
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Genetic Improvement of Software:
a Comprehensive Survey

Justyna Petke, Saemundur O. Haraldsson, Mark Harman,
William B. Langdon, David R. White, and John R. Woodward

Abstract—Genetic improvement uses automated search to find
improved versions of existing software. We present a compre-
hensive survey of this nascent field of research with a focus on
the core papers in the area published between 1995 and 2015.
We identified core publications including empirical studies, 96%
of which use evolutionary algorithms (genetic programming in
particular). Although we can trace the foundations of genetic
improvement back to the origins of computer science itself,
our analysis reveals a significant upsurge in activity since 2012.
Genetic improvement has resulted in dramatic performance
improvements for a diverse set of properties such as execution
time, energy and memory consumption, as well as results for
fixing and extending existing system functionality. Moreover, we
present examples of research work that lies on the boundary
between genetic improvement and other areas, such as program
transformation, approximate computing, and software repair,
with the intention of encouraging further exchange of ideas
between researchers in these fields.

Index Terms—genetic improvement, survey

I. INTRODUCTION

G enetic improvement (GI) uses automated search in order
to improve existing software. We present a comprehen-

sive survey of GI, summarising its scientific origins, technical
achievements, publication growth trends, software engineering
domain coverage, representations and computational search
techniques, and its relationship with other areas of source code
analysis and manipulation. As our survey reveals, evolutionary
computing is by far the most widespread computational search
technique used in the literature, making genetic improvement
a field at the intellectual intersection of evolutionary com-
putation, software engineering, optimisation, and source code
analysis and manipulation.

Recent work on GI has received notable awards, demonstrat-
ing its acceptance and success within the wider software engi-
neering and evolutionary computation communities. For exam-
ple, work on GI for software repair and specialisation won four
‘Humies’ [1], [2], [3], [4], [5], awarded for human-competitive
results produced by genetic and evolutionary computation [6].
Several papers on genetic improvement also won distinguished
paper awards [1], [5] and technical challenges [7]. GI has also
been the subject of attention from the broadcast media, as well
as popular developer magazines, websites and blogs [8], [9],
[10], [11], demonstrating its influence and reach beyond the
research community to the wider developer community and
the public at large.

J. Petke, M. Harman, W.B. Langdon, and D.R. White are with University
College London.
S.O. Haraldsson and J.R. Woodward are with the University of Stirling.

Our survey of 3132 distinct titles found, resulted in the
identification of 66 core GI papers1. However, genetic im-
provement research draws on and potentially influences many
other areas in software engineering and program analysis.
Therefore, we also reviewed the relationship between GI and
program synthesis, program transformation, parameter tuning,
approximate computing, slicing, partial evaluation and other.

We identified the first distinct publication concerned primar-
ily with genetic improvement from 1995, but we were careful
to consider the full history of the field, its influences and
origins, both before and since. For our review, we collected
and considered all publications on genetic improvement from
1995 to 2015. Since GI is an emerging area that straddles
many fields, it is neither sufficiently well-understood nor well-
defined to support a Systematic Literature Review (SLR).

Our comprehensive survey provides the foundation for
subsequent SLRs, which may use our survey to define scope
and research questions and to help identify primary sources.
Nevertheless, although our survey is not an SLR, we did
use associated techniques to ensure that we systematically
collected potentially relevant publications.

Our survey is the first comprehensive analysis of GI re-
search, drawing together its many research strands, results and
findings. As the survey reveals, the field of GI has witnessed
a rapid recent rise in publications and interest, with more than
half (59.70%) of the overall papers appearing in the last three
years (2013-2015). This indicates both that the time is ripe
for a survey, and that this rapidly growing discipline (and the
wider research communities within which it resides) needs
such a survey.

The survey is structured as follows: Section II describes the
history of genetic improvement (GI); Section III describes the
methodology used to gather core papers on GI; Section IV
provides details on existing GI research covered in the core
papers on the subject; Section V presents related work; Section
VI concludes the survey.

II. HISTORY OF GENETIC IMPROVEMENT

Genetic improvement draws on and develops research in
a number of topics including program transformation (Sec-
tion II-B), program synthesis (Section II-C), genetic program-
ming (Section II-D), software testing (Section II-E) and search
based software engineering (Section II-F).

1Criteria for classifying GI publications as core are presented in Section III
in Table I. All 66 papers are presented in the supplemental material.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

We provide a brief history of genetic improvement, tracing
some of its primary origins and influences (Section II-A),
before coming right up to date (Section II-G).

A. Before Electronic Computers

The first mention of software optimisation is due to Ada
Augusta Lovelace [12], whose 1842 work2 on the analytical
engine is arguably among the most prescient pieces of science
writing ever committed to paper. Reading it nearly 200 years
later, it is abundantly clear that Ada was well-aware of the
need to optimise programs, even though none had actually
been executed at the time, and only one program (which she
had written herself) had ever been constructed:

“In almost every computation a great variety of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of
a Calculating Engine. One essential object is to
choose that arrangement which shall tend to reduce
to a minimum the time necessary for completing the
calculation.” Extract from ‘Note D’ [12].

Clearly, Ada was aware that programs fell into equivalence
classes, and saw the possibility of optimising the choice of
a program within an equivalence class. Of course, as is well
known, the ‘calculating engine’ about which she was writing,
the Analytical Engine, was not built during her lifetime, and it
would be over a century before the first program was executed.
Nevertheless, we can trace ideas about program manipulation
and optimisation back to her observations, made in 1842.

B. Program Transformation

Two independent, yet interrelated, strands of research that
addressed the need for such program manipulation grew up in
the 1960s and 1970s: program synthesis and program transfor-
mation. Both sought to exploit the equivalence classes noted
by Ada, but in different ways. While transformation sought to
apply meaning-preserving transformations to refine an existing
program, synthesis sought to construct new program code.

Program transformation has origins in early work on com-
pilers, which used transformation to automatically transform
computations into canonical minimised forms, for either space
or time efficiency. In early pioneering work on Fortran compi-
lation, Sheridan [13] made a clear distinction between general
and specific transformations, applicable only to a particular
program instance. Sheridan noted that the general transforma-
tions allowed an arbitrary program expression to be ‘reshuffled
into some different order without disturbing the algorithm’.

Throughout the 1960s and 1970s, researchers sought to
understand the principles that allowed one syntactic repre-
sentation to be transformed into another, while preserving
semantic correctness, drawing heavily on the foundations
laid by Church [14] in the early 1940s. Researchers sought
to define the semantics of programming languages, thereby

2The article was published in 1843 in London as a translation of
Menabrae’s 1842 paper ‘with notes by the translator’ and is available online:
www.fourmilab.ch/babbage/sketch.html.

providing a sound mathematical foundation for the theory and
practice of software development [15], [16].

A further decade would have to pass before general-purpose
declarative language transformation systems started to appear
[17], [18]. Increasingly sophisticated systems have been de-
veloped for general transformation, such as the Munich CIP
system in the 1980s [19], partial evaluation systems, such
as Tempo, in the 1990s [20], and the TXL transformation
language and system in the 2000s [21].

C. Program Synthesis
By contrast with program transformation, program synthesis

sought to construct new program code, such that the resulting
program would be correct by construction [22]. One of the ear-
liest implementations, initially constructed3 in 1961, and used
to report the results of experiments with program synthesis
was the work on Simon’s ‘Heuristic compiler’ [23].

Both early program synthesis systems and program trans-
formation systems were developed from and inspired by work
on the compilers of the day. Program synthesis has remained
a topic of continued interest and development, throughout the
1970s [24], 1980s [25], [26] and 1990s [27], to the recent
work on spreadsheet macro synthesis by Gulwani et al. [28].

Genetic improvement is closely related to both synthesis and
transformation, yet it differs from each: unlike both program
synthesis and program transformation, genetic improvement
is not always guided by the motivation of correctness-by-
construction. Frequently, software testing is used as an oracle
for correct system behaviour. In this regard, genetic improve-
ment draws on the rich heritage of genetic programming [29],
which is also generally guided by software testing, and does
not claim correctness-by-construction.

D. Genetic Programming
The first record of the proposal to evolve programs is

probably that of Turing [30]. However, there was a gap of some
thirty years before Forsyth [31] demonstrated the evolution of
small programs represented as trees to perform classification
of crime scene evidence for the UK Home Office. Although
the idea of evolving programs, particularly Lisp programs, was
current amongst Holland’s students [32], it was not until his
students organised the first Genetic Algorithms conference in
Pittsburgh that Cramer [33] published evolved programs in two
specially designed languages.

In 1988 Koza (also a PhD student of Holland) patented his
invention of a GA for program evolution [34] and this was
followed by publication in the International Joint Conference
on Artificial Intelligence IJCAI-89 [35]. Koza followed this
with 205 publications on genetic programming. (The name
‘genetic programming’ was coined by Goldberg, also a PhD
student of Holland [36].) However, it is the series of four books
by Koza, starting in 1993 [29] and the accompanying videos
[37], that really established genetic programming and saw the
enormous expansion of number of publications with the Ge-
netic Programming Bibliography4 passing 10,000 entries [38].

3Simon’s paper [23] was published in 1963, but it was an extended version
of an earlier RAND corporation technical report, which appeared in 1961.

4Genetic Programming Bibliography: http://www.cs.bham.ac.uk/∼wbl/biblio/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

By 2016 there were nineteen GP books including several
intended for students [39], [40], [41].

Excluding GI, genetic programming research and applica-
tions continue to be concentrated on predictive modelling,
particularly data mining [42] and financial modelling [43].
Other active areas include evolving soft sensors (particularly in
the chemical industry [44]), design [45] and image process-
ing [46], finance and the chemical industry. Industrial take
up includes bioinformatics [47], [48] and the steel industry
[49]. GP can also be found in artistic endeavours [50], [51],
[52]. It led to Draves’ Electric Sheep screen saver [53]. Such
distributed evolutionary AI ideas were in the background
which led Reynolds to his Boids technique [54] for which
he won an Oscar in 1998.

Genetic programming shares with program synthesis its
aim of constructing a working program from scratch. Both
traditional program synthesis and genetic programming are
limited in the size of programs they can generate. GI usually
starts from an existing program (rather more like program
transformation, although it makes no claim to preserve ‘perfect
correctness’). Since genetic improvement’s starting point can
be an existing program of arbitrary size, GI can tackle much
larger programs than either program synthesis or genetic
programming. Like genetic programming, software testing is
often relied upon to guide genetic improvement to the software
variant.

E. Testing and Validation

Testing is important for genetic improvement, not only
because it can be used as a guide for semantic faithfulness,
but also because it is often used to assess the degree to which
improvement has been achieved. Software testing research also
has a long history, dating back to the 1940s, when Turing
first delineated the role of ‘program tester’ from ‘program
developer’ [55]. By the 1960s it had been realised that automa-
tion was essential to manage the scale of the software testing
challenge, and the first automated test input generation systems
started to appear [56]. Test data generation systems continue
to be developed and improved throughout the 1970s [57],
1980s [58], and 1990s [59], [60].

More recently, there has been significant development (in-
cluding several breakthroughs and dramatic advances) in many
areas of testing, such as dynamic symbolic execution [61],
search based software testing [62], and mutation testing [63].

Many researchers could be forgiven for believing that testing
could never be sufficient to ensure faithfulness to the semantics
of the original program. After all, it is widely believed that:

“The number of different inputs, i.e. the number of
different computations for which the assertions claim
to hold is so fantastically high, that the demonstra-
tion of correctness by sampling is completely out
of the question. Program testing can be used to
show the presence of bugs, but never to show their
absence! Therefore, program correctness should be
proved on account of the program text.” [64]

This highly quotable aphorism of Dijkstra’s became an
‘article of faith’ in an unfortunate battle between testing and

verification that has only more recently abated [65], [66],
[67]. It is undoubtedly true that testing can never show the
absence of all bugs, but it is also highly questionable whether
any approach to program correctness can now (or could ever)
show the absence of all bugs. We already have techniques
that can prove the absence of bugs with respect to given
assumptions [68], [69], but testing will always have a role,
if only to check whether such assumptions are reasonable.

Work on genetic improvement does not assume that only
testing should be used. Indeed, the field is ripe for the in-
corporation of verification techniques to complement existing
test-based approaches. Nevertheless, a great deal of progress
has been achieved using testing alone, for both assessing
faithfulness to the semantics to be retained, and also for
measuring the degree of improvement achieved.

This raises the question as to how genetic improvement
could be so successful, yet use a combination of techniques
that would appear to be so wrongheaded from the point of
view of such illustrious forbearers. The answer may lie in
recent empirical results. These empirical results confound
some of the widely-held long-established assumptions that
were based on plausible inferences from the theoretical nature
of programming and computation.

It seems reasonable to assume that the number of programs
possible in a given language is so inconceivably large that
genetic improvement could surely not hope to find solutions
in the ‘genetic material’ of the existing program. The test
input space is also, in the words of Dijkstra, “so fantastically
high” that surely sampling inputs could never be sufficient
to capture static truths about computation. Recent empirical
results challenge both of these assumptions.

