
Local Consistency and SAT-Solvers

Justyna Petke and Peter Jeavons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, UK

{justyna.petke,Peter.Jeavons}@comlab.ox.ac.uk

Abstract. In this paper we show that the power of using k-consistency
techniques in a constraint problem is precisely captured by using a partic-
ular inference rule, which we call positive-hyper-resolution, on the direct
Boolean encoding of the CSP instance. We also show that current clause-
learning SAT-solvers will deduce any positive-hyper-resolvent of a fixed
size from a given set of clauses in polynomial expected time. We combine
these two results to show that, without being explicitly designed to do
so, current clause-learning SAT-solvers efficiently simulate k-consistency
techniques, for all values of k. We then give some experimental results
to show that this feature allows clause-learning SAT-solvers to efficiently
solve certain families of CSP instances which are challenging for conven-
tional CP solvers.

1 Introduction

One of the oldest and most central ideas in constraint programming, going right
back to Montanari’s original paper in 1974 [22], is the idea of using local consis-
tency techniques to prune the search space [11]. The idea of arc-consistency was
introduced in [21], and generalised to k-consistency in [16]. Modern constraint
solvers generally employ specialised propagators to prune the domains of vari-
ables to achieve some form of generalised arc-consistency, but do not attempt to
enforce higher levels of consistency, such as path-conistency.

By contrast, the software tools developed to solve propositional satisfiability
problems, known as SAT-solvers, generally use logical inference techniques, such
as unit propagation and clause-learning, to prune the search space.

One of the most surprising empirical findings of the last few years has been the
remarkably good performance of general SAT-solvers in solving constraint sat-
isfaction problems. To apply such tools to a constraint satisfaction problem one
first has to translate the instance into a set of clauses using some form of Boolean
encoding [26,27]. Such encoding techniques tend to obscure the structure of the
original problem, and may introduce a very large number of Boolean variables
and clauses to encode quite easily-stated constraints. Nevertheless, in quite a few
cases, such approaches have out-performed more traditional constraint solving
tools [4,3,24].

In this paper we draw on a number of recent analytical approaches to try
to account for the good performance of general SAT-solvers on many forms of

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 398–413, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Local Consistency and SAT-Solvers 399

constraint problems. Building on the results of [6,7,18], we show that the power
of using k-consistency techniques in a constraint problem is precisely captured
by using a single inference rule in a standard Boolean encoding of that problem.
We refer to this inference rule as positive-hyper-resolution, and show that any
conclusions deduced by enforcing k-consistency can be deduced by a sequence
of positive-hyper-resolution inferences involving Boolean clauses in the original
instance and positive-hyper-resolvents with at most k literals. Furthermore, by
using the approach of [5] and [25], we show that current clause-learning SAT-
solvers will make all such deductions in polynomial expected time, even with a
random branching strategy. Hence we show that, although they are not explicitly
designed to do so, running a clause-learning SAT-solver on the simplest encoding
of a constraint problem efficiently simulates the effects of enforcing k-consistency
for all values of k.

2 Preliminaries

Definition 2.1. An instance of the Constraint Satisfaction Problem (CSP)
is specified by a triple (V, D, C), where

– V is a finite set of variables;
– D = {Dv | v ∈ V } where each set Dv is the set of possible values for the

variable v, called the domain of v;
– C is a finite set of constraints. Each constraint in C is a pair (Ri, Si) where

• Si is an ordered list of mi variables, called the constraint scope;
• Ri is a relation over Dv of arity mi, called the constraint relation.

Given any CSP instance (V, D, C), a partial assignment is a mapping f from some
subset W of V to

⋃
D such that f(v) ∈ Dv for all v ∈ W . A partial assignment

satisfies the constraints of the instance if, for all (R, (v1, v2, . . . , vm)) ∈ C such
that vj ∈ W for j = 1, 2, . . . , m, we have (f(v1), f(v2) . . . , f(vm)) ∈ R. A partial
assignment that satisfies the constraints of an instance is called a partial solution1

to that instance. The set of variables on which a partial assignment f is defined
is called the domain of f , and denoted Dom(f). A partial solution f ′ extends a
partial solution f if Dom(f ′) ⊇ Dom(f) and f ′(v) = f(v) for all v ∈ Dom(f).
A partial solution with domain V is called a solution.

One way to derive new information about a CSP instance, which may help
to determine whether or not it has a solution, is to use some form of constraint
propagation to enforce some level of local consistency [11]. For example, it is
possible to use the notion of k-consistency, as in the next definition. We note
that there are several different but equivalent ways to define and enforce k-
consistency described in the literature [11,13,16]. Our presentation follows [6],
which is inspired by the notion of existential k-pebble games introduced by
Kolaitis and Vardi [20].

1 Note that not all partial solutions extend to solutions.



400 J. Petke and P. Jeavons

Definition 2.2. [6] For any CSP instance P , the k-consistency closure of P
is the set H of partial assignments which is obtained by the following algorithm:

1. Let H be the collection of all partial solutions f of P with |Dom(f)| ≤ k+1;
2. For every f ∈ H with |Dom(f)| ≤ k and every variable v of P , if there is

no g ∈ H such that g extends f and v ∈ Dom(g), then remove f and all its
extensions from H;

3. Repeat step 2 until H is unchanged.

Note that computing the k-consistency closure according to this definition cor-
responds precisely to enforcing strong k + 1-consistency according to the defini-
tions in [11,13,16].

