
Aspect Mining Using Dynamic Analysis

Silvia Breu, Jens Krinke
Lehrstuhl Softwaresysteme

Universiẗat Passau

May 5, 2003

1 Motivation

Concerns express a specific interest in some topic regard-
ing a particular system of interest.Separation of concerns
(originally invented by Dijkstra) is essential in the soft-
ware development process: It is an important paradigm
in software engineering to cope with the increasing num-
ber of special purpose concerns in today’s applications.
To deal with that increasing complexity, several new ap-
proaches like Composition Filters, Hyperslices and last
but not leastAspect-Oriented Programming[3] (including
programming languages like AspectJ) have been proposed.
But what about legacy systems, where separation of con-
cerns could only be applied in a restricted way within the
object-oriented paradigm? It is possible to findaspectsand
to encapsulate them without changing software behavior,
improving maintainability and re-usability, reducing tan-
gled and scattered code. This is illustrated in the following
sections.

2 Dynamic Analysis

This short report will present a first approach to dynam-
ically analyze existing Java software to find aspects and
crosscutting concerns. For this purpose, different general
classes of aspects have been defined:

1. Outside-Aspectsare patterns where a call of method
a is always followed by a call of methodb.

2. Inside-Aspectsare patterns where a call of methodb
is always inside a call of methoda.

These two main classes of aspects have been split further,
each in two more subclasses:

Outside-Aspect can either bebeforeor after a specific
method call.

Inside-Aspect can either befirst- or last-in a specific
method call.

Realize that before- and after-set of aspects in a certain
software system need not obligatory be equal, based on the
assumption that we are looking for exhaustive sets. This
holds for first-in- and last-in-set as well.
However, defining classes of aspects and their structure is
not enough to find real aspects. To identify aspects in ex-
isting software systems, a possible approach is to generate

1 B.a() {
2 C.d() {
3 G.h() {... }
4 H.g() {... }
5 }
6 }
7 A.b() {... }
8 B.a() {
9 C.d() {... }

10 }
11 A.b() {... }
12 B.a() {
13 C.d() {
14 G.h() {... }
15 H.g() {... }
16 }
17 C.c() {... }
18 }
19 F.f() {
20 H.i() {... }
21 }
22 C.c() {... }
23 G.h() {... }

24 H.g() {... }
25 A.b() {... }
26 B.a() {
27 C.d() {... }

... ...
30 F.f() {
31 H.k() {... }
32 H.i() {... }
33 }
34 }
35 D.e() {
36 C.d() {... }

... ...
40 A.b() {... }
41 B.a() {
42 C.d() {... }
43 }

... ...
50 G.h() {... }
51 E.f() {... }
52 }

Figure 1: Example trace

program traces. The obtained traces are analyzed, using
a tool written in Java. It searches for outside and inside
aspect candidates with respect to a certain limitation:

The pattern has to existalways in the same composition.

This constraint results from the following: A method call
to a which is identified as being an outside aspect before
a method call tob has always to be immediately before
method calls tob, otherwise it is not a recurring pattern
(aspect) in the system. The argumentation for outside after
and inside first-/last-in aspects is analogous.
Figure 1 shows an example trace which shall be the basis
to explain the dynamic analysis procedure and its result in
more detail. Analyzing the given trace leads to the follow-
ing aspect candidates:

• G.h() beforeH.g() (3x)

• G.h() beforeE.f() (1x)

• B.a() afterA.b() (4x)

• C.d() first-in B.a() (5x)



• C.d() first-in D.e() (1x)

• H.i() last-inF.f() (2x)