Gabel and Su [70] found that naturally occurring code (as
opposed to the space of theoretically-constructable programs)
is surprisingly repetitive. A programmer would have to write
more than six lines of code in order to create an original
code fragment not already located somewhere in sourceforge.
This is an important observation, in the context of genetic
improvement, because many of the interventions exploited by
genetic improvement consisted of fewer than six lines of code;
they are patches, fixes and minor modifications.

Barr et al. [71] found that 43% of commits to a large
repository of Java projects could be reconstituted from existing
code. This suggests that a surprising number of changes made
by humans to software systems could already be fabricated by
genetic improvement, or similar techniques that reuse existing
code as ‘mere genetic material’ to be manipulated.

These two studies provided empirical evidence that, al-
though the theoretical space of programs is extraordinarily
large, the practical space inhabited by human-developed code
is far more constrained, making it potentially more amenable
to genetic improvement than might be supposed from a purely
theoretical standpoint.

F. Search Based Software Engineering

Work on automatic inference of statically correct asser-
tions [72], has demonstrated that static truth about program
computation (in the form of assertions that hold for all

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

executions), can be inferred from a surprisingly small sample
of input-output pairs, in a surprisingly large number of cases.
The observation that a small amount of dynamic information
can yield static truth has also been found in other software
engineering domains [73].

Early automated testing systems [56] formulated test data
generation as a search problem within the search space of
possible inputs to the program under test. This led to the
first application of automated search to software engineering
problems [57], [74]. The application of automated search to
software engineering problems was taken up only patchily and
with arguably less interest than other engineering disciplines.
In 2001 the term ‘Search Based Software Engineering’ was
coined by Harman and Jones, in a manifesto for the application
of automated search to problems in Software Engineering [75]:

“The thesis underpinning the present paper is that
search-based metaheuristic optimisation techniques
are highly applicable to Software Engineering and
that their investigation and application to Software
Engineering is long overdue. It is time for Software
Engineering to catch up with its more mature coun-
terparts in traditional fields of engineering. ”

There had been notable contributions to the field that came to
be known as SBSE, before the term ‘SBSE’ itself was first
coined. However, this [75] was the first paper to advocate a
discipline of ‘Search Based Software Engineering’. The ‘pre-
SBSE work on SBSE’ attacked problems in software project
management [76], [77] software testing [78], [79] and, perhaps
most relevant to this survey, novel forms of GP for software
engineering problems [80], [81]. We can trace back some of
the early ideas associated with genetic improvement to the
work by Feldt [81].

Improving software with several objectives in mind is very
powerful. Indeed evolutionary computing is well-suited to
finding good trade-offs between potentially competing objec-
tives, particularly where there are many objectives. For exam-
ple, Lakhotia et al. [82] were the first to use multi-objective op-
timisation for test data generation, while Kalboussi et al. [83]
considered seven objectives when generating test cases. Simi-
larly both Mkaouer et al. [84] and Ramirez et al. [85] consid-
ered the conflict between objectives in software maintenance
when re-organising Java source code.

The years since 2001 have witnessed an upsurge in SBSE
activity, with many problems in Software Engineering submit-
ting to solutions grounded in the SBSE approach. There are
now surveys on many subareas of SBSE activity, including
requirements [86], predictive modelling [87], [88] software
project management [89], design [90], testing [62], [91], [92],
software product lines [93], and repair [94], and other evidence
of its increasing maturity as a discipline within software
engineering [95]. However, hitherto, there has been no survey
of the area of genetic improvement, which seeks to apply the
SBSE approach to software systems’ source code itself. This
survey seeks to address this gap in the literature.

G. Genetic Improvement and the Way Ahead
Although genetic improvement has a lineage that traces

back to program synthesis, genetic programming and program

transformation, it is only more recently that it has emerged
as an area of research in its own right. This emergence dates
back to the early 1990s with the work by Ryan and Walsh
[96], [97] on auto-parallelisation and the more recent work of
White et al. [98] on energy improvement. It gained impetus
with the work on automated repair [94], [99]. The term
‘genetic improvement’ emerged from a number of previous
studies [100], [101], [102], all of which shared similar goals
but with slightly different terminology (such as ‘evolutionary
improvement’ and ‘genetic improvement of programs’).

A natural question arises, why has genetic improvement
emerged only relatively recently as a separate research area?
The key in answering this question lies in the components
of genetic improvement, the necessary ingredients for which
have only recently come together in sufficiently mature areas
of activity that make genetic improvement possible. In partic-
ular, powerful test data generation techniques, an abundance
of source code publicly available, and importance of non-
functional properties have combined to create a technical
and scientific environment ripe for the exploitation of genetic
improvement.

Over most of the preceding years, software developers have
been concerned with program correctness. A lot of work has
been devoted to semantics-preserving program transformations
that were supposed to serve as building blocks for automatic
program synthesis. Secondly, one widely-discussed ‘stretch
challenge’ has concerned the creation of software from scratch,
perhaps from some higher level specification. This is so much
of a difficult challenge that many influential authors regarded
it to be simply unachievable. In 1988 Dijkstra claimed that
automated programming was a contradiction:

“(...) computing science is — and will always be
— concerned with the interplay between mechanized
and human symbol manipulation, usually referred to
as ‘computing’ and ‘programming’ respectively. An
immediate benefit of this insight is that it reveals
“automatic programming” as a contradiction in
terms.” [103]

The more recent trend of genetic improvement research has
not sought entirely automatic programming, but has consid-
erably pushed back the frontiers of the ‘interplay’ referred
to by Dijkstra, yielding to the machine, a great deal of
territory previously occupied by humans. With the abundance
of software available for ‘genetic reuse’, synthesis from scratch
seems increasingly suboptimal. Furthermore, the increasing
sophistication and power of automated test input generation,
the ability to use the original program as an oracle, and the
increasing importance of non-functional properties, have all
combined to make genetic improvement a timely approach to
automated software improvement.

Given the rich heritage on which genetic improvement
draws, it is likely that we will see hybrids emerging in future,
which draw on aspects of program transformation, program
synthesis, genetic programming, and other source code anal-
ysis and manipulation [104] techniques. Indeed, recent work
on automated program repair, a form of genetic improvement,
also uses a combination of techniques including those inspired
by program synthesis [105] and by genetic programming [2].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

III. SURVEY METHODOLOGY

Genetic improvement draws on other research areas and has
only recently emerged as an independent field of research, as
presented in Section II. It uses automated search to navigate
the three-dimensional search space consisting of the amount of
improvement (over the original code), use of existing software
(in the input to the improvement framework) and preserved
functionality of the original code. Several works that lie on
the far ends of this spectrum sit on the boundary between
genetic improvement and other research areas.

Mrazek et al. [106], for instance, used cartesian genetic
programming to optimise for efficiency and energy consump-
tion. They evaluated approximations of 9-input and 25-input
median functions by means of testing, as is typical in genetic
improvement work. However, they evolved the functions from
scratch by generating the initial population at random.

Kocsis et al. [107], [108] and Burles et al. [109] proposed
to use semantics-preserving transformations within their im-
provement framework in order to retain full functionality of
the original code. Therefore, this work also fits within the
field of program transformation [110], [111] (see Section V-C
for details). Similarly, Orlov [102] and Orlov & Sipper [112],
[113] improved extant software by applying a semantics-
preserving crossover operator.

Williams [114] used six evolutionary algorithms to paral-
lelise existing code. In contrast to Walsh & Ryan [115], who
used standard GP trees, they evolved sequences of semantics-
preserving transformations. Williams [114] used knowledge
from program dataflow and dependency analysis to avoid
transformations that break functionality. Where the satisfiabil-
ity of the derived constraints could not be proven, they took
the conservative approach of assuming that the program will
not be functionally equivalent to the original if the sequence
of transformations were to be performed.

Even if code changes within a genetic improvement
framework are restricted to semantics-preserving transforma-
tions, the search space of possible software variants is still
huge [116]. Therefore, metaheuristics have typically been
applied in order to find optimal or near-optimal solutions.
Non-standard approaches to genetic improvement involve the
use of deterministic search. Sidiroglou-Douskos et al. [117],
for instance, explored the combination space of tunable
loops (whose perforation leads to an acceptable efficiency-
accuracy trade-off) with exhaustive and greedy search algo-
rithms. Tan et al. [118] tried applying all their statement-level
mutation operators until either all test cases passed or a timeout
was reached. Mechtaev et al. [119] systematically derived
candidate software repairs from a set of constraints, while
Manotas et al. [120] performed exhaustive search over small
code-level changes for improvement of energy consumption.

Given the wide range of topics that fall within the definition
of genetic improvement, we restrict our detailed analysis to
work that is most frequently associated with this new research
area. For example, although semantics-preserving methods are
extremely interesting (e.g., see work above), the boundary
between program transformation and GI is often unclear. We
identified four criteria under which we consider a publication

to be a core genetic improvement paper. These criteria are
shown in Table I. We also include position and overview
papers on the subject.

TABLE I: Scope of the Survey: criteria used to identify core
papers on genetic improvement (i.e., conference and workshop
papers, journal articles and PhD theses) published by the end
of 2015:

1) metaheuristic search is used;
2) non-semantics-preserving software variants can be

produced during search;
3) existing software is reused as input to the given

improvement framework;
4) modified software is improved over existing software

with respect to the given criterion.

In order to provide a thorough overview of core papers on
genetic improvement, we devised a rigorous procedure when
searching for relevant publications. We searched the Collection
of Computer Science Bibliographies [121] and the online
libraries of four major publishers in software engineering,
that is, ACM (ACM Digital Library [122]), IEEE (IEEE
Xplore [123]), Springer (SpringerLink [124]) and Elsevier
(ScienceDirect [125]). We used the following exact phrases
as keywords: ‘genetic improvement’, ‘software improvement’
and ‘evolutionary improvement’. We considered conference
and workshop papers, journal articles and PhD theses that were
published by the end of 2015. We call this step the primary
search.

Table II presents results of the primary search. It is split
into three parts, based on the keywords used. The first column
contains the source of the publication found, the second
column shows the filters applied, the third column shows the
total number of publications found, using the keyword and
filters provided, while the last column shows the number of
publications on genetic improvement found based on paper
title, abstract or keywords. All the searches were conducted
independently, hence there was an overlap in the publications
found. After removing duplicates, we were left with 54 pub-
lications, 40 of which cover work fulfilling all four criteria
presented in Table I, based on subsequent manual inspection
of their full text.

Subsequently, we inspected bibliographies of selected pa-
pers in order to include other publications that we deemed
relevant according to the criteria (snowballing). Given that we
selected 40 papers in our primary search, we had to look at
an estimated number of over 1000 articles appearing in their
bibliographies. In order to aid this time-consuming manual
process, we devised an automated procedure to partially re-
move duplicates (i.e., papers we had already considered in
previous searches) using pattern matching on paper titles.
Table III (‘Step 2’) shows, for instance, that we found 862
new titles in bibliographies of the 40 publications. We then
selected 34 that meet the criteria (based on abstract, title and
keywords) and inspected the bibliographies of those 34 papers
(‘Step 3’). We repeated this procedure for the selected papers
until we reached transitive closure over all references of the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

TABLE II: Results of primary search for papers on genetic
improvement.

Source Filters Papers Papers
found on GI

keyword ‘genetic improvement’
ACM Digital Title OR Abstract 28 12
Library
IEEE Xplore Metadata 12 4
SpringerLink Full Text

Computer Science 69 11
language: English

ScienceDirect Title OR Abstract
OR Keywords 5 0
Computer Science

Collection Of
Computer Science Default 165 41
Bilbliographies
keyword ‘evolutionary improvement’
ACM Digital Title OR Abstract 5 1
Library
IEEE Xplore Metadata 21 1
SpringerLink Full Text

Computer Science 133 4
language: English

ScienceDirect Title OR Abstract
OR Keywords 3 0
Computer Science

Collection Of
Computer Science Default 32 1
Bilbliographies
keyword ‘software improvement’
ACM Digital Title OR Abstract 45 0
Library
IEEE Xplore Metadata 83 0
SpringerLink Full Text

Computer Science 421 5
language: English

ScienceDirect Title OR Abstract
OR Keywords 9 0
Computer Science

Collection Of
Computer Science Default 100 2
Bilbliographies
Total 1131 82

Distinct papers on GI found 54

Distinct core papers on GI found 40

set of papers covering core GI work (i.e., fulfilling the four
criteria shown in Table I), that is, until we did not find any
new relevant papers in the bibliographies of selected papers.
A summary of this process is shown in Table III.

Given that the primary search was conducted before the end
of 2015, we then repeated the primary search step on 3 May
2016, to make sure we include every conference, workshop,
journal and thesis publication that was published in 2015.
This step revealed one additional core publication on genetic
improvement [126], references of which did not contain any
additional core publications on genetic improvement (‘Sec-
ondary’ search step in Table III).

TABLE III: Summary of searches conducted over bibliogra-
phies of core papers on genetic improvement.

Search step New titles found Core papers
on GI

Primary - 40
Step 2 862 34
Step 3 279 27
Step 4 47 8
Step 5 10 0
Secondary - 1
Step 6 9 0
Total (based on abstract, title or keywords) 110
Distinct core papers on GI found (based on manual
inspection of the full text of the 110 selected papers) 66

As a final step for the bibliography search stage, we man-
ually checked, by inspecting the full text of each paper, that
there are no duplicates among the selected papers and that each
covers genetic improvement work fulfilling the four criteria
shown in Table I. After this filtering process, we were left
with 66 core papers on genetic improvement. Overall results
of all the searches conducted are shown in Table IV.