Throughout this paper, we shall assume that the domain of possible values
for each variable in a CSP instance is finite. It is straightforward to show that
for any fixed k, and fixed maximum domain size, the k-consistency closure of an
instance P can be computed in polynomial time [6,13].

Note that any solution to P must extend some element of the k-consistency
closure of P . Hence, if the k-consistency closure of P is empty, for some k, then P
has no solutions. The converse is not true in general, but it holds for certain spe-
cial cases, such as the class of instances whose structure has tree-width bounded
by k [6], or the class of instances whose constraints are “0/1/all relations”, as
defined in [14], or “connected row-convex” relations, as defined in [15]. For these
special kinds of instances it is possible to determine in polynomial time whether
or not a solution exists simply by computing the k-consistency closure, for an ap-
propriate choice of k. Moreover, if a solution exists, then it can be constructed
in polynomial time by selecting each variable in turn, assigning each possible
value, re-computing the k-consistency closure, and retaining an assignment that
gives a non-empty result.

The following result gives a useful condition for determining whether the k-
consistency closure of a CSP instance is empty.

Lemma 2.3. [20] The k-consistency closure of a CSP instance P is non-empty
if and only if there exists a non-empty family H of partial solutions to P such
that:

1. If f ∈ H, then |Dom(f)| ≤ k + 1;
2. If f ∈ H and f extends g, then g ∈ H;
3. If f ∈ H, |Dom(f)| ≤ k, and v /∈ Dom(f) is a variable of P , then there is

some g ∈ H such that g extends f and v ∈ Dom(g).

A set of partial solutions H satisfying the conditions described in Lemma 2.3 is
sometimes called a strategy for the instance P [9,20].

One possible approach to solving a CSP instance is to encode it as a propo-
sitional formula over a suitable set of Boolean variables, and then use a pro-
gram to decide the satisfiability of that formula. Many such programs, known
as SAT-solvers, are now available and can often efficiently handle problems with
thousands, or sometimes even millions, of Boolean variables [29].



Local Consistency and SAT-Solvers 401

Several different ways of encoding a CSP instance as a propositional for-
mula have been proposed [26,27]. Here we consider only a very straightforward
encoding, known as the direct encoding. In this encoding, for a CSP instance
P = (V, D, C) we introduce a set of Boolean variables of the form xvi for each
v ∈ V and each i ∈ Dv. The Boolean variable xvi will be assigned True if and
only if the original variable v is assigned the value i. To ensure that at least
one value is assigned to each variable v, we include the clause

∨
i∈Dv

xvi. To en-
sure that at most one value is assigned to each variable v, we include all binary
clauses of the form ¬xvi ∨ ¬xvj for all i, j ∈ Dv with i �= j. Finally, to ensure
that each constraint (R, S) ∈ C is satisfied, we include a clause

∨
v∈S ¬xvf(v) for

each partial assignment f that does not satisfy the constraint.
Given any set of clauses we can often deduce further clauses by applying

certain inference rules. For example, if we have two clauses of the form C1 ∨ x
and C2 ∨ ¬x, for some (possibly empty) clauses C1, C2, and some variable x,
then we can deduce the clause C1 ∨ C2. This form of inference is known as
propositional resolution; the resultant clause is called the resolvent [12].

In the next section, we shall establish a close connection between the k-
consistency algorithm and a form of inference called positive-hyper-resolution,
which we define as follows:

Definition 2.4. If we have a collection of clauses of the form Ci ∨ ¬xi for
i = 1, 2, . . . , r, where each xi is a Boolean variable, and a purely positive clause
x1 ∨ x2 ∨ · · · ∨ xr, then we can deduce the clause C1 ∨ C2 ∨ · · · ∨ Cr.

We call this form of inference positive-hyper-resolution and the resultant
clause C1 ∨ C2 ∨ · · · ∨ Cr the positive-hyper-resolvent.

Note that positive-hyper-resolution is equivalent to a sequence of standard reso-
lution steps. The reason for introducing positive-hyper-resolution is that it allows
us to deduce the clauses we need in a single step without needing to introduce
intermediate clauses (which may be longer than the positive-hyper-resolvent).
By restricting the size of the clauses we use in this way we are able to obtain
better performance bounds for the SAT-solvers.

A positive-hyper-resolution derivation of a clause C from a set of initial clauses
Φ is a sequence of clauses C1, C2, . . . , Cm, where Cm = C and each Ci follows by
the positive-hyper-resolution rule from some collection of clauses, each of which
is either contained in Φ or else occurs earlier in the sequence. The width of this
derivation is defined to be the maximum size of any of the clauses Ci. If Cm is
the empty clause, then we say that the derivation is a positive-hyper-resolution
refutation of Φ.

