0 100.0 100.0 100.0 100.0 100.0
2 5 80.0 - - - - - 4 5 100.0 100.0 100.0 100.0 100.0 100.0

gzip

3 2 80.0 100.0 100.0 100.0 - -

gzip

5 2 100.0 100.0 100.0 100.0 100.0 100.0
3 3 80.0 100.0 100.0 100.0 - - 5 3 100.0 100.0 100.0 100.0 100.0 100.0
3 4 100.0 100.0 100.0 100.0 - - 5 4 100.0 100.0 100.0 100.0 100.0 100.0
3 5 100.0 100.0 100.0 100.0 - - 5 5 100.0 100.0 100.0 100.0 100.0 100.0

The findings we report in this paper challenge the con-
ventional wisdom that higher strength interaction testing is
infeasible; we were able to construct 5-way interaction test
suites in reasonable time. Furthermore, these higher strength
test suites find more faults overall, making them worthwhile
for comprehensive testing. We also find that ordering test
suites for lower strengths performs no worse than higher
strengths in terms of early fault revelation.

We conclude that future work on interaction testing should
exploit the largely untapped potential of higher strength test
suites for comprehensive testing, but for ‘quick and usable’
results (seeking to find the first fault) we may be able to rely
on lower strength prioritisation. To facilitate replication and
to support this future work we make publicly available all
data and results for our experiments.

Our results and test data, together with reports of cov-
erage and fault detection and plots of Average Percentage
of Covering-array Coverage for all cases are contained in
this paper’s companion website: http://www0.cs.ucl.ac.

uk/staff/s.yoo/cit/cit.html.

7. ACKNOWLEDGEMENTS
Myra Cohen is partly supported by the National Science

Foundation, through awards CCF-1161767, CCF-0747009
and by the Air Force Office of Scientific Research through
award FA9550-10-1-0406.

Mark Harman is partly supported by the following grants
from the UK Engineering and Physical Sciences Research
Council (EPSRC): DAASE: Dynamic Adaptive Automated
Software Engineering, GISMO: Genetic Improvement of Soft-
ware for Multiple Objectives, RE-COST: REducing the Cost
of Oracles for Software Testing and CREST: Centre for Re-
search on Evolution, Search and Testing (Platform Grant).
Grants RE-COST and DAASE also partly support both Shin
Yoo, and completely support Justyna Petke.

The authors would also like to acknowledge the Software-
artifact Infrastructure Repository (SIR) [10] which provided
the source code and fault data for the five programs used in
the empirical studies reported in this paper.

8. REFERENCES
[1] R. C. Bryce and C. J. Colbourn. Test prioritization for

pairwise interaction coverage. ACM SIGSOFT Software
Engineering Notes, 30(4):1–7, 2005.

[2] R. C. Bryce and C. J. Colbourn. Prioritized interaction
testing for pair-wise coverage with seeding and
constraints. Information & Software Technology,
48(10):960–970, 2006.

[3] R. C. Bryce and A. M. Memon. Test suite
prioritization by interaction coverage. In A. Hartman,
M. Katara, and A. M. Paradkar, editors, DOSTA,
pages 1–7. ACM, 2007.

[4] R. C. Bryce, S. Sampath, and A. M. Memon.
Developing a single model and test prioritization
strategies for event-driven software. IEEE Trans.
Software Eng., 37(1):48–64, 2011.

[5] R. C. Bryce, S. Sampath, J. B. Pedersen, and
S. Manchester. Test suite prioritization by cost-based
combinatorial interaction coverage. Int. J. Systems
Assurance Engineering and Management, 2(2):126–134,
2011.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

[7] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B.
Mugridge. Constructing test suites for interaction
testing. In Proceedings of the International Conference
on Software Engineering, pages 38–48, May 2003.

[8] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence of
constraints. In D. S. Rosenblum and S. G. Elbaum,
editors, ISSTA, pages 129–139. ACM, 2007.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing
interaction test suites for highly-configurable systems in
the presence of constraints: A greedy approach. IEEE
Trans. Software Eng., 34(5):633–650, 2008.

[10] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[11] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In ISSTA,
pages 102–112, 2000.

[12] B. J. Garvin, M. B. Cohen, and M. B. Dwyer.
Evaluating improvements to a meta-heuristic search for
constrained interaction testing. Empirical Software
Engineering, 16(1):61–102, 2011.

[13] M. Grindal, J. Offutt, and J. Mellin. Handling
constraints in the input space when using combination
strategies for software testing. Technical Report
TR-06-001, University of Skövde, 2006.

[14] B. Hnich, S. D. Prestwich, E. Selensky, and B. M.
Smith. Constraint models for the covering test problem.
Constraints, 11(2-3):199–219, 2006.

[15] D. Kuhn, R. Kacker, and Y. Lei. Automated
combinatorial test methods: Beyond pairwise testing.
Crosstalk, Journal of Defense Software Engineering,
21(6), 2008.

[16] D. R. Kuhn and V. Okun. Pseudo-exhaustive testing
for software. In SEW, pages 153–158. IEEE Computer
Society, 2006.

[17] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software testing.
IEEE Trans. Software Eng., 30(6):418–421, 2004.

[18] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and
J. Lawrence. IPOG/IPOG-D: efficient test generation
for multi-way combinatorial testing. Softw. Test., Verif.
Reliab., 18(3):125–148, 2008.

[19] S. Manchester, N. Samant, R. Bryce, S. Sampath, D. R.
Kuhn, and R. Kacker. Applying higher strength
combinatorial criteria to test prioritization: a case
study. Journal of Combinatorial Mathematics and
Combinatorial Computing. To appear.

[20] T. Nanba, T. Tsuchiya, and T. Kikuno. Using
satisfiability solving for pairwise testing in the presence
of constraints. IEICE Transactions, 95-A(9):1501–1505,
2012.

[21] C. Nie and H. Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43(2):11, 2011.

[22] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating functional tests.
Commun. ACM, 31(6):676–686, 1988.

[23] X. Qu and M. B. Cohen. A study in prioritization for
higher strength combinatorial testing. The 2nd
International Workshop on Combinatorial Testing,
2013.

[24] X. Qu, M. B. Cohen, and G. Rothermel.
Configuration-aware regression testing: an empirical
study of sampling and prioritization. In Proceedings of
the International Symposium On Software Testing and
Analysis, pages 75–86, 2008.

[25] X. Qu, M. B. Cohen, and K. M. Woolf. Combinatorial
interaction regression testing: A study of test case
generation and prioritization. In ICSM, pages 255–264.
IEEE, 2007.

[26] S. Sampath, R. C. Bryce, G. Viswanath, V. Kandimalla,
and A. G. Koru. Prioritizing user-session-based test
cases for web applications testing. In ICST, pages
141–150. IEEE Computer Society, 2008.

[27] P. Schroeder, P. Bolaki, and V. Gopu. Comparing the
fault detection effectiveness of n-way and random test
suites. In Proceedings of Empirical Software
Engineering, pages 49–59, August 2004.

[28] L. Shi, C. Nie, and B. Xu. A software debugging
method based on pairwise testing. In International
Conference on Computational Science (3), pages
1088–1091, 2005.

[29] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 31(1):20–34, Jan 2006.

[30] S. Yoo and M. Harman. Regression testing
minimisation, selection and prioritisation: A survey.
Software Testing, Verification, and Reliability,
22(2):67–120, March 2012.