TABLE IV: Summary of all searches conducted to identify
core papers on genetic improvement.

Source New papers found
Primary search 40
Bibliography search (snowballing) 26

Core papers on GI 66

The supplemental material contains several details about
the core publications. In particular, for each empirical study
that uses a genetic improvement framework, we identify: the
improvement criterion, search technique, software representa-
tion, characteristics of the fitness function and programming
language of the software being modified. In the following
section we list several publications on genetic improvement
that give an overview of specific GI work.

IV. EXISTING WORK ON GENETIC IMPROVEMENT

The need for automated software optimisation has long been
recognised and resulted in the development of various research
areas, such as program transformation and program slicing
(see Section II for details). What differentiates genetic im-
provement from previous approaches, is its generality and
adaptability. It takes advantage of the abundance of source
code available by reusing it rather than devising a new
optimisation from scratch. Furthermore, genetic improvement
opens up a wider search space of software variants by relaxing
restrictions on program correctness.

The oldest core GI publications concern with software
parallelisation by Ryan and Walsh [96]. A resurgence of
literature in the area can be seen in the late 2000s with Arcuri
and Yao’s work on automated software repair [99], [127] and
White et al.’s work on reduction of energy consumption [98],
[128]. Success of these studies has led to a rapid uptake of
GI. This trend can be observed in the significant increase of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

the number of core publications on genetic improvement since
2008, as shown in Figure 1.

Fig. 1: Number of core papers on genetic improvement by
year.

The following sections describe the typical genetic improve-
ment process in detail, drawing from the core papers on the
subject (listed in the supplemental material).

A. Preserved Properties

Improvement of software naturally implies that some aspects
change (to improve), while others remain unchanged (oth-
erwise it would be entirely different, not merely improved).
For instance, a system may become faster through GI, while
offering the same behaviour, or a bug may be fixed while
retaining existing non-buggy functionality. Therefore, to assess
the unchanged functional aspects, we need a way of capturing
software functionality that needs to be preserved.

One way of ensuring that the modified software does not
break any functionality of the original program, is to use only
semantics-preserving transformations. However, this limits the
search space of possible program modifications. Furthermore,
this approach might still produce incorrect programs. Orlov &
Sipper [113], for instance, used genetic programming with a
semantics-preserving crossover to improve existing Java byte-
code. Nevertheless, they also encounter incorrect individuals
during the evolution process:

Compatible bytecode crossover prevents verification
errors in offspring, in other words, all offspring
compile sans error. As with any other evolutionary
method, however, it does not prevent production of
non-viable offspring – in our case, runtime errors.
An exception or a timeout can still occur during
an individual’s evaluation, and the fitness of the
individual should be reset accordingly.

Relaxing restrictions on functional faithfulness to the original
program allows for a trade-off between various software prop-
erties. Sitthi-amorn et al. [129], for instance, traded efficiency
for accuracy in pixel shaders. They achieved a 67% reduction
in runtime by allowing flexibility in image fidelity with respect
to the output of the original software. An example is shown
in Figure 2.

Fig. 2: Selected result of two variants of shader simplification
software: original (left) and GI-modified (right). The inset
contains a visualisation of the per-pixel error.

Trading various software properties may prove beneficial espe-
cially in resource-constrained environments. As our co-author
(WBL) put it: “there’s nothing correct about a flat battery”.

The question remains of how to capture software properties
that need to be retained? Several core papers on genetic
improvement describe work on software transplantation, where
a feature is evolved separately from the program to which
it is later grafted. Langdon & Harman [130], for instance,
evolve, i.e. grow, a parallelised version of a part of an existing
program, called pknotsRG, used for predicting the minimum
binding energy for folding of RNA molecules. They start with
the existing program and use a combination of manual changes
to the host code and GI. The GI grows a small piece of new
CUDA code. After inserting, i.e. grafting, it into the original
code, the GI-improved pknotsRG version achieves up to a
10000-fold speedup on certain test instances. Even in this
grow and graft approach Langdon & Harman [130] needed
to capture the properties of the feature evolved that needed to
be preserved. Testing was used for this purpose.

In all empirical work that is covered by the core papers on
genetic improvement, software testing was used as a proxy
for capturing software properties that needed to be retained
(see supplemental material). If the set of test cases is all
possible test cases, then test equivalence becomes functional
equivalence. Of course, such a test set could be conceptually
infinite. Relaxing the notion of equivalence, to allow finite
test suites to be used as the faithfulness criterion with respect
to the original software, has the important technical impli-
cation that equivalence becomes computable and tractable.
Furthermore, the runtime cost of testing can be reduced by the
application of test case selection and prioritisation techniques.
Fast et al. [131] and Qi et al. [132] investigated these issues
in the context of GI-based automated software repair.

In the simplest case the number of test cases passed serves
as a fitness measure. Barr et al. [1] and Marginean et al. [133]
use the following function in their µScalpel tool for automated
software transplantation:

fitness(i) =

{
1/3× (1 + |TXi|/|T | + |TPi |T |), i ∈ IC
0, i /∈ IC

where i represents the software variant; IC is the set of compi-
lable programs; test suite T captures the desired functionality

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

to be transplanted; TXi and TPi are the sets of non-crashing
and passing test cases respectively. In this case fitness(i) = 1
assumes that i preserves all the required functionality.

GenProg [3], a popular tool for automated software repair,
also uses a simple weighting scheme in fitness evaluation of
modified programs [134]:

fitness(C) =WPosT × |{t ∈ PosT | P ′ passes t}|
+ WNegT × |{t ∈ NegT | P ′ passes t}|

where C stands for the candidate patch, i.e. set of modifica-
tions, that produce program P ′ when applied to the original
buggy software; WPosT assigns a weight to the positive
test cases, i.e., those that the original program passes; while
WNegT is the weight assigned to the number of test cases
that fail when run on the original program, but pass when run
on P ′. Negative tests are weighted twice as heavily as the
positive tests. The positive test cases are intended to capture
the program functionality that needs to be preserved.

Arcuri & Yao [99] opted for a more fine-grained fitness
measure for automated software repair. In particular, they use
a distance function based on formal software specification.
It measures how far the output of the modified software is
from the expected result. Arcuri [127] implemented a similar
metric within his Java Automatic Fault Fixer (JAFF) tool. He
also used the underlying framework of JAFF to improve the
efficiency of a triangle classification program. In this case a
set of test cases satisfying the branch coverage criterion was
exercised to establish whether the modified software preserved
the desired behaviour. Arcuri [127] generated the required
test cases automatically, showing another advantage of using
testing as a means of capturing software functionality.

Genetic improvement typically modifies existing software,
therefore, the original program serves as an oracle when testing
improved software variants. Any software test generation
technique can be used to create test inputs. The output of
running tests on the original and modified software can then be
compared to guide search towards fitter individuals. The size
of a test suite capturing the desired software behaviour is thus
potentially infinite. Arcuri & Yao [99], [135] introduced the
idea of co-evolving test cases within a genetic improvement
framework. They use a genetic algorithm, generating unit
tests that pass when run on the original and fail on the
modified programs. The same approach was later adapted by
Wilkerson & Tauritz [136] who created CASC, a variant of
Arcuri & Yao’s [99] framework for C++ programs. Aside from
choosing a different target programming language, Wilkerson
& Tauritz [136] require the CASC user to provide the fitness
function, in contrast to the work of Arcuri & Yao.

It is yet unclear how to characterise test suites that
would best guide search towards improved software variants.
Smith et al. [137] conducted an initial investigation in the
field of automated software repair. They conclude that “the
quality of the patches is proportional to the coverage of the
test suite used during repair”. They also advocate that further
research is needed to fully understand the characteristics of
an appropriate test suite for automated software repair. Fast
et al. [131] proposed to use dynamic program invariants,

i.e. predicates, with testing to evaluate candidate programs
for automated software repair. Their proposed approach leads
to more precise fitness values than the traditional weighted
sum approach. Similar studies have not been conducted in the
context of improvement of other software properties.

Hitherto, in the literature, testing and semantics-preserving
transformations have been applied to capture program be-
haviour. Genetic improvement is a generalist framework and
thus allows for other approaches to be explored.

B. Use of existing software
The power of genetic improvement lies in its applicability to
a plethora of real-world software systems. Typically, GI does
not start from scratch. All work covered by the core papers
starts from an existing system [138].

In the evolutionary computation field existing software reuse
corresponds to ‘genetic transfer’.

1) Source of Genetic Material for Genetic Improvement:
The idea of using existing code is central to the genetic
improvement process. The plastic surgery hypothesis [71]
assumes that the content of new code can often be assembled
out of fragments of code that already exist. Barr et al. [71]
investigated this hypothesis, showing that changes are 43%
graftable from the exact version of the software being changed.

Within the selected core papers on genetic improvement one
can find three options for the choice of code for software reuse:
the program being improved, a different program written in the
same language and a piece of code generated from scratch.
A currently unexplored option is an import from a different
programming language than the software to be improved.

2) Code Transplants: Another area of genetic improvement
when it comes to its software reuse component arises from the
work on software transplantation. Harman et al. [139] set out a
vision for automated software transplantation in their keynote,
where they presented an overview of practices and ideas from
GI and GP that are applicable for reverse engineering.

Petke et al. [4] were the first to use the concept of code
transplants [139] in the GI context. In particular, they use
multiple software variants of the same program, namely Mini-
SAT, a Boolean satisfiability (SAT) solver. Code for software
reuse was taken from the MiniSAT-hack track competition
specifically designed to encourage SAT practitioners to submit
their manually-modified versions of the solver. GI-improved
variants achieved up to 17% speedup.

Barr et al. [1] took this work further and programmatically
set up a scaffolding mechanism in which genetic programming
can transform a software feature from one system to be
transplanted into another system. They automatically extract
a feature from the donor program (source) and transplant
it into the host program (target). Several experiments were
conducted demonstrating feasibility of the approach, including
a real-world example where a particular video codec was
transplanted into the popular VLC media player.

Marginean et al. [133] applied the same transplantation
technique to transfer a call graph visualisation feature from
the CFLOW program into the KATE text editor. Moreover,
Sidiroglou-Douskos et al. [140] developed a systematic trans-
plantation approach for automated software repair, reusing

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

fixes available in open source projects. This approach has yet
to be tried with metaheuristic search.

In the absence of the functionality of interest in existing
software, a few researchers used genetic programming to
evolve the desired feature from scratch. Harman et al. [7]
evolved a language translation feature and transplanted it into
a popular instant messaging system. Jia et al. [141] grew
a citation service and grafted it into a web development
framework; the evolved service is available online (see [141]).
Langdon and Harman [130] evolved an enhanced parallel
feature which gave up to 10000-fold speedup in the original
software when run with the evolved feature.

C. Criteria for improvement

Criteria for software improvement can be divided into func-
tional and non-functional. Ryan et al. [96], [115], [142], [143]
and Williams & Williams [114], [144] used evolutionary algo-
rithms to parallelise software. White’s 2009 PhD thesis [128]
focused on energy consumption reduction and both White and
Arcuri [127] advocated the use of GI for improvement of non-
functional properties of software. The importance of this strand
of research was re-emphasized in Harman et al.’s keynote in
2012 [101]. Since then there has been a rapid increase in
work on GI and, as shown in Figure 3, much of this work
has focused on non-functional properties.

Fig. 3: Software applications of empirical studies in core
papers on genetic improvement.

A major difficulty in non-functional software property opti-
misation lies in the measurement of the desired property. For
non-functional properties such as energy consumption, precise
measurements might simply be infeasible. However, these are
not needed for the GI approach; we only need relative not
absolute accuracy. GI only requires a fitness function that will
guide search towards desirable software variants.

1) Testing as a fitness measure: Most of the genetic im-
provement work covered in core GI papers relies on testing
to evaluate the fitness of candidate software variants. The
number of test cases passed has been the prevalent measure in
optimisation of functional properties of software systems. In
particular, Shulte et al. [145], Arcuri et al. [99], [146], Wilk-
erson & Tauritz [136], Forrest et al. [2] and Le Goues et al.
[3] equated successful software improvement with passing test
suites in their work on automated program repair.

Ryan et al. [96], [115], [142], [143] and Williams &
Williams [114], [144] used the number of test cases passed
in their work on software parallelisation.

A lot of the core GI literature is concerned with auto-
mated bug fixing (see Figure 3), improving the correctness
of programs as measured by testing. The largest body of work
revolves around the tool called GenProg [147], either directly
contributing to its development [2], [3], [5], [94], [134], [148],
[149], [150] or using it for comparison [151], [152], [153].
Other examples of program repair with GI include Arcuri et
al.’s pioneering work on small programs [99], [154], [155]
which predates GenProg, as well as Schulte et al.’s [145],
[156], [157], [158] work where the fixing was done post-
compilation on the assembly code. Wilkerson et al. [159]
compared his multi-objective approach to program repair with
Arcuri’s work. Ackling et al. [160] repaired software written
in the Python language with same principles as GenProg.

Apart from the obvious risk of creating new bugs there is
also the danger of introducing malevolent behaviour [156].
Schulte et al. used sandboxing in their work and ran tests on
a virtual machine to ensure no damage is done by the altered
software [145], [156], [157].