3 k-Consistency and Positive-Hyper-Resolution

It has been pointed out by many authors that enforcing local consistency is
a form of inference on relations analogous to the use of the resolution rule on
clauses [8,11,12,18,19]. On the direct encoding of a CSP instance, our positive-
hyper-resolution rule corresponds to the “nogood resolution” rule defined in [18].



402 J. Petke and P. Jeavons

The precise strength of the standard resolution inference rule on the direct en-
coding of a CSP instance was considered in [26], where it was shown that unit
resolution (where one of the clauses being resolved consists of a single literal),
corresponds to enforcing a weak form of local consistency known as forward
checking. In [18] it was pointed out that the standard resolution rule with no
restriction on clause length is able to simulate all the inferences made by a
k-consistency algorithm. In [7] it was shown that the standard resolution rule
restricted to clauses with at most k literals can be characterised in terms of the
Boolean existential (k + 1)-pebble game. It follows that on CSP instances with
Boolean domains this form of inference corresponds to enforcing k-consistency.

Here we extend these results a little, to show that for CSP instances with
arbitrary finite domains, applying the positive-hyper-resolution rule on the di-
rect encoding to obtain clauses with at most k literals corresponds precisely to
enforcing k-consistency. Note that the bound, k, that we impose on the size of
the positive-hyper-resolvents, is independent of the domain size. In other words,
using this inference rule we only need to consider inferred clauses of size at most
k, even though we make use of clauses in the encoding whose size is equal to the
domain size, which may be arbitrarily large.

Theorem 3.1. The k-consistency closure of a CSP instance P is empty if and
only if its direct encoding as a set of clauses has a positive-hyper-resolution
refutation of width at most k.

The proof is broken down into two lemmas inspired by Lemmas 2 and 3 in [7].

Lemma 3.2. Let P be a CSP instance, and let Φ be its direct encoding as a
set of clauses. If Φ has no positive-hyper-resolution refutation of width k or less,
then the k-consistency closure of P is non-empty.

Proof. Let V be the set of variables of P , where each v ∈ V has domain Dv,
and let X = {xvi | v ∈ V, i ∈ Dv} be the corresponding set of Boolean variables
in Φ. Note that the clauses in Φ are either of the form

∨
i∈Dv

xvi for some
v ∈ V , or else consist entirely of negative literals. Let Γ be the set of all clauses
having a positive-hyper-resolution derivation from Φ of width at most k. By the
definition of positive-hyper-resolution and the observation about Φ, every clause
in Γ consists entirely of negative literals.

Now let H be the set of all partial assignments for P with domain size at
most k + 1 that do not falsify any clause in Φ ∪ Γ (under the direct encoding).

Consider any element f ∈ H . By the definition of H , f does not falsify any
clause of Φ, so by the definition of the direct encoding, every element of H is
a partial solution to P . Furthermore, if f extends g, then g is also an element
of H , because g makes fewer assignments than f and hence cannot falsify any
additional clauses to f .

If Φ has no positive-hyper-resolution refutation of width at most k, then Γ
does not contain the empty clause, so H contains (at least) the partial solution
with empty domain, and hence H is not empty.

Now let f be any element of H with |Dom(f)| ≤ k and let v be any variable
of P that is not in Dom(f). For any partial assignment g that extends f and



Local Consistency and SAT-Solvers 403

has Dom(g) = Dom(f) ∪ {v} we have that either g ∈ H or else there exists a
clause in Φ ∪ Γ that is falsified by g. Since g is a partial assignment, any clause
C in Φ∪Γ that is falsified by g, must consist entirely of negative literals. Hence
the literals of C must either be of the form ¬xwf(w) for some w ∈ Dom(f), or
else ¬xvg(v). Moreover, any such clause must contain the literal ¬xvg(v), or else
it would already be falsified by f .

Assume, for contradiction, that H does not contain any assignment g that
extends f and has Dom(g) = Dom(f)∪{v}. In that case, we have that, for each
i ∈ Dv, Φ ∪ Γ contains a clause Ci consisting of negative literals of the form
¬xwf(w) for some w ∈ Dom(f), together with the literal ¬xvi. Now consider
the clause, C, which is the positive-hyper-resolvent of these clauses Ci and the
clause

∨
i∈Dv

xvi. The clause C consists entirely of negative literals of the form
¬xwf(w) for some w ∈ Dom(f), so it has width at most |Dom(f)| ≤ k, and
hence is an element of Γ . However C is falsified by f , which contradicts the
choice of f . Hence we have shown that for all f ∈ H with |Dom(f)| ≤ k, and
for all v ∈ V , there is some g ∈ H such that g extends f and v ∈ Dom(g).

We have shown that H satisfies all the conditions required by Lemma 2.3, so
we conclude that the k-consistency closure of P is non-empty. �	

Lemma 3.3. Let P be a CSP instance, and let Φ be its direct encoding as a
set of clauses. If the k-consistency closure of P is non-empty, then Φ has no
positive-hyper-resolution refutation of width k or less.

Proof. Let V be the set of variables of P , where each v ∈ V has domain Dv, and
let X = {xvi | v ∈ V, i ∈ Dv} be the corresponding set of Boolean variables in Φ.

