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Abstract. Genetic Improvement (GI) uses automated search to improve
existing software. It can be used to improve runtime, energy consump-
tion, fix bugs, and any other software property, provided that such prop-
erty can be encoded into a fitness function. GI usually relies on testing to
check whether the changes disrupt the intended functionality of the soft-
ware, which makes test suites important artefacts for the overall success
of GI. The objective of this work is to establish which characteristics of
the test suites correlate with the effectiveness of GI. We hypothesise that
different test suite properties may have different levels of correlation to
the ratio between overfitting and non-overfitting patches generated by
the GI algorithm. In order to test our hypothesis, we perform a set of
experiments with automatically generated test suites using EvoSuite and
4 popular coverage criteria. We used these test suites as input to a GI
process and collected the patches generated throughout such a process.
We find that while test suite coverage has an impact on the ability of
GI to produce correct patches, with branch coverage leading to least
overfitting, the overfitting rate was still significant. We also compared
automatically generated tests with manual, developer-written ones and
found that while manual tests had lower coverage, the GI runs with man-
ual tests led to less overfitting than in the case of automatically generated
tests. Finally, we did not observe enough statistically significant correla-
tions between the coverage metrics and overfitting ratios of patches, i.e.,
the coverage of test suites cannot be used as a linear predictor for the
level of overfitting of the generated patches.

Keywords: Genetic Improvement · Search-Based Software Engineering
· Overfitting

1 Introduction

Genetic Improvement uses automated search to improve existing software [19].
GI navigates the search space of mutated program variants in order to find one
that improves the desired property. This technique has been successfully used to
fix bugs [1, 14], add an additional feature [3, 20], improve runtime [12], energy [7],
and reduce memory consumption [5, 24].

In the vast majority of GI work, each software variant is evaluated using a
test suite, which is treated as a proxy for correctness. Although this assumption
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cannot prove absence of bugs in the evolved software, it has been good enough
to evolve useful patches that have been adopted into development [13]. On the
other hand, the generated patches have been criticised for overfitting, i.e., passing
the tests used during the GI search process, but not producing actual fixes that
generalise to unseen scenarios [21]. This triggers the question about:

What feature should a given test suite have to aid the GI process in producing
useful, correct patches?

The current state-of-the-art uses existing test suites, together with the given
program, as input to the GI process. In the case of functional improvement, such
as program repair, such a test suite would contain some failing tests that reveal
a given property (such as a bug, or a feature not yet present in the software)
that needs amending. The objective is to find a semantic change to the program
so that the evolved software would pass all the provided test cases. In both
functional and non-functional improvement branches of GI the test suite serves
as an oracle for whether the evolved software has the desired semantics. Note,
however, that in order to achieve improvement with respect to a functional prop-
erty, its semantics needs to change, by definition. In contrast, in non-functional
improvement we want to preserve the semantics of the original software, whilst
improving a property of choice, such as running time. This has consequences in
how test suites can be used in GI.

In order to improve a program using GI, we need a test suite that will faith-
fully capture the desired software behaviour. However, finding such test suites is
a non-trivial task. Frequently in GI work the test suite needs to be usually man-
ually improved before the GI process can begin [3]. If the test suite is too weak,
GI will keep on deleting code (it can access) that contains uncovered functional-
ity. Therefore, traditional software metrics, such as branch coverage, have been
used to estimate how good a given test suite is before inputting them into the
GI process [3]. This can be very costly, especially in the functional improvement
case, where one has to devise test cases manually, as an automated approach
treats the current implementation as the test case oracle [4]. However, in the
non-functional improvement case, automated test case generation tools can be
utilised.

Regardless of whether a given test suite has been generated manually or
automatically, the question still remains: which features should it have that
would lead to least overfitting when used within a GI process? Smith et al. [21]
have made the first step by investigating the amount of overfitting by comparing
manual vs. automated tests for the purpose of test-based automated program
repair. Assiri and Bieman [2] sampled from existing test suites to show that
statement-covering and random test suites tend to introduction of new faults
in the automatically ‘repaired’ software. More recently, Yi et al. [25] tried to
correlate various test metrics in existing test suites, with their ability to lead to
a non-overfitting patch.