Most GI bug fixing work assumes that the faulty program
contains its own potential fixes [148] and assumes freedom
from typographical errors and incorrect variable names [160].

2) Other fitness functions: Most fitness functions that do
not count passing and (or) failing test cases measure some non-
functional property of software. These are dependent on hard-
ware and some of them can be handled in part by compilers,
such as memory usage. Although memory optimisation has
been studied before [161], the core papers present only a single
example of memory usage optimisation with GI. Wu et al.
[162] explored how variables and constants in the source code
can be exposed as parameters that can be tuned for the purpose
of improving memory efficiency and reducing execution time.

The most frequently improved non-functional property is
execution time. It, however, varies between systems and
hardware. The number of lines or instructions executed per
input has been considered as a system-independent proxy for
execution time [163], [164], [165]. Langdon et al. [130], [166],
[167], [168], [169], [170] report wall clock speedups.

Genetic improvement can also be applied per system and
hardware by specialising to program classes [4] or input
distributions [100], [128]. Recent advances in the mobile
device market have seen greater computational power with
increased drain on batteries. Hardware can only be optimised
to a certain extent so software must also be adapted.

An issue with energy optimisation is how the usage is
measured [171]. GI is, however, well-equipped to deal with
noisy measures such as energy consumption [172]. A number
of core papers on GI show promising results for energy
optimisation [109], [128], [173], [174] using various methods
to approximate its consumption. White [128] used simulation
and a linear model to assess the energy consumption while
Bruce et al. [174] used the Intel Power Gadget API to
approximate the usage. For both methods the software is run
in isolation to reduce noise in energy readings due to other
processes. Although Schulte et al. [173] opted to use hardware

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

counters and a model of energy usage to approximate energy
consumption. Similarly, Burles et al. [109] used an energy
model that is specifically made for Java bytecode to reduce
energy consumption of a function in Google’s Guava library.

Given the difficulty of providing a correct energy measure
for fitness evaluation, Harman and Petke [175] proposed to
use GI to evolve the fitness function itself for a subse-
quent GI process. This idea generalises to any non-functional
(or functional) property of software. Moreover, Johnson and
Woodward [176] proposed to measure the fitness gain, rather
than a total fitness measure, in terms of the accumulated
information at each executed step of the program. GI was also
proposed for product line engineering [177].

3) Multi-objective improvement: Optimisation of non-
functional properties might sometimes mean degradation of
other software properties. These can be either functional or
non-functional. One might, for example, significantly reduce
runtime by deleting certain software functionality, or reduce
memory consumption at the expense of increased execution
time. Given the many conflicting improvement criteria, Ar-
curi [127], White et al. [100], [128] and Harman et al.
[101] suggested the application of multi-objective algorithms.
Wu et al. [162] applied this approach to optimise both
runtime and memory consumption. However, multi-objective
genetic improvement of several non-functional properties is
still largely unexplored.

D. Search

The power of genetic improvement lies in automatically
evaluating multiple software versions in order to find ones
that satisfy the improvement criteria and preserve the desired
properties. Consider bug fixing: human programmers spend a
large amount of their time on this activity. Within the same
amount of time a GI framework can evaluate thousands of
candidate software programs. In order to explore the huge
search space an efficient search algorithm needs to be used.

Currently the state-of-the art heuristic approach for software
improvement is genetic programming, as is shown in the
supplemental material. However, we anticipate more research
in the future on the use of other search heuristics in GI.

1) Search operators: A variety of search operators has been
used in work on genetic improvement covered by the core
papers on the subject. Given that most of this work uses
evolutionary algorithms, genetic programming in particular,
they inherit similar search operators.

Lansborough et al. [178] used dynamic tracing and genetic
algorithms to remove unused features of programs. They
applied deletion operations on the binary of the program to
be slimmed. Schulte et al. [173] maintained a steady state
population, by selecting, modifying and then replacing binary
code using an evolutionary algorithm.

Forrest et al. [2] focused on software repair. They operated
on the Abstract Syntax Tree (AST) level by deleting, swap-
ping and inserting a statement of code. They also applied
a tree-structured differencing to minimise the final repair.
Le Goues et al. [3] extended this approach and used fault
localisation to bias the repair search. Arcuri et al. [99] operated

on the same level of granularity, but additionally co-evolved
test cases to improve their ability to produce valid bug repairs.

Wu et al. [162] used mutation testing to change logical,
numerical, arithmetical, incremental, relational and bitwise
operators in the original program. They represented program
changes with a linear chromosome where each gene (itself an
integer) represents one of the program statements or parame-
ters that can be modified by GI. Jia et. al. [179] also proposed
higher-order mutation-based GI framework to increase the
search granularity of GI.

2) Representation of Programs used for Genetic Improve-
ment: There are a number of options for representing modi-
fications to programs. These include ASTs, bytecode, and the
source code itself (e.g., treated as a text file).

In some of the early papers on genetic improvement, popula-
tions of entire programs were stored. However, as genetic im-
provement targets large programs, memory becomes an issue.
Therefore, most papers on GI currently evolve a population
of edits (also called repairs or patches) that are applied to a
single master copy of the original program. Representing just
the changes that need to be made to a program avoids storing
redundant copies of unmodified code [3], [94]. In addition,
a number of methods require access to the source code (and
operate on the source code itself), while other methods operate
directly on low-level code (bytecode or binaries).

Arcuri et al. [154] converted programs into a syntax tree
that was then evolved using ECJ, a GP system also used by
White et al. [100]. While the original code is translated into
a GP representation in ECJ, non-functional properties can be
measured when it is converted into source code [98].

Prevalent work on genetic improvement focuses on C and
C++ software, including Petke et al. [163], Bruce et al. [174]
and Langdon et al.’s [180], [181] work. They use a BNF
grammar representation of the code.

With the increasing number of parallel processors available,
there is a need to translate code for parallel processing. This
is a difficult task when done manually, so a natural question
is: can GI achieve this automatically? Early work [96], [115],
[142] described Paragen, which is designed to be language
independent. Programs were represented as tree structures
where each line of the original is a terminal [115].

ASTs are one natural approach to representing programs for
the purposes of genetic programming. pyEDB [160] (python
evolutionary debugger) used ASTs and was applied to Python
applications. However, its underlying algorithm is language
independent. Python was chosen as the modules required are
part of the standard library, including AST compilation and
modification, and tracing of execution paths. The representa-
tion is a bit string that is translated into a list of edits that
point to locations in the AST of the program [160].

Le Goues et al. [3] described GenProg, which automatically
repairs bugs, following Arcuri’s work [127]. GenProg has
generated a great deal of interest and uptake of GI and
related techniques. An important contribution of GenProg is
the choice of representation. In previous work each individual
was represented by the entire AST. Software variants in
GenProg, in contrast, are represented as patches, a sequence
of edit operations for the AST. This promotes scalability, since

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

the population contains edit sequences, thereby occupying
dramatically less space than full ASTs for large programs to
which only a few changes are required.

To compute each modified program’s fitness, its AST is out-
put as source code, compiled, and executed for each test case.
This is done in a sandbox environment [131]. Forrest et al. [2]
and Weimer et al. [5] represented C programs as ASTs,
but instead of targeting the whole syntax-tree with possible
modifications, they selected only the nodes on the execution
path as determined by negative test cases. By contrast Cody-
Kenny et al. used a syntax tree representation [165], [182] to
implement GI for Java programs.

GI has been applied directly to binaries as well as high level
source code. Schulte et al. [156] states that ‘binary GI’ has the
following benefits:

1) The technique is potentially applicable to any program-
ming language that compiles to assembly code.

2) Intricate repairs at the statement-level can be performed.
These include for example, changing type declarations,
comparison operators, and assignments to variables.

3) The complete assembly code language typically consists
of a small set of instructions.

Schulte et al. [157] repaired defects in ARM, x86 assembly
as well as ELF binaries, and achieved improvements of 86%
in memory consumption and 95% in disk requirements. They
report a 62% decrease in time to repair the binaries, compared
to similar source-level repair techniques. They showed that
their technique can also be applied to different languages (Java,
C, Haskell) [156] and they repaired two security vulnerabilities
[145]. Their approach does not require access to source code.

Landsborough et al. [178] removed unnecessary binary files
from programs such as the Unix echo utility. Results when
using a genetic approach were reported to be better than those
obtained merely by using a trace-based approach alone. This
allows ‘slimmer’ versions of the software to exist, with the
functionality desired by the user.

GI can either operate offline or online. Online GI modifies
software as it executes, whereas offline GI does not, instead
improving software for re-deployment. We have described
offline GI in previous sections. Online approaches include
ECSELR and Gen-O-Fix [183]. ECSELR [184] embeds adap-
tation inside the target software system enabling the system to
transform itself via evolution in a self-contained manner. The
software system benefits autonomously, avoiding the problems
involved in engineering and maintaining such properties. Swan
et al. [185], who created Gen-O-Fix, suggest that developer-
specified variation points should be used to define the scope of
improvement. Hybrid online-offline approaches were proposed
that seek to develop a set of modifications offline, based on
data collected during previous online monitoring of execution.
These ‘dreaming devices’ can then be subsequently applied for
the next online execution [186].

V. RELATED WORK

We also give an overview of work that we found during
our searches, that is either related to or can be considered as
work on GI. In our selection of core papers on GI we used

the criteria presented in Table I. The work in this section does
not conform to one or more of these expectations.

The strength of GI lies in its general applicability, and
other approaches explicitly sacrifice this generality in order
to obtain guarantees of correctness or higher success rates
within a limited range of application. A subset of previous
work also operates at a higher level of abstraction, for example,
at the architectural rather than code level. As well as restricting
generality in terms of the range of transformations that may be
applied, some research also makes assumptions that limit its
applicability to specific subdomains. For example, assuming
the availability of formal contracts written in a language such
as Eiffel [187], or the provision of handwritten imperative
structural integrity constraints [188], might limit applicability.

The field may benefit from the further incorporation of
some of these approaches within a metaheuristic framework.
Similarly, related work often employs metaheuristics, and
methods developed in GI may improve the applicability and
effectiveness of these methods.

A. Program Synthesis
Program synthesis [22] is the automated construction of a

new program from a specification. Early work in this area
aimed to provide formal guarantees of correctness, but more
recent work often relies on a test suite to assess faithful-
ness to desired semantics, in the same vein as genetic im-
provement. Balzer replaced formal specifications with natural
language [189]. By using natural language, he emphasised
the importance of the user-in-the-loop. More recently, Gul-
wani et al. [28], [190], [191], explored and evaluated example-
based program synthesis. They synthesised relatively small-
but-useful Microsoft Excel spreadsheet functions, for example,
learning useful string processing functions and table transfor-
mations that can be inserted into spreadsheets to improve them.

Traditionally, work on program synthesis did not attempt to
reuse existing code, preferring to synthesise new functionality
from scratch. However, the term ‘synthesis’ has recently been
used to refer to the addition of new functionality into existing
software, as achieved by Gulwani et al. [28], allowing for
a certain level of code reuse in a similar manner to code
transplantation and recent advances in genetic improvement.

In addition to program construction and extension, synthe-
sis also includes the duplication of functionality useful for
n-version programming [192], where multiple programs are
derived from the same formal specification. A topic closely
related to program synthesis is the Automated Design of
Algorithms [193], which uses computational search to discover
and improve algorithms for particular problems. The key
difference between genetic improvement and the automated
design of algorithms is that genetic improvement is applied
in-situ or directly to the source code while automated design
of algorithms works ex-situ, i.e., evolves an algorithm.

Within the field of genetic programming, some work has
crossed into the field of formal synthesis. Katz and Peled [194]
applied GP to synthesise mutual exclusion algorithms, verified
using model checking, as well as using testing over parametric
problems when model-checking fails to scale. They also
considered searching for test cases and software repair.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

B. Software repair

An overview of all related software repair work, can be
found in the survey by Monperrus et al. [195], which also
includes software repair applications using genetic improve-
ment, and the survey of Le Goues et al. [94]. Typically,
non-GI approaches to repair make assumptions about avail-
able specifications [187], they limit the types of bug under
consideration [196], or restrict the transformations that may
be applied [105]. The advantages of such restrictions are that
they make it possible to exhaustively explore potential repairs,
or to formally verify the correctness of the repair (at least with
respect to a set of supplied test cases).

The most formal approaches rely on the availability of
specifications, typically by assuming contracts or invariants
specified in the implementation. For example, Wei et al. [187]
fixed bugs in Eiffel code by using their specified contracts.
First, they applied random testing to a large amount of
code and observed failing predicates. They then repaired the
program by restoring the relevant invariant through the appli-
cation of template-based transformations. A similar approach
to catching violated contracts is exemplified by Yu et al. [197],
who catch violated preconditions and execute different code
to correct the erroneous state. Related work was performed by
Dallmeir et al. [198]. This work and the work of Gupta [199]
assume the availability of pre- and post- conditions, and
the presence of a single error. They relied on test-based
localisation to narrow down the space of possible changes.

When specifications are unavailable, information can be
derived from the program and its test cases. The SemFix
tool [105] uses fault localisation and a Satisfiability Modulo
Theories (SMT) solver [200]. It derives a partial specification
via symbolic execution and generates constraints that a single-
line fix must satisfy, while limiting potential repairs to those
captured by a set of templates inferred from human studies.