By Lemma 2.3, if the k-consistency closure of P is non-empty, then there exists
a non-empty set H of partial solutions to P which satisfies the three properties
described in Lemma 2.3.

Now consider any positive-hyper-resolution derivation Γ from Φ of width at
most k. We show by induction on the length of this derivation that the elements
of H do not falsify any clause in the derivation. First we note that the elements
of H are partial solutions, so they satisfy all the constraints of P , and hence do
not falsify any clause of Φ. This establishes the base case. Assume, for induction,
that all clauses in the derivation earlier than some clause C are not falsified by
any element of H .

Since the clauses in Φ are either of the form
∨

i∈Dv
xvi for some v ∈ V , or else

consist entirely of negative literals, it follows that any clause in the derivation
obtained by positive-hyper-resolution consists entirely of negative literals.

If f ∈ H falsifies C ∈ Γ , then the literals of C must all be of the form ¬xvf(v),
for some v ∈ Dom(f). Hence we may assume, without loss of generality, that
C is the positive-hyper-resolvent of a set of clauses Δ = {Ci ∨ ¬xvi | i ∈ Dv}
and the clause

∨
i∈Dv

xvi. Since the width of the derivation is at most k, C
contains at most k literals, and hence we may assume that |Dom(f)| ≤ k. But
then, by the choice of H , there must exist some extension g of f in H such that
v ∈ Dom(g). Any such g will falsify some clause in Δ, which contradicts our
inductive hypothesis. Hence no f ∈ H falsifies C, so C cannot be empty.



404 J. Petke and P. Jeavons

It follows that no positive-hyper-resolution derivation of width at most k can
contain the empty clause. �	

4 Positive-Hyper-Resolution and SAT-Solvers

In this section we adapt the machinery of [5] and [25] to show that for any fixed
k, the existence of a positive-hyper-resolution refutation of width k is likely to
be discovered by a SAT-solver in polynomial-time using standard clause learning
and restart techniques, even with a totally random branching strategy.

Note that previous results about the power of clause-learning SAT-solvers
have generally assumed an optimal branching strategy [10,25] - they have shown
what solvers are potentially capable of doing, rather than what they are likely
to achieve in practice. The exception is [5], which gives an analysis of likely
behaviour, but relies on the existence of a standard resolution proof of bounded
width. Here we show that the results of [5] can be extended to hyper-resolution
proofs, which can be much shorter and narrower than their associated standard
resolution proofs.

We will make use of the following terminology from [5]. For a clause C, a
Boolean variable x, and a truth value a ∈ {0, 1}, the restriction of C by the
assignment x = a, denoted C|x=a, is defined to be the constant 1, if the as-
signment satisfies the clause, or else the clause obtained by deleting from C any
literals involving the variable x. For any sequence of assignments S of the form
(x1 = a1, x2 = a2, . . . , xr = ar) we write C|S to denote the result of computing
the restriction of C by each assignment in turn. If C|S is empty, then we say
that the assignments in S falsify the clause C. For a set of clauses Δ, we write
Δ|S to denote the set {C|S | C ∈ Δ} \ {1}.

Most current SAT-solvers operate in the following way [5,25]. They maintain
a database of clauses Δ and a current state S, which is a partial assignment of
truth values to the Boolean variables in the clauses of Δ. A high-level description
of the algorithms used to update the clause database and the state, derived from
the description given in [5], is shown in Algorithm 1 (a similar framework, using
slightly different terminology, is given in [25]).

Now consider a run of the algorithm shown in Algorithm 1, started with the
initial database Δ, and the empty state S0, until it either halts or discovers a
conflict (i.e., ∅ ∈ Δ|S). Such a run is called a round started with Δ, and we repre-
sent it by the sequence of states S0, . . . , Sm, that the algorithm maintains. Note
that each state Si extends the state Si−1 by a single assignment to a Boolean
variable, which may be either a decision assignment or an implied assignment.

An initial segment S0, S1, . . . , Sr of a round started with Δ is called an incon-
clusive partial round if Δ|Sr is non-empty, does not contain the empty clause,
and does not contain any unit clauses. Note that for any clause C ∈ Δ, if
S0, S1, . . . , Sr is an inconclusive partial round started with Δ, and Sr falsifies all
the literals of C except one, then it must satisfy the remaining literal, and hence
satisfy C. This property of clauses is captured by the following definition.



Local Consistency and SAT-Solvers 405

Algorithm 1. Framework for typical clause-learning SAT-solver
Input: Δ : set of clauses;

S : partial assignment of truth values to variables.

1. while Δ|S �= ∅ do
2. if ∅ ∈ Δ|S then Conflict
3. if S contains no decision assignments then
4. print “UNSATISFIABLE” and halt
5. else
6. apply the learning scheme to add a new clause to Δ
7. if restart policy says restart then
8. set S = ∅
9. else

10. select most recent conflict-causing unreversed decision assignment in S
11. reverse this decision, and remove all later assignments from S
12. end if
13. end if
14. else if {l} ∈ Δ|S for some literal l then Unit Propagation
15. add to S the implied assignment x = a which satisfies l
16. else Decision
17. apply the branching strategy to choose a decision assignment x = a
18. add this decision assignment to S
19. end if
20. end while
21. print “SATISFIABLE” and output S

Definition 4.1. [5] Let Δ be a set of clauses, C a non-empty clause, and l a
literal of C. We say that Δ absorbs C at l if every inconclusive partial round
started with Δ that falsifies C \ {l} satisfies C.