In this work we aim to measure the correlation between traditional test suite
metrics and the given test suite’s impact on overfitting in the GI process. In
contrast to previous work, we focus on non-functional improvement (runtime, in
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particular), and the Java program space. Hence, we use EvoSuite [11] to auto-
matically generate test suites that achieve a given test suite coverage. We thus
consider one test suite metric at a time, in order to provide a more systematic
view of the metrics’ impact. In this study we additionally measure the level of
overfitting during the GI search process. We also re-run GI 20 times for each
test suite – program pair (due to the non-deterministic nature of the GI search
process we use). This way we can investigate a larger space of plausible software
variants in order to establish a correlation between a given test suite coverage
measure and the amount of overfitting. We also provide a replication package,
available at: https://github.com/ssbseRENEsubmission/ssbseRENEsubmission.

2 Background

Genetic Improvement (GI) uses automated search to improve existing soft-
ware [19]. In a typical scenario, the input to GI is a program and a test suite.
GI then uses a set of mutation operators and a meta-heuristic, such as genetic
programming, to evolve thousands of software variants, to be evaluated using
a given fitness measure. In functional improvement fitness is based on the test
suite alone, while in non-functional improvement an additional evaluation needs
to be made against a property of choice, such as running time. The process runs
until a given criterion is met. For the purpose of program repair, for instance,
the search can be stopped when a program variant passes all the given tests, or
only after a specified number of generations of the search algorithm of choice.

There have been several metrics presented in the literature to evaluate the
strength of a test suite [8]. We focus on those that are implemented in the
arguably most successful automated test case generation tool for Java, i.e., Evo-
Suite [11]. This tool implements a total of 8 coverage metrics. In this work we
focus on 4, as the other ones are either not applicable to the benchmarks we use
(for instance, our programs have a single method with no exceptions thrown,
so there’s no need to consider these) or is not fully supported for our purpose
(output diversity measure cannot be automatically calculated for an existing
test suite). Therefore, we consider line, branch, conditional branch, and weak
mutation coverage.

Line and branch test suite coverage metrics are self-explanatory, i.e. the test
suite aims to cover the largest number of lines or branches of the program,
respectively. Conditional branch coverage aims to cover all branches with the
right conditions, e.g., for an IF statement with an OR condition on 2 Boolean
variables, 4 tests would have to be generated to cover all conditions, while branch
coverage would only need 2 tests (for the false and any true evaluation of the if
condition). Weak mutation refers to the case where the tests are run on multiple
mutated source code variants. The coverage of the given test suite is equal to
the proportion of mutants it manages to catch (i.e., ‘kill’) [17]. Strong mutation
has also been proposed, which additionally requires that errors must propagate
to the output of the program, imposing more stringent set of tests. However,
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Offutt and Lee showed that weak mutation can nevertheless produce stronger
test suites [16, 15].

3 Methodology

Our aim is to investigate the impact of various test suite coverage metrics on
overfitting in the GI process. We also want to know if automatically generated
tests, using such metrics, could yield to low overfitting rate and thus be used for
the purpose of non-functional software improvement in GI.

In contrast to previous work, we do not analyse only the resulting patch
of each GI run, but also all the valid patches generated during the GI search
process. We analyse all of them because, even though they have been discarded
during the search process (as not leading to better improvement than the final
patch found), they are still valid and could still be used as feasible solutions.
This gives us better statistical power during analysis, and thus more conclusive
evidence from thousands of patches as opposed to a few hundreds.

Furthermore, we focus on Java programs, as they have not been investigated
in this context before. We also use a non-functional property, namely, program’s
execution time as the goal for improvement.