The example shows that reversing ’before aspects’1 does
not necessarily lead to ’after aspects’:A.b() is always
followed byB.a() but it is not correct to say that before
B.a() A.b() is always called—B.a() in line 1 is not
preceded byA.b() . However, in general, we can say that
iff both ’methoda before methodb’ and ’methodb af-
ter methoda’ applies, the number of occurrences of both
patterns is the same—the aspects aresymmetric.
Additionally, we can see thatC.d() has no first-in or last-
in aspect: Not every appearance ofC.d() in the example
trace has the same structure. In lines2-5 as well as in
lines 13-16 it would haveG.h() as first-in andH.g()
as last-in aspect, but in lines9, 27, 36and 42 it has no
first-in and/or last-in aspect. Therefore, neitherG.h()
first-in C.d() norH.g() last-inC.d() are added to the
corresponding result sets. For similar reasons,G.h() af-
terC.c() has not been detected because this pattern only
holds for lines22/23but not for line17.
Applying a further analysis to the before-/after-/first-in-
and last-in-set can now find crosscutting code candidates.
Therefore, an additional constraint has to be checked:

The found pattern has to occur in
more than one calling context.

This means, that a methoda is a first-in/last-in aspect only
if it has this predicate concerning several different meth-
ods whereas a methodb is a before/after aspect if the pat-
tern appears more than once in the trace. Following this
definition we can find several candidates for crosscutting
concerns in the example:

• G.h() is a before aspect ofH.g() andE.f()

• B.a() is an after aspect ofA.b()

• C.d() is a first-in aspect ofB.a() andD.e()

3 First Evaluation

For a first evaluation of the presented technique, a simple
visualization tool for chopping and slicing (AnChoVis),
written in Java, has been traced. The presented analysis
of traces of AnChoVis runs revealed that there are method
calls for a certain functionality: logging. Those calls al-
ways appear with the same pattern at identical places (as
first-in and last-in aspect).
Another version of AnChoVis without the logging func-
tionality scattered throughout the code has been created.
The logging functionality has been implemented as sim-
ple aspect, written in AspectJ, and woven to the program.
That resulted in a program version with the same behavior
as before but with better understandability and maintain-
ability of the code.

1In the remaining of the report only ’before’, ’after’, ’first-in’ and
’last-in’ are used to characterize the aspects as the nomenclature is clear.

4 Future Work

Up to now, the analysis presented in this short report is
not fully assessed and explored but first evaluations are
promising.
An open question is whether and how to merge identi-
cal first-in and last-in aspects. The current analysis does
not provide any information if the aspect is one and the
same call inside another method or if there are two calls of
one and the same method with anything (statements, other
method calls) in between.
More precise information could be gained by not just
tracing method calls but also statements. However, this
would make the analysis more complex—a tradeoff be-
tween higher gain and precision on the one hand, reduced
speed on the other hand.
Another question is whether it is worthwhile finding more
complex aspects: for example summarizing chains of as-
pects likea beforeb, b beforec , andc befored to one
single aspectabc befored. Solutions for these points may
give additional information to the question how simple it
is to encapsulate located aspects properly and correctly.
Anyhow, there are even more open questions which have
to be explored:

• Do case studies with bigger software systems confirm
the results we have so far?

• Are there other aspects except the already well-
known aspects like logging etc.?

5 Related Work

There are two other approaches known to the author which
present techniques to identify aspects. The work of Han-
nemann and Kiczales [2] is a query-based Aspect Min-
ing Tool (AMT): The query specifies a type or a regular
expression; every line of an analyzed system is checked
against the query and highlighted if it matches. In the sec-
ond approach, Aspect Browser [1], crosscuts are identified
with textual-pattern matching and highlighted in the pro-
gram files’ windows with a specific color.

References

[1] William G. Griswold, Y. Kato, and J. J. Yuan. As-
pect Browser: Tool Support for Managing Dispersed
Aspects. Technical Report CS99-0640, Department
of Computer Science and Engineering, University of
California, San Diego, Dezember 1999.

[2] Jan Hannemann and Gregor Kiczales. Overcoming the
Prevalent Decomposition of Legacy Code. InWork-
shop on Advanced Separation of Concerns, 2001.

[3] Georg Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
European Conference on Object-Oriented Program-
ming (ECOOP), 1997.