If Δ absorbs C at each literal l in C, then we simply say that Δ absorbs C.

Note that a clause that is not absorbed by a set of clauses Δ is referred to in [25]
as 1-empowering with respect to Δ.

Lemma 4.2. [5] Let Δ and Δ′ be sets of clauses, and let C and C′ be non-empty
clauses.

1. If C belongs to Δ, then Δ absorbs C;
2. If C ⊆ C′ and Δ absorbs C, then Δ absorbs C′;
3. If Δ ⊆ Δ′ and Δ absorbs C, then Δ′ absorbs C;
4. If Δ ⊆ Δ′′ and Δ absorbs C and Δ entails Δ′′, then Δ′′ absorbs C.

To allow further analysis, we need to make some assumptions about the learning
scheme, the restart policy and the branching strategy used by our SAT-solver.

The learning scheme is a rule that creates and adds a new clause to the
database whenever there is a conflict. Such a clause is called a conflict clause, and
each of its literals is falsified by some assignment in the current state. If a literal is
falsified by the i-th decision assignment, or some later implied assignment before



406 J. Petke and P. Jeavons

(i+1)-th decision assignment, it is said to be falsified at level i. If a conflict clause
contains exactly one literal that is falsified at the maximum possible level, it is
called an asserting clause [28,25].

Assumption 1. The learning scheme chooses an asserting clause.

Most learning schemes in current use satisfy this assumption [28,25], including
the learning schemes called “1UIP” and “Decision” described in [28].

We make no particular assumption about the restart policy. However, our
main result is phrased in terms of a bound on the expected number of restarts.
If the algorithm restarts after r conflicts, our bound on the expected number of
restarts can simply be multiplied by r to get a bound on the expected number
of conflicts. This means that the implications will be strongest if the algorithm
restarts immediately after each conflict. In that case, r = 1 and our bound will
also bound the expected number of conflicts. Existing SAT-solvers typically do
not employ such an aggressive restart policy, but we note the remark in [25]
that “there has been a clear trend towards more and more frequent restarts for
modern SAT solvers”.

The branching strategy determines which decision assignment is chosen after
an inconclusive partial round. In most current SAT solvers the strategy is based
on some heuristic measure of variable activity, which is related to the occurrence
of a variable in a conflict clause [23]. However, to simplify the probabilistic
analysis, we will make the following assumption.

Assumption 2. The branching strategy chooses a variable uniformly at random
amongst the unassigned variables, and assigns it the value TRUE.

As noted in [5], the same analysis we give below can also be applied to any
other branching strategy that randomly chooses between making a heuristic-
based decision or a randomly-based decision, provided that the second case has
non-negligible probability p. In that case, the bounds we obtain on the expected
number of restarts can simply be multiplied by p−k.

An algorithm that behaves according to the description in Algorithm 1, and
satisfies the assumptions above, will be called a standard randomised SAT-solver.

Theorem 4.3. If a set of non-empty clauses Δ over n Boolean variables has a
positive-hyper-resolution refutation of width k and length m, where all derived
clauses contain only negative literals, then the expected number of restarts re-
quired by a standard randomised SAT-solver to discover that Δ is unsatisfiable
is less than mnk2

(
n
k

)
.

Proof. Let C1, C2, . . . , Cm be a positive-hyper-resolution refutation of width k
from Δ, where each Ci contains only negative literals, and Cm is the first oc-
currence of the empty clause. Since each clause in Δ is non-empty, Cm must
be derived by positive-hyper-resolution from some collection of negative literals
¬x1,¬x2, . . .¬xd and a purely positive clause x1 ∨ x2 ∨ · · ·xd.

Now consider a standard SAT-solver started with database Δ. Once all of the
unit clauses ¬xi are absorbed by the current database, then, by Definition 4.1,



Local Consistency and SAT-Solvers 407

any further inconclusive partial round of the algorithm must assign all variables
xi false, and hence falsify the clause x1∨x2∨· · ·xd. Since this happens even when
no decision assignments are made, the SAT-solver will report unsatisfiability.

It only remains to bound the expected number of restarts required until each
clause Ci is absorbed, for 1 ≤ i < m. Let each Ci be the positive-hyper-resolvent
of clauses Ci1, Ci2, . . . , Cid, each of the form C′

ij ∨ ¬xj , together with a purely
positive clause Ci0 = x1 ∨ x2 ∨ · · · ∨ xd from Δ. Assume also that each clause
Cij is absorbed by Δ.