3.1 Research Questions

In order to answer the question about which criteria should a given test suite
satisfy in order to lead to least overfitting in the genetic improvement process,
we generate test suites that achieve maximum coverage with respect to a given
metric and compare them with respect to the amount of overfitting when input
into the GI process. In particular, we pose the following research questions:

RQ1 (Validity) Given a particular test suite, can GI find a valid non-overfitting
patch?

We want to know whether GI is able to find a non-empty, potentially runtime-
improving patch1 in the first place, given a particular input test suite. As done
in related work [21], this question focuses on the final patch output by the GI
process. This step validates whether GI can find a non-overfitting patch, regard-
less of how much overfitting might have occurred during the search process, and
forms a baseline comparison with previous work (albeit in Java rather than C
program space).

RQ2 (Overfitting) How does the overfitting rate vary with the input test suite
during search?

1 We use the word ‘potentially’ here, as although the patch might improve upon our
training and test set, it does not mean the runtime improvement will generalise to
all possible usages of software. Manual check is thus necessary.
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We want to know how often produced patches overfit to the training test suite.
Given that GI usually uses a heuristic approach, we conduct repeated runs and
additionally report on the overfitting rates during the different runs. As men-
tioned at the beginning of this section, for this RQ (and RQs 3–4 too), we look
at all valid patches generated during the whole GI search process.

RQ3 (Metric vs. Overfitting) How does the non-overfitting rate correlate with
the changes in coverage?

This question is designed to answer how fragile is the GI process to the change
in the coverage for a given test suite. Although we do not test for causation,
we are interested to discover if any of the coverage measures can be used as a
reliable predictor for the overall ratio of non-overfitting patches. If so, one can
aim at improving their test suite with regards to that specific measure, in order
to reduce the amount of overfitting.

RQ4 (Automated vs. Manual) How often do the automatically generated test
suites overfit with respect to the manually generated ones?

The same question was asked by Smith et al. [21], though in the C domain
and in the automated program repair context. We want to check if the same
conclusions hold in our scenario. In order to answer this question, we perform
a cross-validation using the automatically generated test suites using a set of
coverage criteria, against manually curated test suites.

With the above research questions in mind we set up our experiments. The
next subsections describe the datatset, tools, and experimental procedure in
more detail.

3.2 Dataset & Tools

We used the genetic improvement toolbox Gin v2.0 [6] in our experiments. Gin
fulfills all our requirements: it is open-source, targets Java programs, uses run-
time improvement as fitness by default, and its second release provides integra-
tion with EvoSuite [11].

Unlike in the automated program repair field, there is no standard benchmark
for runtime improvement using GI. We also require the programs to be relatively
small, so we could run thousands of experiments in reasonable time and avoid
the, often very costly, profiling stage of the GI process [6], targeting the whole
software instead. With those restrictions in mind, we chose to use the set of 9 sort
algorithms and the triangle example provided with the first release of Gin [23]
in our study, for which improvements have previously been found using GI [9].

All experiments were run on a Mac Mini with a 3.2GHz 6-core Intel Core i7.
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3.3 Experimental Procedure

We will now outline the details of the empirical study aimed at answering our
research questions.

For each program and for each test suite coverage criterion (i.e., branch, line,
conditional branch, and weak mutation) we generate a test suite using EvoSuite.
Additionally, we generate a test suite that aims to cover all 4 coverage criteria
at once. Next, we input the program and the given test suite to the GI process.

Gin uses a simple hill climber by default. It first generates a random mutation
(which could be a delete, copy or replace operation), applies it to the code
and evaluates it. If the change is beneficial in terms of runtime, it is retained,
otherwise it is retained with 50% probability. The process continues for 100
iterations. Since this is a heuristic approach we repeat the GI cycle 20 times. We
extended the algorithm to make changes at the statement rather than the default
line-level (to allow for known improvements from previous work to be found).
Moreover, we used Gin’s PatchAnalyser to evaluate generalisability and runtime
improvement of each generated non-empty patch on a held-out test suite.