In order to preserve existing correct behaviour, a heuristic
often employed is to minimise the syntactical or semantic
change to the program. By applying recent advances in SMT
solvers, Mechtaev et al. [119] synthesised minimal patches (in
terms of their semantics) from a possible patch-space based on
fault localisation. They argued that GI tools such as GenProg
are better suited to bugs that require multiple changes to
a program. Constraint solving can also be applied in some
scenarios; for example, Samimi et al. [201] demonstrated the
use of string-based constraint solving to repair PHP code that
generates HTML. The repairs are validated using a test suite.

Concurrency bugs are a popular target for automated repair,
because the correct or desired behaviour is usually straight-
forward to infer, and the possible transformations can be re-
stricted. Jin et al. [196], [202] repaired atomicity violations and
other concurrency bugs by inserting suitable synchronisation
primitives. They relied on testing to ensure the repairs are
faithful to the desired semantics.

One common alternative to metaheuristic search over a
large space of arbitrary transformations is to restrict the
transformations to a relatively small number specified by the
instantiation of a set of templates. The templates are usually
human-designed, or may be extracted from human-written

transformations. For example, Kim et. al. [151] manually
examined 65,536 human-written patches to identify common
templates, such as a change to a method call or branch
condition. They used the templates to eliminate bugs in other
software.

Kocsis et al. [107] exploited available contracts for the Java
equals and hash methods to probe existing Hadoop code for
violations. Simple program transformations were used to repair
violations, before a metaheuristic was used to further optimise
their repairs, in order to improve the quality of hash functions.

In mutation testing, mutants are used to measure how
effective test suites are at detecting faulty programs. Debroy
and Wong [203] and Schulte et al. [204] suggested that the
same operators can be used to repair faulty programs. Debroy
and Wong employed Tarantula for fault localisation to reduce
the set of possible locations for mutation. They also considered
only programs with a single fault at a time.

C. Program Transformation

Program transformation traditionally seeks to improve pro-
grams automatically [110], [111] in order to optimise non-
functional criteria through the deterministic application of
semantics-preserving transformations, although some recent
work relies on test suites as opposed to semantics-preserving
transformations. The general application of search to selecting
transformation sequences has previously been proposed [116].

Code refactoring [205] is one form of transformation. A hy-
brid of automatic and manual transformations is demonstrated
by Meng et al. [206]. Their LASE tool identifies code edits
that need to be repeated elsewhere in a program, while taking
into account the context of the code and matching ‘edit scripts’
expressed as an AST using clone detection.

Traditional program transformation can also be achieved
using metaheuristic search [143], [207], [208]. Usually these
search-based transformations are restricted to semantics-
preserving operations. Kocsis and Swan [108] applied point
mutation to select between alternative algebraic data types that
offer varying asymptotic complexity. An approach that focuses
on the individual software engineer’s role in performing sim-
ilar optimisations is the SEEDS framework [120].

Much work optimises software by replacing heuristic com-
ponents. An elegant example is the Templar tool [209], which
employs a generative hyper-heuristic to improve energy effi-
ciency based on a simple power model, enabling the user to
specify a ‘variation point’ for the search process to specialise.

D. Parameter Tuning

Existing software may offer a set of parameters that can
be used to tune the performance of a program. A well-
known example is the extensive array of options offered by
modern compilers, a target suggested by Williams et al. [144].
Automated parameter tuning [210] can be regarded as a subset
of automated design of algorithms work where search is used
to select the best set of parameters for a given problem.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

E. Approximate Computing

Improvement of non-functional properties using genetic
improvement can lead to the exploration of a Pareto front
in objective space, trading off some functionality in return
for non-functional gains. This pushes GI onto the frontier of
Approximate Computing [211].

Sidiroglou-Douskos et al. [117] introduced the notion of
loop perforation, which omits some iterations of a loop to
gain speed at the cost of accuracy. First, they eliminated
perforations that are fatal to the program, before optimising
multiple remaining perforations via a greedy algorithm. They
applied a well-defined set of transformations to the loop, much
like template-based methods discussed above.

Similarly, Hoffman et al. [212] provided ‘dynamic dials’ to
allow a user to tune the performance trade-offs, by transform-
ing static configuration parameters into dynamic code using
‘influence tracing’. They added a ‘heartbeat’ to the program
to provide feedback on its performance, and adjust the trade-
offs based on this feedback.

F. Data Structure Repair

Erroneous programs can result in invalid data structures,
corruption that may be detected by the violation of structural
integrity constraints, such as those provided by a programmer
in a repOK function. By detecting when violations occur, the
Juzi tool [188], [213] uses symbolic execution of the repOK
function to suggest repairs to the data structure and restore the
invariant in a repair that is sound but not complete. It performs
a systematic search through the variables provided.

G. Studies of Existing Code

In order to pursue research goals in genetic improvement, it
is useful to help both researchers and developers to understand
the search space. Several papers examine open source projects
in detail to investigate the assumptions of tools like GenProg.

One assumption of GI software repair tools is that the
material required to fix the fault lies within the existing
code. Martinez et al. [214] examined the code of open source
projects and examined whether code changes, i.e., commits,
contain material previously seen in the source code repos-
itory of the project. They repeated this investigation at a
line and token level, and found extensive redundancy at a
token level: up to 52% of commits are composed entirely of
tokens written by human programmers in the project. However,
they do not correlate this with bug-fixes, and redundancy at
line level is less common. Related work can be found in
Schulte et al. [204]. Similarly, Barr et al. [71] examined the
‘graftability’ of code commits, examining Apache projects at
line level. They considered the parent revision of the software,
code that was later removed, and also code available from
other projects.

H. Slicing, Partial Evaluation, and Specialisation

Program slicing [215] reduces a program to a minimal form
that retains a desired subset of its original behaviour. It can
thus be used both to optimise the size of existing software as

well as to extract a desired functionality. Traditional program
slicing required program semantics to be preserved. More
recently, observation-based slicing (ORBS) has been proposed
[216]: ORBS relaxes the functionality-preservation criterion
by using a test suite as a proxy for desired program behaviour.
In this sense observation-based slicing is a subset of GI,
where the improvement criterion is the reduction in size of
the program, and the only allowed operation is code deletion.

Closely related to slicing is the idea of program spe-
cialisation; optimising the program for an expected range
of inputs. An area of specialisation that has received much
attention in manual software development is the selection of
application-specific memory managers, typically in embedded
or performance-critical systems. Risco-Martı́n et al. [161]
profiled C++ programs and simulated the impact of memory
manager configuration on allocation and fragmentation.

Partial evaluation [217] seeks to optimise a program by
specialising it with respect to some known inputs. Both partial
evaluation and program slicing aim to simplify software.
However, the output behaviour of the input program can be
different from its slice. In partial evaluation, on the other hand,
the transformed program must return the same answer as the
original, given the same inputs. Partial evaluation can also
be regarded as a subset of GI, where the typical criteria for
improvement is software efficiency.

Programs can further be specialised for the environment
in which they execute. For example, the predominance of
mobile apps in software development has led to renewed
focus on energy consumption, and in mobile phones and
tablets energy consumption is dominated by display screens.
Li et al. [218] exploited the correlation between display colour
and power consumption in order to minimise energy usage
of webpages; they used the simulated annealing metaheuristic
to explore the space of colour transforms. In the same vein,
Linares-Vàsquez et al. [219] optimised the colour scheme
of Android apps, incorporating colour theory to reduce the
aesthetic impact of their transformations.

VI. SUMMARY

We provide an overview of research work in genetic im-
provement. With the ever growing amount and size of software
being developed, the need for automated techniques for soft-
ware improvement is paramount. Because of the abundance
of code available optimisation approaches need not start from
scratch. Furthermore, metaheuristics, such as evolutionary
algorithms, have long been shown to be successful at exploring
large search spaces such as the space of possible software
variants. Genetic improvement combines these insights to im-
prove software through the application of search. We provide a
thorough literature review of papers published between 1995
and 2015 to familiarise the reader with the key results and
concepts used in this new research area. We hope that this
survey will lead to further uptake of genetic improvement
techniques.

REFERENCES

[1] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Inter. Symp. on Software Testing and
Analysis ISSTA. ACM, 2015, pp. 257–269.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

[2] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Genetic and
Evolutionary Computation Conf. GECCO. ACM, 2009, pp. 947–954.

[3] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A system-
atic study of automated program repair: Fixing 55 out of 105 bugs for
$8 each,” in Inter. Conf. on Soft. Eng. ICSE. IEEE Computer Society,
2012, pp. 3–13.

[4] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic
improvement and code transplants to specialise a C++ program to a
problem class,” in European Conf. on Genetic Programming EuroGP,
ser. LNCS, vol. 8599. Springer, 2014, pp. 137–149.

[5] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Inter. Conf. on Soft.
Eng. ICSE. IEEE, 2009, pp. 364–374.

[6] “The ‘Humies’ awards. Held at the annual Genetic and Evolutionary
Computation Conf. (GECCO),” http://www.human-competitive.org/.

[7] M. Harman, Y. Jia, and W. B. Langdon, “Babel Pidgin: SBSE can
grow and graft entirely new functionality into a real world system,” in
Inter. Symp. on Search Based Soft. Eng. SSBSE, ser. LNCS, vol. 8636.
Springer, 2014, pp. 247–252.

[8] “BBC Click Interview with Prof. Mark Harman,”
http://www.bbc.co.uk/programmes/p02y78pp, Online: 4 Aug 2015.

[9] J. Temperton, “Code ‘transplant’ could revolutionise program-
ming,” http://www.wired.co.uk/article/code-organ-transplant-software-
myscalpel, Online: 30 Jul 2015.

[10] J. R. Woodward, J. Petke, and W. B. Langdon, “How computers
are learning to make human software work more efficiently,”
http://cacm.acm.org/news/189000-how-computers-are-learning-to-
make-human-software-work-more-efficiently, Online: 1 Jul 2015.

[11] W. B. Langdon and J. Petke, “Genetic improvement,”
http://blog.ieeesoftware.org/2016/02/genetic-improvement.html,
Online: 3 Feb 2016.

[12] A. A. Lovelace, “Sketch of the analytical engine invented
by Charles Babbage by L. F. Menabrea of Turin, officer
of the military engineers, with notes by the translator,”
https://www.fourmilab.ch/babbage/sketch.html, 1843.

[13] P. B. Sheridan, “The arithmetic translator-compiler of the IBM FOR-
TRAN automatic coding system,” Commun. ACM, vol. 2, no. 2, pp.
9–21, 1959.

[14] A. Church, The Calculi of Lambda Conversion. Princeton University
Press, 1941.

[15] J. McCarthy, “Towards a mathematical theory of computation,” in Inter.
Found. of Inform. Processing Congress IFIP, vol. 62, 1962, pp. 21–28.

[16] J. E. Stoy, Denotational semantics: The Scott–Strachey approach to
programming language theory. MIT Press, 1985.

[17] J. Darlington and R. M. Burstall, “A system which automatically
improves programs,” Acta Inf., vol. 6, pp. 41–60, 1976.

[18] S. L. Gerhart, “Correctness-preserving program transformations,” in
Principles of Prog. Lang. POPL, 1975, pp. 54–66.

[19] H. Partsch, The CIP Transformation System. Springer, 1984.
[20] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E. Volan-

schi, “Tempo: Specializing systems applications and beyond,” ACM
Comput. Surv., vol. 30, no. 3es, p. 19, 1998.

[21] J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, 2006.

[22] Z. Manna and R. J. Waldinger, “Toward automatic program synthesis,”
Commun. ACM, vol. 14, no. 3, pp. 151–165, 1971.

[23] H. A. Simon, “Experiments with a heuristic compiler,” J. ACM, vol. 10,
no. 4, pp. 493–506, 1963.

[24] Z. Manna and R. J. Waldinger, “Knowledge and reasoning in program
synthesis,” Artif. Intell., vol. 6, no. 2, pp. 175–208, 1975.

[25] W. Bibel, “Syntax-directed, semantics-supported program synthesis,”
Artif. Intell., vol. 14, no. 3, pp. 243–261, 1980.

[26] J. Traugott, “Deductive synthesis of sorting programs,” J. Symb. Com-
put., vol. 7, no. 6, pp. 533–572, 1989.

[27] C. Paulin-Mohring and B. Werner, “Synthesis of ML programs in the
system Coq,” J. Symb. Comput., vol. 15, no. 5/6, pp. 607–640, 1993.

[28] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipu-
lation using examples,” Commun. ACM, vol. 55, no. 8, pp. 97–105,
2012.

[29] J. R. Koza, Genetic programming - on the programming of computers
by means of natural selection, ser. Complex adaptive systems. MIT
Press, 1993.

[30] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 49,
pp. 433–460, 1950.

[31] R. Forsyth, “BEAGLE A Darwinian approach to pattern recognition,”
Kybernetes, vol. 10, no. 3, pp. 159–166, 1981.

[32] T. H. Westerdale, Personal communication.
[33] N. L. Cramer, “A representation for the adaptive generation of simple

sequential programs,” in Inter. Conf. on Genetic Algorithms ICGA.
Lawrence Erlbaum Associates, 1985, pp. 183–187.