If Δ absorbs Ci, then no further learning or restarts are needed, so assume
now that Δ does not absorb Ci. By Definition 4.1, this means that there exists
some literal l and some inconclusive partial round R started with Δ, that falsifies
Ci \ {l} and does not satisfy Ci. Note that R must leave the literal l unassigned,
because one assignment would satisfy Ci and the other would force all of the
literals ¬xj used in the positive-hyper-resolution step to be satisfied, because
each Cij is absorbed by Δ, so Ci0 would be falsified, contradicting the fact that
R is inconclusive.

Hence, if the branching strategy chooses to falsify the literals Ci\{l} whenever
it has a choice, it will construct an inconclusive partial round R′ where l is
unassigned (since all the decision assignments in R′ are also assigned the same
values in R, any implied assignments in R′ must also be assigned the same
values2 in R, but we have shown that R leaves l unassigned). If the branching
strategy then chooses to falsify the remaining literal l of Ci, then the algorithm
would construct a complete round R′′ where Ci0 is falsified, and all decision
assignments falsify literals in Ci. Hence, by Assumption 1, the algorithm would
then learn some asserting clause C′ and add it to Δ to obtain a new set Δ′.

Since C′ is an asserting clause, it contains exactly one literal, l′, that is falsified
at the highest level in R′′. Hence, any inconclusive partial round R started with
Δ′ that falsifies Ci \ {l} will falsify all but one literal of C′, and hence force
the remaining literal l′ to be satisfied, by unit propagation. If this new implied
assignment for l′ propagates to force l to be true, then R satisfies Ci, and hence
Δ′ absorbs Ci at l. If not, then the branching strategy can once again choose to
falsify the remaining literal l of Ci, which will cause a new asserting clause to
be learnt and added to Δ. Since each new asserting clause forces a new literal
to be satisfied after falsifying Ci \ {l} this process can be repeated fewer than n
times before it is certain that Δ′ absorbs Ci at l.

Now consider any sequence of k random branching choices. If the first k − 1
of these each falsify a literal of Ci \ {l}, and the final choice falsifies l, then we
have shown that the associated round will reach a conflict, and add an asserting
clause to Δ. With a random branching strategy, as described in Assumption 2,
the probability that this happens is at least the probability that the first k − 1
random choices consist of a fixed set of variables (in some order), and the final
choice is the variable associated with l. The number of random choices that fall
in a fixed set follows the hypergeometric distribution, so the overall probability
of this is 1

( n
k−1)

1
(n−k+1) = 1/(k

(
n
k

)
).

2 See Lemma 3 of [5] for a more formal statement and proof.



408 J. Petke and P. Jeavons

To obtain an upper bound on the expected number of restarts, consider the
worst case where we require n asserting clauses to be added to absorb each clause
Ci at each of its k literals l. Since we require only an upper bound, we will treat
each round as an independent trial with success probability p = 1/(k

(
n
k

)
), and

consider the worst case where we have to achieve (m−1)nk separate consecutive
successes to ensure that Ci for 1 ≤ i < m is absorbed. In this case the total
number of restarts will follow a negative binomial distribution, with expected
value (m − 1)nk/p. Hence in all cases the expected number of restarts is less
than mnk2

(
n
k

)
. �	

A tighter bound on the number of restarts can be obtained if we focus on the
Decision learning scheme [5,28], as the next result indicates.

Theorem 4.4. If a set of non-empty clauses Δ over n Boolean variables has a
positive-hyper-resolution refutation of width k and length m, where all derived
clauses contain only negative literals, then the expected number of restarts re-
quired by a standard randomised SAT-solver using the Decision learning scheme
to discover that Δ is unsatisfiable is less than m

(
n
k

)
.

Proof. The proof is similar to the proof of Theorem 4.3, except that the Deci-
sion learning scheme has the additional feature that the literals in the chosen
conflict clause falsify a subset of the current decision assignments. Hence in the
situation we consider, where the decision assignments all falsify literals of some
clause Ci (in any order), this learning scheme will learn a subset of Ci, and
hence immediately absorb Ci, by Lemma 4.2(1,2). Hence the maximum number
of learnt clauses required is reduced from (m− 1)nk to (m− 1), and the proba-
bility is increased from 1/(k

(
n
k

)
) to 1/

(
n
k

)
, giving the tighter bound. �	

Note that a similar argument shows that the standard deviation of the number
of restarts is less than the standard deviation of a negative binomial distribution
with parameters m and 1/

(
n
k

)
, which is less than

√
m

(
n
k

)
. Hence, by Chebyshev’s

inequality (one-tailed version), the probability that a standard randomised SAT-
solver using the decision learning scheme will discover that Δ is unsatisfiable
after (m +

√
m)

(
n
k

)
restarts is greater than 1/2.

5 k-Consistency and SAT-Solvers

By combining Theorem 3.1 and Theorem 4.4 we obtain the following result
linking k-consistency and SAT-solvers.

Theorem 5.1. If the k-consistency closure of a CSP instance P is empty, then
the expected number of restarts required by a standard randomised SAT-solver
using the Decision learning scheme to discover that the direct encoding of P is
unsatisfiable is O(n2kd2k), where n is the number of variables in P and d is the
maximum domain size.



