
Aspect Mining based on Control-Flow

Jens Krinke, Silvia Breu
FernUniversität in Hagen, Germany

krinke@acm.org, silvia.breu@fernuni-hagen.de

1 Introduction
Aspect mining tries to identify crosscutting concerns in ex-
isting systems and thus supports the adaption to an aspect-
oriented design. This paper describes an automatic sta-
tic aspect mining approach, where the control flow graphs
of a program are investigated for recurring execution pat-
terns based on different constraints, such as the require-
ment that the patterns have to exist in different calling con-
texts. A case study done with the implemented tool shows
that most discovered crosscutting candidates are most of-
ten perfectly good style.

2 Aspect Mining
A major problem in re-engineering legacy code based on
aspect-oriented principles is to find and to isolate these
crosscutting concerns. This task is also called aspect min-
ing. The detected concerns can be re-implemented as sepa-
rate aspects, thereby improving maintainability and exten-
sibility as well as reducing complexity. Aspect mining can
also provide insights that enable us to classify common as-
pects which occur in different software systems, such as
logging, timing, and communication.

Several approaches based on static program analysis
techniques have been proposed for aspect mining. We have
developed a dynamic program analysis approach [1] that
mines aspects based on program traces. Based on the ex-
perience with the dynamic approach, we implemented a
similar static analysis. This analysis extracts the execution
relations from a control flow graph of the analyzed pro-
gram. In particular, we immediately extract uniform and
crosscutting execution relations without a previous step to
extract unconstrained execution relations. However, the
extraction is different for outside and inside execution re-
lations. Here, we will only present inside-first (R∈> ) and
outside-before (R⇀) execution relations. Due to space
constraints, we refer the reader to [1] for definitions and
notations.

Inside-First Execution Relations. For these kind of ex-
ecution relations, we extract the method invocations im-
mediately following the entry of (invoked) methods from
the control flow graph. Such a relation is uniform, if
every path through the method starts with the same method
call. Moreover, a possible simplification just considers
the single-entry-single-exit regions starting at the meth-
ods’ entry nodes. Such a relation u ∈> v means now
that method u is the first method invocation inside the

single-entry-single-exit region starting at the entry node of
method v. The definition of crosscutting stays the same,
thus u is a crosscutting method invocation if there are at
least two uniform execution relations u ∈> v and u ∈> w
(v 6= w).

Outside-Before Execution Relations. Here we extract
all pairs of method invocations u, v if there exists a path
from an invocation of method u to an invocation of method
v without any method invocation in between. Such a pair
is a uniform outside-before execution relation u ⇀ v, if
all paths from an invocation of method u contain an in-
vocation of v as the next invocation. The first possible
simplifications is to require that an invocation of u is post-
dominated by an invocation of v without another invoca-
tion in between. The second simplifications is to require
that any invocation of method u is followed by an invoca-
tion of v in all single-entry-single-exit regions containing
an invocation of u.

3 Experiences
We have implemented the presented static mining on top
of the Soot framework [2], which is used to compute the
control flow graph of the analyzed program. Our tool tra-
verses these control flow graphs and extracts the uniform
and crosscutting inside-first and outside-before execution
relations. As a first test case we have analyzed JHotDraw,
version 5.4b1. For inside-first execution relations, the tool
has identified 277 candidates with 1236 uniform and cross-
cutting relations, and for outside-before relations, 92 can-
didates with 294 relations.

It is interesting, that there are many more candidates for
inside-first than for outside-before. Furthermore, there are
a lot of candidates with just a small amount of crosscutting,
e.g., 127 candidates that just crosscut two methods.

We will next discuss some of the identified candidates
in detail. However, due to the large amount of identified
candidates, we will only present the six largest candidates
of each category.

Inside-First Relations The largest candidate consists of
49 uniform and crosscutting execution relations. The in-
voked method is “...CollectionsFactory.current”. It is ob-
vious that this is a method to access the current factory
object, needed in many other methods of the system. This
is clearly crosscutting, however, not a refactorable aspect.