In order to get variation in the coverage percentage for the various metrics,
from each automatically generated test suite we sample 25%, 50%, and 75% of
its tests, creating new test suites of varying coverage. We repeat the GI process
with these as well. In order to check for overfitting we use the manual test suite,
provided with the programs, as an oracle.

Altogether, we ran 20 rounds of GI on each of the 10 programs and 20
generated test suites (5 coverage criteria [4 single + 1 combined] × 4 samples),
for a total of 400 GI runs per program. Finally, we also generated a test suite
with the 4 coverage criteria as goals to treat as an oracle for GI runs on the
manual test suite, to compare the impact of manual vs automated test suites on
overfitting in GI. Therefore, a total of 4 200 GI runs was conducted, with 420 000
patches generated (4 200 × 100 steps of each local search run).

Pseudo-code for our experimental procedure is found in Algorithm 1. Note
that whenever a patch passed the training suite during a GI run, it was evaluated
against a test suite.

4 Results

In this section we present the results of our experiments and provide answers to
research questions posed in Section 3.1. We deem a resultant patch as overfitting
if it fails on the held-out test suite. For the runs where the manual test set was
used as input, we generated tests using EvoSuite with the four coverage goals
previously considered, i.e., branch, line, conditional branch, and weak mutation.
For all the other test suites we used the manual test suite as the test set, to
check for overfitting.

The experiments took a total of 16 hours to complete. All the data (and the
modified Gin code to facilitate the experiments) is available as a replication pack-
age on GitHub: https://github.com/ssbseRENEsubmission/ssbseRENEsubmission.
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Algorithm 1: Pseudo-code for the experimental procedure. Each GI
run consists of 100 steps of local search.

for each Program P do
for Coverage metric C from [line, branch, conditional branch, weak
mutation, all4] do

Generate test suite T using C as coverage goal
for perc in [100%, 75%, 50%, 25%] do

T ′ = Select perc of tests from T
for i = 1; i <= 20; i+ + do

Run GI with P and T ′ as input
end

end
for i = 1; i <= 20; i+ + do

Run GI with P and Tmanual as input
end

end

end

4.1 RQ1 – Validity

To recap, for each of the 10 subject programs we generated 21 test suites: 4
satisfying 100% coverage of the test suite criterion; one that aimed to satisfy
all 4 goals at once; and the manual one; the 5 automatically generated test
suites were sampled at 100% 75%, 50% and 25%. This yielded 210 experimental
scenarios. In answer to RQ1, a patch was found in all scenarios. That is, for
each (test suite, program) pair GI found a non-empty patch in at least one run.
Moreover, in 203 scenarios a patch was found in at least one of the GI runs that
generalised to the held-out test suite.

Table 1. Number of all and non-overfitting patches found in at least one of the 20
repeated GI runs for each program.

Program LoC Test Sizes Test Suites Patch Found Non-Overfitting

SortMerge 52 1–8 21 21 19
Triangle 40 1–10 21 21 21
SortQuick 32 1–9 21 21 21
SortBubbleDouble 24 1–7 21 21 21
SortRadix 24 1–7 21 21 21
SortSelection 19 1–7 21 21 21
SortBubbleLoops 17 1–7 21 21 21
SortSelection2 17 1–7 21 21 19
SortBubble 15 1–7 21 21 19
SortInsertion 14 1–7 21 21 20

Total 254 1–10 210 210 203
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With these results, we can positively answer RQ1 and state that, within our
experimental setup, GI can indeed find valid and non-overfitting patches.

4.2 RQ2 – Overfitting

Table 2. Number of all intermediate and non-overfitting patches found during im-
provement for all 4 200 GI runs, aggregated by each test suite type. Summative results
shown for the 10 programs investigated.