Local Consistency and SAT-Solvers 409

Proof. The length m of a positive-hyper-resolution refutation of width k is
bounded by the number of possible no-goods of length at most k for P , which
is

∑k
i=1 di

(
n
i

)
. Hence, by Theorem 3.1 and Theorem 4.4 we obtain a bound of(∑k

i=1 di
(

n
i

)) (
nd
k

)
, which is O(n2kd2k). �	

Hence a standard randomised SAT-solver with a suitable learning strategy will
decide the satisfiability of any CSP instance with tree-width k with O(n2kd2k)
expected restarts, even when it is set to restart immediately after each conflict.
In particular, the satisfiability of any tree-structured CSP instance (i.e., with
tree-width 1) will be decided by such a solver with at most O(n2d2) expected
conflicts, which is comparable with the growth rate of an optimal arc-consistency
algorithm. Note that this result cannot be obtained directly from [5], because
the direct encoding of an instance with tree-width k is a set of clauses whose
tree-width may be as high as dk.

Moreover, a standard randomised SAT-solver will decide the satisfiability of
any CSP instance, with any structure, within the same polynomial bounds, if
the constraint relations satisfy certain algebraic properties that ensure bounded
width [9]. Examples of such constraint types include the “0/1/all relations”,
defined in [14], and the “connected row-convex” relations, defined in [15], which
can both be decided by 2-consistency.

6 Experimental Results

The bounds we obtain in this paper are very conservative, and are likely to be
met very easily in practice.

To investigate how an existing SAT-solver performs in practice, we measured
the performance of the MiniSAT solver [2] version 2-070721 on a family of CSP
instances that can be decided by a fixed level of consistency. We ran the exper-
iments with preprocessing switched off, in order to get a solver that uses only
unit propagation and conflict-directed learning with restarts.

We also modified the MiniSAT solver to follow the random branching strategy
described above. Our modified solver does not delete any learnt clauses and uses
an extreme restart policy that makes it restart whenever it encounters a conflict.
We refer to this modified solver as simple-MiniSAT.

For all of the results, the times given are elapsed times on a Lenovo 3000
N200 laptop with an Intel Core 2 Duo processor running at 1.66GHz with 2GB
of RAM. For our simple-MiniSAT solver, each generated instance was run three
times and the mean times and mean number of restarts are shown.

Example 6.1. We consider a family of instances specified by two parameters, w
and d. They have ((d − 1) ∗ w + 2) ∗ w variables arranged in groups of size w,
each with domain {0, ..., d− 1}. We impose a constraint of arity 2w on each pair
of successive groups, requiring that the sum of the values assigned to the first of
these two groups should be strictly smaller than the sum of the values assigned
to the second. This ensures that the instances generated are unsatisfiable. An



410 J. Petke and P. Jeavons

instance with w = 2 and d = 2 is shown diagrammatically and defined using the
specification language MiniZinc [1] in Figure 1.

The structure of these instances has a simple tree-decomposition as a path of
nodes, with each node corresponding to a constraint scope. Hence the tree-width
of these instances is 2w−1, and they can be shown to be unsatisfiable by enforcing
2w − 1 consistency. However, these instances cannot be solved efficiently using
standard propagation algorithms which only prune individual domain values.

(a) Graphical representation.

array[1..4] of var 0..1 : X1;
array[1..4] of var 0..1 : X2;
constraint
forall(i in 1..3)(
X1[i] + X2[i]
<
X1[i + 1] + X2[i + 1]);
solve satisfy;

(b) Specification in MiniZinc.

Fig. 1. An example of a CSP instance with w = 2, d = 2 and tree-width = 3

Table 1. Performance of CP-solvers and SAT-solvers on instances from Example 6.1

group domain CSP Minion G12 MiniSAT simple- simple-
size size variables MiniSAT MiniSAT
(w) (d) (n) (sec) (sec) (sec) (sec) restarts

2 2 8 0.010 0.238 0.004 0.004 17
2 3 12 0.012 0.246 0.007 0.008 175
2 4 16 0.026 0.273 0.021 0.038 866
2 5 20 0.043 0.525 0.052 0.146 2 877
2 6 24 1.040 6.153 0.157 0.626 7 582
2 7 28 47.554 205.425 0.433 2.447 17 689
2 8 32 > 20 min > 20 min 1.273 10.169 35 498
2 9 36 > 20 min > 20 min 3.301 44.260 65 598
2 10 40 > 20 min > 20 min 8.506 135.215 108 053

3 2 15 0.012 0.240 0.005 0.008 176
3 3 24 0.370 1.120 0.103 0.377 4 839
3 4 33 > 20 min > 20 min 1.942 22.357 43 033
3 5 42 > 20 min > 20 min 29.745 945.202 209 094

Table 1 shows the runtimes of simple-MiniSAT and the original MiniSAT solver
on this family of instances, along with times for two state-of-the-art CP solvers:
Minion [17] and G12 [1]. Note that MiniSAT is remarkably effective in solving
these instances, compared to the CP solvers, even though they are encoded into a
large number of clauses with a much larger tree-width than the original instance.
Although our modified SAT solver takes a little longer, it still performs better on



Local Consistency and SAT-Solvers 411

these instances than the CP solvers and the number of restarts (and hence the
number of conflicts) is much lower than the polynomial upper bound obtained
in Theorem 5.1 (see Figure 2).