The second largest candidate consists of 32 relations for
the method “...DrawingView.view”. This is again an acces-

1



sor method that returns the currently active view. Thus, it
is crosscutting but not refactorable.

The same holds for the third and fourth candidate,
which both consist of 24 relations. The relevant methods
are “...DecoratorFigure.getDecoratedFigure” and “...Ab-
stractHandle.owner” which are once again accessor meth-
ods.

For the fifth candidate, things are not different: It
consists of 22 relations for the method “...Undoad-
ableAdapter.undo” that checks whether the current object
represents an undo-able action.

Things change for the sixth candidate consisting of 20
relations for method “...AbstractFigure.willChange”. That
method informs a figure that an operation will change the
displayed content. This is the first candidate that is a cross-
cutting concern which could be refactored into an aspect.

Outside-Before Relations The largest discovered can-
didate consists of 13 uniform and crosscutting execution
relations for the method “...Iterator.next”. A closer look
to the 13 invocations reveals that this crosscutting is more
or less incidental: An operation is performed on the next
element of a container.

The second largest candidate is somewhat interesting:
It consists of 12 invocations before a call to “...Abstract-
Command.execute”, from which 11 are invocations of
method “createUndoActivity”. The other is an invocation
of “...ZoomDrawingView.zoomView”, which seems to be
an anomaly. However, the other 11 invocations are of
classes representing operations that change the figure and
zoomView (probably) does not change it.

The next three largest candidates (consisting of
11, 9, and 8 relations) are again more or less
incidental crosscutting concerns related to methods
“...DrawingView.drawing”, “...List.add”, and “...Draw-
ingView.view”. However, it is interesting to see that Draw-
ingView.view was also part of a large inside-first candidate.

Again, only the sixth largest candidate can be seen as
crosscutting concern that can be refactored into an aspect.
It consists of seven relations for method “...AbstractFig-
ure.willChange”. It is immediately called before methods
that will change the displayed figure. However, it is in-
teresting to see that this method has also appeared as an
inside-first candidate, where the candidate is larger (20 re-
lations).

A simple filter
We have seen in the last section that most of the discovered
crosscutting concerns are not to be refactored, because
they are perfectly valid in their characteristics. However,
we want to identify crosscutting concerns that are more in
the style of superimposition, i.e. that add behavior at the
place where they are used but without having a direct de-
pendence with the enclosing code.

A very simple, but very effective filter uses the signa-
tures of the invoked methods. It is based on the assump-
tion that any method that returns a value has been dele-
gated a task to perform that is part of a bigger function-
ality/concern. This is like a trivial form of crosscutting

size relations size relations
2 30 9 0
3 15 10 1
4 11 11 1
5 1 13 1
6 1 17 1
7 2 20 1
8 2

261 relations (R∈> ) in 67 candidates

Table 1: Filtered Inside-First Execution Relations

that lead to the introduction of procedures and methods in
programming languages. Thus, we assume that only void
methods are not directly needed where they are invoked.
Of course, this is over-simplifying because of reference
parameters. The implemented filter extracts only those
uniform and crosscutting execution relations that involve
a void method.

A closer look at the extracted relations (see Table 1 for
an overview) reveal that most of them have the character-
istics of crosscutting concerns, especially the larger ones.

4 Conclusions
This initial evaluation of the static aspect mining tool has
shown that most of the identified crosscutting candidates
are not concerns refactorable into aspects. This is not
much different from results in our previous dynamic as-
pect mining [1]. However, both approaches give interest-
ing insights into the crosscutting behavior of the analyzed
program. Moreover, as seen in the example for method
AbstractCommand.execute, they can probably be used to
discover crosscutting anomalies, an anomaly in the dis-
covered execution relation pattern.

References
[1] Silvia Breu and Jens Krinke. Aspect mining using

event traces. In Proc. International Conference on Au-
tomated Software Engineering, pages 310–315, 2004.

[2] Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot
– a java bytecode optimization framework. In Proc.
CASCON, 1999.