Criterion Sample% Patch Found Non-Overfitting Ratio

Branch 100 4 407 1 481 0.34
75 3 907 1 443 0.37
50 4 160 1 338 0.32
25 4 651 1 486 0.32

Line 100 4 989 1 366 0.27
75 5 009 1 412 0.28
50 4 907 1 141 0.23
25 5 122 1 374 0.27

W. Mutation 100 4 983 1 196 0.24
75 4 455 1 356 0.30
50 4 498 1 447 0.32
25 4 902 1 138 0.23

C-Branch 100 4 719 1 253 0.27
75 4 666 1 526 0.33
50 4 826 1 167 0.24
25 4 995 1 257 0.25

All 4 Criteria 100 5 360 1 413 0.26
75 4 620 1 625 0.35
50 4 670 1 234 0.26
25 5 098 1 312 0.26

Manual 100 2 491 2 410 0.97

We provide more detailed results on the rate of overfitting throughout the
search process (i.e., including intermediate solutions) in Tables 2 and 3, and
Figure 1. Here we report on all intermediate patches found during all 4 200 GI
runs.

The ratios yielded by the generation criteria average from approximately 0.23
to 0.37, with the branch criterion yielding a better ratio overall. Moreover, there
is no apparent trend in the changes in sample percentages to the ratio, i.e., in
some cases even sampling as few as 25% of the test cases yielded a non-overfitting
ratio similar to that of using the whole test suite. However, when we group the
data by program (Table 3), a higher variation in ratios becomes apparent. This
may be an indication that the overfitting ratio is more dependent on the program
being improved, rather than on the criteria used to create the test suites.
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Fig. 1. Boxplot with the ratio between non-overfitting patches/total patches found (y-
axis) per generation criterion (x-axis). Each box presents the ratios for the 10 programs.

Table 3. Number of all intermediate and non-overfitting patches found during improve-
ment for all GI runs for each program. Data presented for all test suites investigated.

Program Patch Found Non-Overfitting Ratio

SortBubble 12 131 3 213 0.26
SortBubbleDouble 12 632 8 537 0.68
SortBubbleLoops 12 466 3 366 0.27
SortInsertion 10 129 2 048 0.20
SortMerge 5 228 2 588 0.50
SortQuick 3 005 2 690 0.90
SortRadix 9 622 1 090 0.11
SortSelection 11 548 1 472 0.13
SortSelection2 12 081 1 187 0.10
Triangle 8 593 3 184 0.37

We applied the Fisher’s exact test [10] on the data in order to determine if the
differences in proportion of overfitting and non-overfitting patches obtained by
the test generation criteria are statistically significant. Figure 2 presents the
ranks of each generation criterion over the 10 programs. The results of the
Fisher’s exact test were used to perform the rank computation, such that two
criteria are considered “statistically tied” if p ≥ 0.05 for their pair comparison
(i.e, the difference in their proportions of non- and overfitting patches is not sta-
tistically significant). In such case, the rank of a criterion is given by the average
of the ranks of all criteria to which it ties (including its own). We adopted this
analysis because it would be infeasible to report all the 150 p-values (10 programs
× 15 pairwise combinations), and because it can easily depict rank superiority
with statistical significance. We refer to this method herein as “statistical rank”.

The branch criterion presented the best results among all criteria, with a
mean rank of 3.35 (median 2.75). Line coverage presented the worst results, with
an average rank of 4.20 (median 4.50). Surprisingly, using all available criteria
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Fig. 2. Boxplot with the statistical ranks of non-overfitting ratio (y-axis) per generation
criterion (x-axis). Each box presents the ranks for the 10 programs. Statistical ties are
averaged.

to guide the creation of test suites yields the second worst ratio and rank (mean
and median 4.20 and 4.25), even though it provides the best coverage.

Considering the analysis of this section, the answer to RQ2 is somewhat
mixed. First, the differences in non-overfitting ratio are not that striking as
shown in Figure 1 and Table 2, but the results by program in Table 3 vary quite
widely. However, when considering the statistical ranks of the criteria, test suites
generated with branch coverage are slightly (but significantly) better than the
others in the proportions. Hence, using only branch coverage as opposed to the
other options can give the engineer a slight advantage on the result of GI in
regards to overfitting, although it depends on the program being improved.