[34] J. R. Koza, “Non-linear genetic algorithms for solving problems,”
United States Patent 4935877, 1990.

[35] ——, “Hierarchical genetic algorithms operating on populations of
computer programs,” in Inter. Joint Conf. on Artificial Intelligence
IJCAI. Morgan Kaufmann, 1989, pp. 768–774.

[36] D. E. Goldberg, “Computer-aided gas pipeline operation using genetic
algorithms,” Ph.D. dissertation, University of Michigan, 1983.

[37] J. R. Koza and J. P. Rice, “Genetic programming: The movie,” 1992.
[38] T. Hu, W. Banzhaf, and J. H. Moore, “The effects of recombination

on phenotypic exploration and robustness in evolution,” Artificial Life,
vol. 20, no. 4, pp. 457–470, 2014.

[39] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic Pro-
gramming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann, 1998.

[40] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to
Genetic Programming. Published via lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[41] D. Rivero, M. Gestal, and J. R. Rabunal, Genetic Programming: Key
concepts and examples, A brief tutorial on Genetic Programming. LAP
Lambert Academic Publishing, 2011.

[42] A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer, 2002.

[43] E. P. K. Tsang, J. Li, and J. M. Butler, “EDDIE beats the bookies,”
Softw., Pract. Exper., vol. 28, no. 10, pp. 1033–1043, 1998.

[44] A. K. Kordon, Applying Computational Intelligence - How to Create
Value. Springer, 2010.

[45] J. R. Koza, “Human-competitive machine invention by means of
genetic programming,” AI EDAM, vol. 22, no. 3, pp. 185–193, 2008.

[46] B. T. Lam and V. Ciesielski, “Discovery of human-competitive image
texture feature extraction programs using genetic programming,” in
Genetic and Evolutionary Computation Conf. GECCO (2), ser. LNCS,
vol. 3103. Springer, 2004, pp. 1114–1125.

[47] J. Taylor, J. J. Rowland, R. J. Gilbert, A. Jones, M. K. Winson, and
D. B. Kell, “Genetic algorithm decoding for the interpretation of infra-
red spectra in analytical biotechnology,” in European Workshop on
Genetic Programming, EuroGP, 1998, pp. 21–25.

[48] W. B. Langdon and A. P. Harrison, “GP on SPMD parallel graphics
hardware for mega bioinformatics data mining,” Soft Comput., vol. 12,
no. 12, pp. 1169–1183, 2008.

[49] M. Kovacic and B. Sarler, “Application of the genetic programming for
increasing the soft annealing productivity in steel industry,” Materials
and Manufacturing Processes, vol. 24, no. 3, pp. 369–374, 2009.

[50] W. B. Langdon, “Global distributed evolution of L-systems fractals,”
in European Conf. on Genetic Programming EuroGP, ser. LNCS, vol.
3003. Springer, 2004, pp. 349–358.

[51] S. R. DiPaola and L. Gabora, “Incorporating characteristics of human
creativity into an evolutionary art algorithm,” Genetic Programming
and Evolvable Machines, vol. 10, no. 2, pp. 97–110, 2009.

[52] Y. Jia, “Picassevo,” Android App, 2016.
[53] S. Draves, “The electric sheep screen-saver: A case study in aesthetic

evolution,” in Applications of Evolutionary Computing: EvoWorkshops,
2005, pp. 458–467.

[54] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Inter. Conf. on Computer Graphics and Interactive Tech-
niques SIGGRAPH. ACM, 1987, pp. 25–34.

[55] A. M. Turing, “Checking a large routine,” in Report of a Conf. on High
Speed Automatic Calculating Machines, 1949, pp. 67–69.

[56] R. L. Sauder, “A general test data generator for COBOL,” in AFIPS
Spring Joint Computer Conf., 1962, pp. 317–323.

[57] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT – a formal system
for testing and debugging programs by symbolic execution,” in Inter.
Conf. on Reliable Software, 1975, pp. 234–245.

[58] H. Inamura, H. Nakano, and Y. Nakanishi, “Trial-and-error method
for automated test data generation and its evaluation,” Systems and
Computers in Japan, vol. 20, no. 2, pp. 78–92, 1989.

[59] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE Trans. Soft. Eng, vol. 17, no. 9, pp. 900–910, 1991.

[60] B. Korel, “Automated software test data generation,” IEEE Trans. Soft.
Eng, vol. 16, no. 8, pp. 870–879, 1990.

[61] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

[62] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in International
Conference in Software Testing ICST, 2015, pp. 1–12.

[63] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Soft. Eng, vol. 37, no. 5, pp. 649–678,
2011.

[64] E. W. Dijkstra, “Structured programming,”
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF, 1969,
circulated privately.

[65] C. A. R. Hoare, “The role of formal techniques: Past, current and future
or how did software get so reliable without proof? (extended abstract),”
in Inter. Conf. on Soft. Eng. ICSE. IEEE Computer Society, 1996, pp.
233–234.

[66] M. Gaudel, “Testing can be formal, too,” in Inter. Joint Conf. on Theory
and Practice of Software Development TAPSOFT, ser. LNCS, vol. 915.
Springer, 1995, pp. 82–96.

[67] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. J. Krause, G. Lüttgen,
A. J. H. Simons, S. A. Vilkomir, M. R. Woodward, and H. Zedan,
“Using formal specifications to support testing,” ACM Comput. Surv.,
vol. 41, no. 2, pp. 9:1–9:76, 2009.

[68] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Composi-
tional shape analysis by means of bi-abduction,” J. ACM, vol. 58, no. 6,
pp. 26:1–26:66, 2011.

[69] B. Godlin and O. Strichman, “Regression verification: Proving the
equivalence of similar programs,” Softw. Test., Verif. Reliab., vol. 23,
no. 3, pp. 241–258, 2013.

[70] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
SIGSOFT Inter. Symp. on the Found. of Soft. Eng. FSE. ACM, 2010,
pp. 147–156.

[71] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in SIGSOFT Inter. Symp. on the Found. of
Soft. Eng. FSE. ACM, 2014, pp. 306–317.

[72] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Trans. Soft. Eng, vol. 27, no. 2, pp. 99–123, 2001.

[73] D. Binkley, N. E. Gold, M. Harman, S. S. Islam, J. Krinke, and S. Yoo,
“ORBS and the limits of static slicing,” in Inter. Working Conf. on
Source Code Analysis and Manipulation SCAM. IEEE Computer
Society, 2015, pp. 1–10.

[74] W. Miller and D. L. Spooner, “Automatic generation of floating-point
test data,” IEEE Trans. Soft. Eng, vol. 2, no. 3, pp. 223–226, 1976.

[75] M. Harman and B. F. Jones, “Search-based software engineering,”
Information & Software Technology, vol. 43, no. 14, pp. 833–839, 2001.

[76] C. K. Chang, C. Chao, S. Hsieh, and Y. Alsalqan, “SPMNet: A formal
methodology for software management,” in Inter. Computer Software
and Applications Conf. COMPSAC. IEEE, 1994.

[77] J. J. Dolado, “A validation of the component-based method for software
size estimation,” IEEE Trans. Soft. Eng, vol. 26, no. 10, pp. 1006–1021,
2000.

[78] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and
K. Karapoulios, “Application of genetic algorithms to software testing,”
in Inter. Conf. on Soft. Eng. and Applications, 1992, pp. 625–636.

[79] N. Tracey, J. A. Clark, and K. Mander, “The way forward for unifying
dynamic test-case generation: The optimisation-based approach,” in
IFIP Inter. Workshop on Dependable Computing and Its Applications
DCIA, 1998, pp. 169–180.

[80] R. Feldt, “Genetic programming as an explorative tool in early software
development phases,” in Inter. Workshop on Soft Computing Applied
to Soft. Eng. SCASE, 1999, pp. 11–20.

[81] ——, “Generating diverse software versions with genetic program-
ming: An experimental study,” IEE Proceedings - Software, vol. 145,
no. 6, pp. 228–236, 1998.

[82] K. Lakhotia, M. Harman, and P. McMinn, “A multi-objective approach
to search-based test data generation,” in Genetic and Evolutionary
Computation Conf. GECCO. ACM, 2007, pp. 1098–1105.

[83] S. Kalboussi, S. Bechikh, M. Kessentini, and L. B. Said, “Preference-
based many-objective evolutionary testing generates harder test cases
for autonomous agents,” in Inter. Symp. on Search Based Soft. Eng.
SSBSE, ser. LNCS, vol. 8084. Springer, 2013, pp. 245–250.

[84] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh,
K. Deb, and A. Ouni, “Many-objective software remodularization using
NSGA-III,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 3, pp.
17:1–17:45, 2015.

[85] A. Ramı́rez, J. R. Romero, and S. Ventura, “A comparative study of
many-objective evolutionary algorithms for the discovery of software

architectures,” Empirical Soft. Eng., vol. 21, no. 6, pp. 2546–2600,
2016.

[86] Y. Zhang, A. Finkelstein, and M. Harman, “Search based requirements
optimisation: Existing work and challenges,” in Inter. Working Conf. on
Requirements Eng.: Found. for Software Quality REFSQ, ser. LNCS,
vol. 5025. Springer, 2008, pp. 88–94.

[87] W. Afzal and R. Torkar, “On the application of genetic programming
for software engineering predictive modeling: A systematic review,”
Expert Syst. Appl., vol. 38, no. 9, pp. 11 984–11 997, 2011.

[88] M. Harman, “The relationship between search based software engi-
neering and predictive modeling,” in Inter. Conf. on Predictive Models
in Soft. Eng. PROMISE, 2010, p. 1.

[89] F. Ferrucci, M. Harman, and F. Sarro, “Search-based software project
management,” in Software Project Management in a Changing World.
Springer, 2014, pp. 373–399.

[90] O. Räihä, “A survey on search-based software design,” Computer
Science Review, vol. 4, no. 4, pp. 203–249, 2010.

[91] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information & Software
Technology, vol. 51, no. 6, pp. 957–976, 2009.

[92] P. McMinn, “Search-based software testing: Past, present and future,” in
International Conference in Software Testing ICST Workshops. IEEE
Computer Society, 2011, pp. 153–163.

[93] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line engi-
neering: A survey and directions for future work,” in Inter. Software
Product Line Conf. SPLC. ACM, 2014, pp. 5–18.

[94] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software Quality Journal, vol. 21, no. 3,
pp. 421–443, 2013.

[95] F. G. de Freitas and J. Teixeira de Souza, “Ten years of search based
software engineering: A bibliometric analysis,” in Inter. Symp. on
Search Based Soft. Eng. SSBSE, ser. LNCS, vol. 6956. Springer,
2011, pp. 18–32.

[96] P. Walsh and C. Ryan, “Automatic conversion of programs from serial
to parallel using genetic programming - the Paragen system,” in Parallel
Computing Conf. PARCO, ser. Advances in Parallel Computing, vol. 11.
Elsevier, 1995, pp. 415–422.

[97] C. Ryan, “Reducing premature convergence in evolutionary algo-
rithms,” Ph.D. dissertation, University College Cork, 1996.

[98] D. R. White, J. A. Clark, J. Jacob, and S. M. Poulding, “Searching
for resource-efficient programs: Low-power pseudorandom number
generators,” in Genetic and Evolutionary Computation Conf. GECCO,
2008, pp. 1775–1782.

[99] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in IEEE Congress on Evolutionary Computation.
IEEE, 2008, pp. 162–168.

[100] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improvement
of programs,” IEEE Trans. Evolutionary Computation, vol. 15, no. 4,
pp. 515–538, 2011.

[101] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the pareto program
surface using genetic programming to find better programs (keynote
paper),” in Inter. Conf. on Automated Soft. Eng. ASE. ACM, 2012,
pp. 1–14.

[102] M. Orlov and M. Sipper, “Flight of the FINCH through the java
wilderness,” IEEE Trans. Evolutionary Computation, vol. 15, no. 2,
pp. 166–182, 2011.

[103] E. W. Dijkstra, “On the cruelty of really teaching computing sci-
ence,” http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF,
1988, circulated privately.

[104] M. Harman, “Why source code analysis and manipulation will always
be important,” in Inter. Working Conf. on Source Code Analysis and
Manipulation SCAM. IEEE Computer Society, 2010, pp. 7–19.

[105] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
program repair via semantic analysis,” in Inter. Conf. on Soft. Eng.
ICSE. IEEE Computer Society, 2013, pp. 772–781.

[106] V. Mrazek, Z. Vası́cek, and L. Sekanina, “Evolutionary approximation
of software for embedded systems: Median function,” in Genetic and
Evolutionary Computation Conf. GECCO (Companion). ACM, 2015,
pp. 795–801.

[107] Z. A. Kocsis, G. Neumann, J. Swan, M. G. Epitropakis, A. E. I.
Brownlee, S. O. Haraldsson, and E. Bowles, “Repairing and optimizing
hadoop hashcode implementations,” in Inter. Symp. on Search Based
Soft. Eng. SSBSE, ser. LNCS, vol. 8636. Springer, 2014, pp. 259–264.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

[108] Z. A. Kocsis and J. Swan, “Asymptotic genetic improvement program-
ming via type functors and catamorphisms,” in Semantic GP Workshop,
PPSN, 2014.