Fig. 2. Log-log plot of the number of restarts/conflicts used by simple-MiniSAT on
the instances from Example 6.1. Circles show values for w = 2; squares show values
for w = 3; solid lines show the functions d2

(
n/2
3

)
(lower line) and d4

(
n/3
3

)
(upper line).

Note that these experimentally determined growth functions are much lower than the
worst-case bound calculated in Theorem 5.1.

7 Conclusion

We have shown that the notion of k-consistency can be precisely captured by
a single inference rule on the direct encoding of a CSP instance, restricted to
deriving only clauses with at most k literals. We used this to show that a clause-
learning SAT-solver with a purely random branching strategy will simulate the
effect of enforcing k-consistency in expected polynomial time, for all fixed k.
This is sufficient to ensure that such solvers are able to solve certain problem
families much more efficiently than conventional CP solvers relying on GAC-
propagation.

In principle clause-learning SAT-solvers can also do much more. It is known
that, with an appropriate branching strategy and restart policy, they are able
to p-simulate general resolution [10,25], and general resolution proofs can be
exponentially shorter than the negative resolution proofs we have considered
here [18]. In practice, it seems that current clause-learning SAT-solvers with
highly-tuned learning schemes, branching strategies and restart policies are of-
ten able to exploit structure in the encoding of a CSP instance even more effec-
tively than local consistency techniques. Hence considerable work remains to be
done in understanding the relevant features of instances which they are able to
exploit, in order to predict their effectiveness in solving different kinds of CSP
instances.



412 J. Petke and P. Jeavons

References

1. G12/MiniZinc constraint solver. Software,
http://www.g12.cs.mu.oz.au/minizinc/download.html

2. MiniSat solver. Software, http://minisat.se/MiniSat.html

3. 2nd internat. CSP solver competition, http://www.cril.univ-artois.fr/CPAI06/

4. 3rd international CSP solver competition, http://cpai.ucc.ie/08/

5. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. In: Kullmann, O. (ed.) SAT 2009. LNCS,
vol. 5584, pp. 114–127. Springer, Heidelberg (2009)

6. Atserias, A., Bulatov, A.A., Dalmau, V.: On the power of k-consistency. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 279–290. Springer, Heidelberg (2007)

7. Atserias, A., Dalmau, V.: A combinatorial characterization of resolution width.
Journal of Computer and Systems Science 74(3), 323–334 (2008)

8. Bacchus, F.: GAC Via Unit Propagation. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 133–147. Springer, Heidelberg (2007)

9. Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Pro-
ceedings of FOCS 2009, pp. 595–603. IEEE Computer Society, Los Alamitos (2009)

10. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351
(2004)

11. Bessiére, C.: Constraint propagation. In: Handbook of Constraint Programming,
ch. 3, pp. 29–83. Elsevier, Amsterdam (2006)

12. Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint
programming: A comparative survey. ACM Computing Surveys 38(4) (2006)

13. Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41, 89–95
(1989)

14. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints.
Artificial Intelligence 65, 347–361 (1994)

15. Deville, Y., Barette, O., van Hentenryck, P.: Constraint satisfaction over connected
row convex constraints. In: Proceeedings of IJCAI 1997, pp. 405–411 (1997)

16. Freuder, E.C.: Synthesizing constraint expressions. ACM Comm. 21, 958–966
(1978)

17. Gent, I., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Proceeedings of ECAI 2006, pp. 98–102. IOS Press, Amsterdam (2006)

18. Hwang, J., Mitchell, D.: 2-way vs. d-way branching for CSP. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 343–357. Springer, Heidelberg (2005)

19. Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. Journal of
Automated Reasoning 24(1/2), 225–275 (2000)

20. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction.
In: Proceedings of AAAI 2000, pp. 175–181 (2000)

21. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8,
99–118 (1977)

22. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Information Sciences 7, 95–132 (1974)

23. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: International Design Automation Conference, DAC,
pp. 530–535 (2001)

http://www.g12.cs.mu.oz.au/minizinc/download.html
http://minisat.se/MiniSat.html
http://www.cril.univ-artois.fr/CPAI06/
http://cpai.ucc.ie/08/


Local Consistency and SAT-Solvers 413

24. Petke, J., Jeavons, P.G.: Tractable benchmarks for constraint programming. Tech-
nical Report RR-09-07, Computing Laboratory, University of Oxford (2009)

25. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with
restarts. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer,
Heidelberg (2009)

26. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000)

27. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

28. Zhang, L., Madigan, C.F., Moskewicz, M.W., Andmalik, S.: Efficient conflict driven
learning in a Boolean satisfiability solver. In: Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD 2001), pp. 279–285 (2001)

29. Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability solvers. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 641–653.
Springer, Heidelberg (2002)


	Local Consistency and SAT-Solvers
	Introduction
	Preliminaries
	$k$-Consistency and Positive-Hyper-Resolution
	Positive-Hyper-Resolution and SAT-Solvers
	$k$-Consistency and SAT-Solvers
	Experimental Results
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