4.3 RQ3 – Metrics vs. Overfitting

In order to answer this question, we collected all the results from all GI executions
and applied the Spearman’s rank correlation coefficient test (Spearman’s ρ) [22].
We use this correlation test because we cannot assume the normal distribution
of data (the Pearson correlation coefficient test [18] would not be suitable). In
fact, we checked for normality and could not reject the hypothesis that the data
does not follow a normal distribution.

We aim at assessing if there is any correlation between the non-overfitting
ratio and the coverage metrics of the test suites. In order to cater for the different
confounding variables, we have also applied the correlation test on the data by
sampling them based on their program, criteria, and sampling percentages. By
isolating these variables and making them constant in each sample, we can unveil
whether any of them can have some influence on the outcome of the correlation.
Table 4 presents the correlation results.

From all the 100 correlations tested, only 24 showed statistical significance (p-
value < 0.05), and only 4 of those showed large correlation (Spearman’s ρ > 0.5).
For instance, when GI is applied to SortRadix, the levels of Branch coverage and
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the C-Branch coverage of the test suites showed large correlation to the ratio of
non-overfitting patches generated using the test suites. This also happened to
the levels of Line coverage and Weak Mutation coverage of the test suites when
applied to SortBubbleLoops.

However, due to the low frequency of significant results and stronger correla-
tions, our answer to RQ3 is rather negative. We could not find any consistency
from a specific coverage metric in linearly predicting the level of non-overfitting
ratio yielded by the test suites during improvement. Furthermore, the correlation
is significant only for a few programs, which may indicate that the properties of
the programs are more important variables for the overfitting of GI.

4.4 RQ4 – Automated vs. Manual

Table 5 presents the non- and overfitting results for the manual created test suites
and to the test suites created with all 4 criteria (test suites that yielded the best
coverage overall). To recap, we perform a cross-validation, where the patches
generated with the aid of one type of test suite (automatically generated/manual)
are validated with the other type of test suites.

The first observation is that automatically generated test suites always have
the best coverage, for all coverage metrics and in all programs, with only two
ties. Moreover, automatically generated test suites always lead to more valid
patches during GI optimisation. However, manually created test suites always
produce more non-overfitting patches, despite generating fewer patches overall.
Consequently, the proportion of non-overfitting patches is considerably and sig-
nificantly better for manual test suites (Fisher’s exact test [10], p-value < 0.05).

These results indicate that in fact, better coverage does not translate to
better patches regarding overfitting. This analysis serves as further evidence for
the lack of correlation between coverage and non-overfitting.

Finally, answering RQ4, manually created test suites generate patches that
overfit significantly less than patches generated with automatically generated
test suites. The non-overfitting ratio of manual test suites is almost always 1.0
of the valid patches, whereas the ratio for automatically generated test suites
varies from 0.04 to 0.86 but never greater than their counterpart.

5 Threats to Validity

In this section we discuss threats to validity of the presented work.

Firstly, the programs investigated are quite small thus the results might not
generalise. There were several reasons for choosing this small set. There’s no
standard benchmark for GI for runtime, yet improvements for the programs we
use have been found in previous work. We also investigated the rate of overfitting
during the search process, yielding 420 000 patches generated, roughly a quarter
of those being re-run to check for overfitting. With this small sample the ex-
periments took a non-substantial amount of time (16 hours). Moreover, similar
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Table 4. Spearman’s ρ correlation coefficient results. The table is subdivided into 4
sub-tables, where each sub-table shows the results for a different grouping. Each row
represents a group of test suites and each column represents a measure of coverage
(plus a column for the size of the test suites). A given cell [R,C] shows the correlation
result for all test suites in the group of row R, between their ratio of non-overfitting
and their measure of column C. For instance, the first cell [SortBubble, Size] indicates
a Spearman’s correlation ρ = 0.29 between the ratio of non-overfitting and the size
of test suites applied to program SortBubble. The * symbol highlights correlations for
which p-value < 0.05.