[109] N. Burles, E. Bowles, A. E. I. Brownlee, Z. A. Kocsis, J. Swan,
and N. Veerapen, “Object-oriented genetic improvement for improved
energy consumption in Google Guava,” in Inter. Symp. on Search Based
Soft. Eng. SSBSE, ser. LNCS, vol. 9275. Springer, 2015, pp. 255–261.

[110] R. M. Burstall and J. Darlington, “A transformation system for devel-
oping recursive programs,” J. ACM, vol. 24, no. 1, pp. 44–67, 1977.

[111] H. A. Partsch, The Specification and Transformation of Programs: A
Formal Approach to Software Development. Springer, 1990.

[112] M. Orlov and M. Sipper, “Evolutionary software improvement for
instruction set meta-evolution,” in Workshop and Summer School on
Evolutionary Computing WSSEC, 2008, pp. 60–63.

[113] ——, “Genetic programming in the wild: Evolving unrestricted byte-
code,” in Genetic and Evolutionary Computation Conf. GECCO.
ACM, 2009, pp. 1043–1050.

[114] K. P. Williams, “Evolutionary algorithms for automatic parallelization,”
Ph.D. dissertation, University of Reading, UK, 1998.

[115] P. Walsh and C. Ryan, “Paragen: A novel technique for the autopar-
allelisation of sequential programs using genetic programming,” in
Genetic and Evolutionary Computation Conf. GECCO, 1996.

[116] D. Fatiregun, M. Harman, and R. M. Hierons, “Search based trans-
formations,” in Genetic and Evolutionary Computation Conf. GECCO,
ser. LNCS, vol. 2724. Springer, 2003, pp. 2511–2512.

[117] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. C. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in SIGSOFT Inter. Symp. on the Found. of Soft. Eng. FSE. ACM, 2011,
pp. 124–134.

[118] S. H. Tan and A. Roychoudhury, “relifix: Automated repair of software
regressions,” in Inter. Conf. on Soft. Eng. ICSE (1). IEEE Computer
Society, 2015, pp. 471–482.

[119] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
simple program repairs,” in Inter. Conf. on Soft. Eng. ICSE (1). IEEE
Computer Society, 2015, pp. 448–458.

[120] I. L. M. Gutiérrez, L. L. Pollock, and J. Clause, “SEEDS: a software
engineer’s energy-optimization decision support framework,” in Inter.
Conf. on Soft. Eng. ICSE. ACM, 2014, pp. 503–514.

[121] T. C. O. C. S. Bibliographies, “Online collection of bibliographies
of scientific literature in computer science from various sources.”
http://www.sciencedirect.com/.

[122] ACM, “Digital library,” http://dl.acm.org/.
[123] I. Xplore, “Digital library,” http://ieeexplore.ieee.org/Xplore/home.jsp.
[124] SpringerLink, “Online search platform,” http://link.springer.com/.
[125] ScienceDirect, “Elsevier’s online search platform,”

http://www.sciencedirect.com/.
[126] W. B. Langdon and J. Petke, “Software is not fragile,” in Complex

Systems Digital Campus CS-DC. Springer, 2017, pp. 203–211.
[127] A. Arcuri, “Automatic software generation and improvement through

search based techniques,” Ph.D. dissertation, University of Birming-
ham, UK, 2009.

[128] D. R. White, “Genetic programming for low-resource systems,” Ph.D.
dissertation, University of York, UK, 2009.

[129] P. Sitthi-amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic
programming for shader simplification,” ACM Trans. Graph., vol. 30,
no. 6, pp. 152:1–152:12, 2011.

[130] W. B. Langdon and M. Harman, “Grow and graft a better CUDA
pknotsrg for RNA pseudoknot free energy calculation,” in Genetic and
Evolutionary Computation Conf. GECCO (Companion). ACM, 2015,
pp. 805–810.

[131] E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing better
fitness functions for automated program repair,” in Genetic and Evo-
lutionary Computation Conf. GECCO. ACM, 2010, pp. 965–972.

[132] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in Inter. Conf. on Soft.
Maintenance and Evolution ICSM. IEEE Computer Society, 2013,
pp. 180–189.

[133] A. Marginean, E. T. Barr, M. Harman, and Y. Jia, “Automated trans-
plantation of call graph and layout features into Kate,” in Inter. Symp.
on Search Based Soft. Eng. SSBSE, ser. LNCS, vol. 9275. Springer,
2015, pp. 262–268.

[134] C. Le Goues, “Automatic program repair using genetic programming,”
Ph.D. dissertation, Faculty of the School of Engineering and Applied
Science, University of Virginia, 2013.

[135] A. Arcuri, “On search based software evolution,” in Inter. Symp. on
Search Based Soft. Eng. SSBSE, 2009, pp. 39–42.

[136] J. L. Wilkerson and D. R. Tauritz, “Coevolutionary automated software
correction,” in Genetic and Evolutionary Computation Conf. GECCO.
ACM, 2010, pp. 1391–1392.

[137] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? Overfitting in automated program repair,” in
ESEC/SIGSOFT Inter. Symp. on the Found. of Soft. Eng. FSE. ACM,
2015, pp. 532–543.

[138] D. R. White and J. Singer, “Rethinking genetic improvement pro-
gramming,” in Genetic and Evolutionary Computation Conf. GECCO
(Companion). ACM, 2015, pp. 845–846.

[139] M. Harman, W. B. Langdon, and W. Weimer, “Genetic programming
for reverse engineering,” in Working Conf. on Reverese Eng. WCRE.
IEEE Computer Society, 2013, pp. 1–10.

[140] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Au-
tomatic error elimination by horizontal code transfer across multiple
applications,” in Programming Language Design and Implementation
PLDI. ACM, 2015, pp. 43–54.

[141] Y. Jia, M. Harman, W. B. Langdon, and A. Marginean, “Grow and
serve: Growing Django citation services using SBSE,” in Inter. Symp.
on Search Based Soft. Eng. SSBSE, ser. LNCS, vol. 9275. Springer,
2015, pp. 269–275.

[142] C. Ryan and L. Ivan, “Automatic parallelization of arbitrary programs,”
in European Conf. on Genetic Programming EuroGP, ser. LNCS, vol.
1598. Springer, 1999, pp. 244–254.

[143] C. Ryan and P. Walsh, “The evolution of provable parallel programs,”
in Genetic and Evolutionary Computation Conf. GECCO, 1997, pp.
295–302.

[144] K. P. Williams and S. A. Williams, “Genetic compilers: A new
technique for automatic parallelisation,” in European School of Parallel
Programming Environments ESPPE, 1996, pp. 27–30.

[145] E. M. Schulte, W. Weimer, and S. Forrest, “Repairing COTS router
firmware without access to source code or test suites: A case study in
evolutionary software repair,” in Genetic and Evolutionary Computa-
tion Conf. GECCO (Companion). ACM, 2015, pp. 847–854.

[146] A. Arcuri, “On the automation of fixing software bugs,” in Inter. Conf.
on Soft. Eng. ICSE Companion. ACM, 2008, pp. 1003–1006.

[147] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Soft. Eng,
vol. 38, no. 1, pp. 54–72, 2012.

[148] C. Le Goues, W. Weimer, and S. Forrest, “Representations and op-
erators for improving evolutionary software repair,” in Genetic and
Evolutionary Computation Conf. GECCO. ACM, 2012, pp. 959–966.

[149] T. Nguyen, W. Weimer, C. Le Goues, and S. Forrest, “Using execution
paths to evolve software patches,” in International Conference in
Software Testing ICST Workshops. IEEE Computer Society, 2009,
pp. 152–153.

[150] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in Inter. Conf.
on Automated Soft. Eng. ASE. IEEE, 2013, pp. 356–366.

[151] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Inter. Conf. on Soft. Eng.
ICSE. IEEE Computer Society, 2013, pp. 802–811.

[152] Z. Qi, F. Long, S. Achour, and M. C. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Inter. Symp. on Software Testing and Analysis ISSTA.
ACM, 2015, pp. 24–36.

[153] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Inter. Conf. on Soft. Eng. ICSE.
ACM, 2014, pp. 254–265.

[154] A. Arcuri, “Evolutionary repair of faulty software,” Appl. Soft Comput.,
vol. 11, no. 4, pp. 3494–3514, 2011.

[155] A. Arcuri, D. R. White, J. A. Clark, and X. Yao, “Multi-objective
improvement of software using co-evolution and smart seeding,” in
Inter. Conf. on Simulated Evolution and Learning SEAL, ser. LNCS,
vol. 5361. Springer, 2008, pp. 61–70.

[156] E. M. Schulte, S. Forrest, and W. Weimer, “Automated program repair
through the evolution of assembly code,” in Inter. Conf. on Automated
Soft. Eng. ASE. ACM, 2010, pp. 313–316.

[157] E. M. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated
repair of binary and assembly programs for cooperating embedded
devices,” in Inter. Conf. on Architectural Support for Prog. Lang. and
Operating Systems ASPLOS. ACM, 2013, pp. 317–328.

[158] E. M. Schulte, “Neutral networks of real-world programs and their
application to automated software evolution,” Ph.D. dissertation, Uni-
versity of New Mexico, 2014.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

[159] J. L. Wilkerson, D. R. Tauritz, and J. M. Bridges, “Multi-objective
coevolutionary automated software correction,” in Genetic and Evolu-
tionary Computation Conf. GECCO. ACM, 2012, pp. 1229–1236.

[160] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for soft-
ware repair,” in Genetic and Evolutionary Computation Conf. GECCO.
ACM, 2011, pp. 1427–1434.

[161] J. L. Risco-Martı́n, J. M. Colmenar, J. I. Hidalgo, J. Lanchares, and
J. Dı́az, “A methodology to automatically optimize dynamic memory
managers applying grammatical evolution,” Journal of Systems and
Software, vol. 91, pp. 109–123, 2014.

[162] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep param-
eter optimisation,” in Genetic and Evolutionary Computation Conf.
GECCO. ACM, 2015, pp. 1375–1382.

[163] J. Petke, W. B. Langdon, and M. Harman, “Applying genetic improve-
ment to MiniSAT,” in Inter. Symp. on Search Based Soft. Eng. SSBSE,
ser. LNCS, vol. 8084. Springer, 2013, pp. 257–262.

[164] W. B. Langdon and M. Harman, “Genetically improved CUDA C++
software,” in European Conf. on Genetic Programming EuroGP, ser.
LNCS, vol. 8599. Springer, 2014, pp. 87–99.

[165] B. Cody-Kenny and S. Barrett, “The emergence of useful bias in self-
focusing genetic programming for software optimisation,” in Inter.
Symp. on Search Based Soft. Eng. SSBSE, ser. LNCS, vol. 8084.
Springer, 2013, pp. 306–311.

[166] W. B. Langdon, “Genetic improvement of programs,” in SYNASC.
IEEE Computer Society, 2014, pp. 14–19.

[167] ——, “Genetic improvement of software for multiple objectives,” in
Inter. Symp. on Search Based Soft. Eng. SSBSE, ser. LNCS, vol. 9275.
Springer, 2015, pp. 12–28.

[168] W. B. Langdon, M. Modat, J. Petke, and M. Harman, “Improving
3D medical image registration CUDA software with genetic pro-
gramming,” in Genetic and Evolutionary Computation Conf. GECCO.
ACM, 2014, pp. 951–958.

[169] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
CUDA DNA analysis software with genetic programming,” in Genetic
and Evolutionary Computation Conf. GECCO. ACM, 2015, pp. 1063–
1070.

[170] W. B. Langdon, “Performance of genetic programming optimised
Bowtie2 on genome comparison and analytic testing (GCAT) bench-
marks,” BioData Mining, vol. 8, p. 1, 2015.

[171] S. O. Haraldsson and J. R. Woodward, “Genetic improvement of energy
usage is only as reliable as the measurements are accurate,” in Genetic
and Evolutionary Computation Conf. GECCO (Companion). ACM,
2015, pp. 821–822.

[172] B. R. Bruce, “Energy optimisation via genetic improvement: A SBSE
technique for a new era in software development,” in Genetic and
Evolutionary Computation Conf. GECCO (Companion). ACM, 2015,
pp. 819–820.

[173] E. M. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-
compiler software optimization for reducing energy,” in Inter. Conf. on
Architectural Support for Prog. Lang. and Operating Systems ASPLOS.
ACM, 2014, pp. 639–652.

[174] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Genetic and Evolutionary Computation
Conf. GECCO. ACM, 2015, pp. 1327–1334.

[175] M. Harman and J. Petke, “GI4GI: improving genetic improvement
fitness functions,” in Genetic and Evolutionary Computation Conf.
GECCO (Companion). ACM, 2015, pp. 793–794.

[176] C. G. Johnson and J. R. Woodward, “Fitness as task-relevant informa-
tion accumulation,” in Genetic and Evolutionary Computation Conf.
GECCO (Companion). ACM, 2015, pp. 855–856.

[177] R. E. Lopez-Herrejon, L. Linsbauer, W. K. G. Assunção, S. Fischer,
S. R. Vergilio, and A. Egyed, “Genetic improvement for software prod-
uct lines: An overview and a roadmap,” in Genetic and Evolutionary
Computation Conf. GECCO (Companion). ACM, 2015, pp. 823–830.