Grouped by Program

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

SortBubble 0.29 0.40 *0.45 0.29 0.40
SortBubbleDouble 0.42 -0.11 -0.14 -0.31 -0.11
SortBubbleLoops 0.27 0.37 *0.53 *0.54 0.37
SortInsertion 0.07 0.27 0.17 0.44 0.27
SortMerge -0.18 0.19 0.10 0.15 -0.15
SortQuick -0.23 -0.24 -0.22 -0.27 -0.22
SortRadix 0.42 *0.62 *0.49 *0.46 *0.62
SortSelection -0.08 -0.14 -0.31 -0.31 -0.14
SortSelection2 0.10 0.15 0.09 0.09 0.15
Triangle 0.05 0.11 0.04 0.14 0.11

Grouped by Test Suite Generation Criterion

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

All 4 Criteria 0.22 0.15 0.07 0.07 -0.03
Branch 0.24 -0.04 -0.04 0.02 -0.05
C-Branch *0.37 -0.01 -0.23 0.05 -0.02
Line 0.21 *0.35 0.22 *0.41 0.19
W. Mutation 0.21 *0.40 *0.46 0.21 -0.05

Grouped by Test Suite Sample %

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

25% *0.28 0.21 0.17 0.25 -0.04
50% *0.29 *0.35 *0.28 *0.36 0.12
75% *0.41 *0.30 0.19 0.25 0.10
100% *0.28 -0.17 *-0.30 -0.22 -0.21

No Data Grouping

Groups Size Branch Cov. Line Cov. Weak Mut. Cov. C-Branch Cov.

Whole Data *0.24 *0.18 0.10 *0.17 0.03

size programs with similar size test suites were used in previous work [21]. We
believe that for a preliminary study these were good enough.
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Table 5. Coverage measures and cross-validation overfitting results for Manually vs.
Automatically (abbreviated as “Aut.”) generated test suites. T. Suite – type of test
suite. Branch, Line, Weak Mutation (abbreviated “W. Mut.”), and C-Branch – cov-
erage obtained by the test suites. Patches – number of valid patches found during
improvement. Non-Overf. – number of non-overfitting patches found during improve-
ment. Ratio – ratio of number of non-overfitting by number of patches. Best values are
highlighted in bold.

Program T. Suite Branch Line W. Mut. C-Branch Patches Non-Overf. Ratio

SortBubble Manual 86% 88% 97% 86% 276 276 1.00
Aut. 100% 100% 99% 100% 537 212 0.39

SortBubbleDouble Manual 85% 71% 81% 85% 618 618 1.00
Aut. 92% 79% 83% 92% 643 497 0.77

SortBubbleLoops Manual 89% 89% 97% 89% 345 344 1.00
Aut. 100% 100% 98% 100% 523 192 0.37

SortInsertion Manual 86% 86% 97% 86% 218 218 1.00
Aut. 100% 100% 99% 100% 660 89 0.13

SortMerge Manual 94% 97% 96% 6% 118 118 1.00
Aut. 100% 100% 97% 67% 439 29 0.07

SortQuick Manual 93% 95% 97% 7% 152 152 1.00
Aut. 100% 100% 97% 100% 153 132 0.86

SortRadix Manual 93% 93% 97% 93% 122 114 0.93
Aut. 100% 100% 98% 100% 428 50 0.12

SortSelection Manual 86% 92% 97% 86% 178 178 1.00
Aut. 100% 100% 98% 100% 788 35 0.04

SortSelection2 Manual 86% 91% 96% 86% 178 178 1.00
Aut. 100% 100% 97% 100% 704 49 0.07

Triangle Manual 89% 92% 98% 89% 286 214 0.75
Aut. 100% 96% 98% 100% 485 128 0.26

Next, we used EvoSuite and Gin, thus inherited any limitations of the tools.
For instance, EvoSuites generation of test suites is non-deterministic, thus mul-
tiple runs might yield different results. However, we have re-done the experi-
ments with a few different seeds for EvoSuite and found the results consistent
with the ones reported in this paper. We did not conduct enough to report on
statistical significance of those though. Furthermore, different results might be
obtained with other mutation strategies than the default in Gin’s local search
implementation. However, these mutation operators are currently standard ones
in test-based GI.

6 Conclusions

In this paper we evaluate the levels of non- and overfitting patches obtained
by different test suites during the GI optimisation process. The goal of our
experiments is to show the differences between manually and automatically gen-
erated test suites, and the correlations between coverage and the ratios of non-
overfitting patches.
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Our results unveiled that, regardless of the criterion used to guide the au-
tomatic generation of test suites, the ratios of overfitting differ slightly between
each other, with branch coverage being significantly better than the other crite-
ria, but only by a small margin. Moreover, we could only find 4 significant and
large correlations amongst a set of 100 tested correlations, which is not enough
scientific evidence to consider any of the tested coverage measures as accurate
predictors for the ratio of non-overfitting patches. Finally, our results showed
that even though automatically generated test suites cover significantly more
the programs under test and generate more valid patches throughout the search
process, manually curated test suites yield a significantly better proportion of
non-overfitting patches with almost no overfitting at all. This shows that clas-
sical automated test suite measures seem to have no bearing on how good a
test suite is for the purpose of applying genetic improvement. Thus, a question
of which characteristics a test suite should have so that useful, non-overfitting
variants are produced during the GI search process, remains unanswered.

As future work, we intend to extend the study with larger programs as well
as evaluate whether the properties of the programs under improvement play a
bigger role in the overfitting of patches than the properties of tests suites.
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Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015. pp. 1063–1070. ACM (2015). https://doi.org/10.1145/2739480.2754652

14. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012).
https://doi.org/10.1109/TSE.2011.104

15. Offutt, A.J., Lee, S.D.: How strong is weak mutation? In: Howden, W.E. (ed.)
Proceedings of the Symposium on Testing, Analysis, and Verification, TAV 1991,
Victoria, British Columbia, Canada, October 8-10, 1991. pp. 200–213. ACM (1991).
https://doi.org/10.1145/120807.120826

16. Offutt, A.J., Lee, S.D.: An empirical evaluation of weak mutation. IEEE Trans.
Software Eng. 20(5), 337–344 (1994). https://doi.org/10.1109/32.286422

17. Offutt, A.J., Untch, R.H.: Mutation 2000: Uniting the Orthogonal, pp. 34–44.
Springer US (2001). https://doi.org/10.1007/978-1-4757-5939-6-7

18. Pearson, K.: Vii. note on regression and inheritance in the case of two parents.
proceedings of the royal society of London 58(347-352), 240–242 (1895)

19. Petke, J., Haraldsson, S.O., Harman, M., White, D.R., Woodward,
Woodward, J.R.: Genetic improvement of software: a comprehen-
sive survey. IEEE Transactions on Evolutionary Computation (2017).
https://doi.org/10.1109/TEVC.2017.2693219

20. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Pro-
ceedings of the 17th European Conference on Genetic Programming. vol. 8599, pp.
137–149. Springer (2014). https://doi.org/10.1007/978-3-662-44303-3-12



16 Lim et al.

21. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse than the disease?
overfitting in automated program repair. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. p. 532–543. ESEC/FSE 2015
(2015). https://doi.org/10.1145/2786805.2786825

22. Spearman, C.: The proof and measurement of association between
two things. American journal of Psychology 15(1), 72–101 (1904).
https://doi.org/10.2307/1422689

23. White, D.R.: GI in no time. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO’17). pp. 1549–1550. ACM (2017).
https://doi.org/10.1145/3067695.3082515

24. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisa-
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