[178] J. Landsborough, S. Harding, and S. Fugate, “Removing the kitchen
sink from software,” in Genetic and Evolutionary Computation Conf.
GECCO (Companion). ACM, 2015, pp. 833–838.

[179] Y. Jia, F. Wu, M. Harman, and J. Krinke, “Genetic improvement using
higher order mutation,” in Genetic and Evolutionary Computation Conf.
GECCO (Companion). ACM, 2015, pp. 803–804.

[180] W. B. Langdon and M. Harman, “Evolving a CUDA kernel from an
nVidia template,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1–8.

[181] ——, “Optimizing existing software with genetic programming,” IEEE
Trans. Evolutionary Computation, vol. 19, no. 1, pp. 118–135, 2015.

[182] B. Cody-Kenny, E. G. López, and S. Barrett, “locoGP: Improving
performance by genetic programming Java source code,” in Genetic
and Evolutionary Computation Conf. GECCO (Companion). ACM,
2015, pp. 811–818.

[183] J. Swan, M. G. Epitropakis, and J. R. Woodward, “Gen-O-Fix: an
embeddable framework for dynamic adaptive genetic improvement
programming,” Computing Science and Mathematics, University of
Stirling, Tech. Rep., 2014.

[184] K. Yeboah-Antwi and B. Baudry, “Embedding adaptivity in software
systems using the ECSELR framework,” in Genetic and Evolutionary
Computation Conf. GECCO (Companion). ACM, 2015, pp. 839–844.

[185] N. Burles, J. Swan, E. Bowles, A. E. I. Brownlee, Z. A. Kocsis,
and N. Veerapen, “Embedded dynamic improvement,” in Genetic and
Evolutionary Computation Conf. GECCO (Companion). ACM, 2015,
pp. 831–832.

[186] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo,
and F. Wu, “Genetic improvement for adaptive software engineering
(keynote),” in Inter. Symp. on Soft. Eng. for Adaptive and Self-
Managing Systems SEAMS. ACM, 2014, pp. 1–4.

[187] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in Inter.
Symp. on Software Testing and Analysis ISSTA. ACM, 2010, pp.
61–72.

[188] B. Elkarablieh and S. Khurshid, “Juzi: A tool for repairing complex
data structures,” in Inter. Conf. on Soft. Eng. ICSE. ACM, 2008, pp.
855–858.

[189] R. Balzer, “A 15 year perspective on automatic programming,” IEEE
Trans. Soft. Eng, vol. 11, no. 11, pp. 1257–1268, 1985.

[190] S. Gulwani, “Synthesis from examples: Interaction models and al-
gorithms,” in Inter. Symp. on Symbolic and Numeric Algorithms for
Scientific Computing SYNASC. IEEE Computer Society, 2012, pp.
8–14.

[191] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in Programming Language Design and Implementation
PLDI. ACM, 2011, pp. 317–328.

[192] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Inter. Symp. on Fault-
Tolerant Computing FTCS, 1978, pp. 3–9.

[193] S. O. Haraldsson and J. R. Woodward, “Automated design of al-
gorithms and genetic improvement: Contrast and commonalities,” in
Genetic and Evolutionary Computation Conf. GECCO (Companion).
ACM, 2014, pp. 1373–1380.

[194] G. Katz and D. A. Peled, “Synthesizing, correcting and improving
code, using model checking-based genetic programming,” in Haifa
Verification Conf., ser. LNCS, vol. 8244. Springer, 2013, pp. 246–261.

[195] M. Monperrus, “A critical review of ”automatic patch generation
learned from human-written patches”: Essay on the problem statement
and the evaluation of automatic software repair,” in Inter. Conf. on Soft.
Eng. ICSE. ACM, 2014, pp. 234–242.

[196] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” in Programming Language Design and Implementa-
tion PLDI. ACM, 2011, pp. 389–400.

[197] Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer, “Code-based
automated program fixing,” in Inter. Conf. on Automated Soft. Eng.
ASE. IEEE Computer Society, 2011, pp. 392–395.

[198] V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from object
behavior anomalies,” in Inter. Conf. on Automated Soft. Eng. ASE.
IEEE Computer Society, 2009, pp. 550–554.

[199] H. He and N. Gupta, “Automated debugging using path-based weakest
preconditions,” in Inter. Conf. on Fundamental Approaches to Soft. Eng.
FASE, ser. LNCS, vol. 2984. Springer, 2004, pp. 267–280.

[200] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, ser. Frontiers in Artif.
Intell. and Applications. IOS Press, 2009, vol. 185, pp. 825–885.

[201] H. Samimi, M. Schäfer, S. Artzi, T. D. Millstein, F. Tip, and L. J.
Hendren, “Automated repair of HTML generation errors in PHP
applications using string constraint solving,” in Inter. Conf. on Soft.
Eng. ICSE. IEEE Computer Society, 2012, pp. 277–287.

[202] G. Jin, W. Zhang, and D. Deng, “Automated concurrency-bug fixing,”
in Symp. on Operating Systems Design and Implementation OSDI.
USENIX Association, 2012, pp. 221–236.

[203] V. Debroy and W. E. Wong, “Using mutation to automatically suggest
fixes for faulty programs,” in International Conference in Software
Testing ICST. IEEE Computer Society, 2010, pp. 65–74.

[204] E. M. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest,
“Software mutational robustness,” Genetic Programming and Evolvable
Machines, vol. 15, no. 3, pp. 281–312, 2014.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

[205] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Trans. Soft. Eng, vol. 30, no. 2, pp. 126–139, 2004.

[206] N. Meng, M. Kim, and K. S. McKinley, “LASE: locating and applying
systematic edits by learning from examples,” in Inter. Conf. on Soft.
Eng. ICSE. IEEE Computer Society, 2013, pp. 502–511.

[207] D. Fatiregun, M. Harman, and R. M. Hierons, “Search-based amor-
phous slicing,” in Working Conf. on Reverese Eng. WCRE. IEEE
Computer Society, 2005, pp. 3–12.

[208] ——, “Evolving transformation sequences using genetic algorithms,”
in Inter. Working Conf. on Source Code Analysis and Manipulation
SCAM. IEEE Computer Society, 2004, pp. 66–75.

[209] J. Swan and N. Burles, “Templar - A framework for template-method
hyper-heuristics,” in European Conf. on Genetic Programming EuroGP,
ser. LNCS, vol. 9025. Springer, 2015, pp. 205–216.

[210] H. H. Hoos, “Programming by optimization,” Commun. ACM, vol. 55,
no. 2, pp. 70–80, 2012.

[211] C. M. Kirsch and H. Payer, “Incorrect systems: It’s not the problem, it’s
the solution,” in Design Auto. Conf. DAC. ACM, 2012, pp. 913–917.

[212] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. C. Rinard, “Dynamic knobs for responsive power-aware com-
puting,” in Inter. Conf. on Architectural Support for Prog. Lang. and
Operating Systems ASPLOS. ACM, 2011, pp. 199–212.

[213] S. Khurshid, I. Garcı́a, and Y. L. Suen, “Repairing structurally complex
data,” in Inter. SPIN Symp. on Model Checking of Software SPIN, ser.
LNCS, vol. 3639. Springer, 2005, pp. 123–138.

[214] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients
already exist? An empirical inquiry into the redundancy assumptions
of program repair approaches,” in Inter. Conf. on Soft. Eng. ICSE
Companion. ACM, 2014, pp. 492–495.

[215] M. Weiser, “Program slicing,” IEEE Trans. Soft. Eng, vol. 10, no. 4,
pp. 352–357, 1984.

[216] D. Binkley, N. Gold, M. Harman, S. S. Islam, J. Krinke, and S. Yoo,
“ORBS: language-independent program slicing,” in SIGSOFT Inter.
Symp. on the Found. of Soft. Eng. FSE. ACM, 2014, pp. 109–120.

[217] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and
automatic program generation, ser. Prentice Hall international series
in computer science. Prentice Hall, 1993.

[218] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications
more energy efficient for OLED smartphones,” in Inter. Conf. on Soft.
Eng. ICSE. ACM, 2014, pp. 527–538.

[219] M. L. Vásquez, G. Bavota, C. E. Bernal-Cárdenas, R. Oliveto, M. D.
Penta, and D. Poshyvanyk, “Optimizing energy consumption of GUIs
in Android apps: A multi-objective approach,” in ESEC/SIGSOFT Inter.
Symp. on the Found. of Soft. Eng. FSE. ACM, 2015, pp. 143–154.

Justyna Petke is a Senior Research Associate at
the Centre for Research on Evolution, Search and
Testing (CREST) in University College London.
She has published articles on the applications of
genetic improvement. Her work on GI won an ACM
SIGSOFT distinguished paper award at ISSTA and
two Humie’s at GECCO 2014 and 2016 (awarded
for human-competitive results). She is supported by
the Dynamic Adaptive Automated Software Engi-
neering grant from the UK Engineering and Physical
Sciences Research Council (EPSRC). She also has

a doctorate in Computer Science from the University of Oxford in the area
of constraint solving.

Saemundur O. Haraldsson is a PhD candidate in
the Department of Computing Science and Math-
ematics at the University of Stirling. He holds an
MSc in industrial engineering from the University
of Iceland. He is the primary developer of the first
live software system that autonomously uses Genetic
Improvement to fix bugs within itself. His research
interests are focused on Genetic Improvement, auto-
matic program repair in particular.

Mark Harman is currently an engineering manager
at Facebook and a part time professor of Software
Engineering in the Department of Computer Science
at University College London, where he directed
the CREST centre for ten years (2006-2017) and
was Head of Software Systems Engineering (2012-
2017). He is widely known for work on source
code analysis, software testing, app store analysis
and Search Based Software Engineering (SBSE), a
field he co-founded and which has grown rapidly to
include over 1,600 authors spread over more than 40

countries. His SBSE and testing work has been used by many organisations
including Daimler, Ericsson, Google, Huawei, Microsoft and Visa. Prof.
Harman is a co-founder (and was co-director) of Appredict, an app store
analytics company, spun out from UCL’s UCLappA group, and is the chief
scientific advisor to Majicke, an automated test data generation start up. In
February 2017, he and the other two co-founders of Majicke (Yue Jia and
Ke Mao) moved to Facebook, London, in order to develop their research and
technology as part of Facebook.

William B. Langdon is a professorial research
fellow in UCL. He worked on distributed real time
databases for control and monitoring of power sta-
tions at the Central Electricity Research Laborato-
ries. He then joined Logica to work on distributed
control of gas pipelines and later on computer
and telecommunications networks. After returning to
academia to gain a PhD in genetic programming at
UCL (sponsored by National Grid plc.), he worked
at the University of Birmingham, the CWI, UCL,
Essex University, King’s College London and now

for a third time at University College London.

David R. White is a researcher in the Department
of Computer Science at UCL. He has a PhD in
Computer Science from the University of York,
where he published some of the seminal papers on
Genetic Improvement. He subsequently worked as a
SICSA Research Fellow at the University of Glas-
gow, where he led the Raspberry Pi Cloud project,
and later worked on the EPSRC AnyScale project.
At UCL, he is part of the EPSRC DAASE project
in automated and adaptive software engineering. His
research interests include program synthesis through

heuristic search and the optimisation of non-functional properties of embedded
systems.

John R. Woodward holds degrees in theoretical
physics, cognitive science, and computer science, all
from the University of Birmingham, UK. Currently,
he is with the School of Computer Science and
Mathematics at the University of Stirling, He is
a member of the Computational Heuristics, Op-
erational Research and Decision Support research
group. He was with the European Organization
for Nuclear Research (CERN), where he conducted
research into particle physics, the Royal Air Force
as an Environmental Noise Scientist, and Electronic

Data Systems as a Systems Engineer. He is funded by the DAASE project
(EP/J017515/1 Dynamic Adaptive Automated Software Engineering) and
(EP/N002849/1 FAIME: A Feature based Framework to Automatically Inte-
grate and Improve Metaheuristics via Examples). He is an investigator on an
EPSRC grant (EP/N029577/1 TRANSIT: Towards a Robust Airport Decision
Support) with three other universities. The aim is to take existing routing and
scheduling software and adapt it for specific airport layouts. Partners include
Manchester Airport, Air France KLM, Rolls-Royce, and BAE Systems.

	Introduction
	History of Genetic Improvement
	Before Electronic Computers
	Program Transformation
	Program Synthesis
	Genetic Programming
	Testing and Validation
	Search Based Software Engineering
	Genetic Improvement and the Way Ahead

	Survey Methodology
	Existing Work on Genetic Improvement
	Preserved Properties
	Use of existing software
	Source of Genetic Material for Genetic Improvement
	Code Transplants

	Criteria for improvement
	Testing as a fitness measure
	Other fitness functions
	Multi-objective improvement

	Search
	Search operators
	Representation of Programs used for Genetic Improvement

	Related Work
	Program Synthesis
	Software repair
	Program Transformation
	Parameter Tuning
	Approximate Computing
	Data Structure Repair
	Studies of Existing Code
	Slicing, Partial Evaluation, and Specialisation

	Summary
	References
	Biographies
	Justyna Petke
	Saemundur O. Haraldsson
	Mark Harman
	William B. Langdon
	David R. White
	John R. Woodward

