
A Study of Consistent and Inconsistent Changes to Code Clones

Jens Krinke
FernUniversität in Hagen, Germany

krinke@acm.org

Abstract

Code Cloning is regarded as a threat to software main-
tenance, because it is generally assumed that a change to
a code clone usually has to be applied to the other clones
of the clone group as well. However, there exists little
empirical data that supports this assumption. This paper
presents a study on the changes applied to code clones in
open source software systems based on the changes between
versions of the system. It is analyzed if changes to code
clones are consistent to all code clones of a clone group or
not. The results show that usually half of the changes to
code clone groups are inconsistent changes. Moreover, the
study observes that when there are inconsistent changes to
a code clone group in a near version, it is rarely the case
that there are additional changes in later versions such that
the code clone group then has only consistent changes.

1 Introduction

Duplicated code is common in all kind of software sys-
tems. Although cut-copy-paste (-and-adapt) techniques are
considered bad practice, every programmer uses them.

Since these practices involve both duplication and mod-
ification, they are collectively called code cloning. While
the duplicated code is called a code clone. A clone group
consists of code clones that are clones of each other (some-
times this is also called a clone class). During the software
development cycle, code cloning is both easy and inexpen-
sive (in both cost and money). However, this practice can
complicate software maintenence in the following ways:

• Errors may have been duplicated (cloned) in parallel
with the cloned code.

• Modifications done to the original code must often be
applied to the cloned code as well.

Because of these problems, research has developed many
approaches to detect cloned code [5, 6, 9, 12, 16–18, 20]. In
addition, some empirical work done has attempted to check

whether or not the above mentioned problems are relevant
in practice. Kim et al. [15] investigated the evolution of
code clones and provided a classification for evolving code
clones. Their work already showed that during the evolution
of the code clones, consistent changes to the code clones
of a group are fewer than anticipated. Aversano et al. [4]
did a similar study and they state “that the majority of clone
classes is always maintained consistently.” Geiger et al. [10]
studied the relation of code clone groups and change cou-
plings (files which are committed at the same time, by the
same author, and with the same modification description),
but could not find a (strong) relation. Therefore, this work
will present an empirical study that verifies the following
hypothesis:

During the evolution of a system, code clones of
a clone group are changed consistently.

Of course, a system may contain bugs where a change
has been applied to some code clones, but has been forgot-
ten for other code clones of the clone group. For stable
systems it can be assumed that such bugs will be resolved
at a later time. This results in a second hypothesis:

During the evolution of a system, if code clones
of a clone group are not changed consistently, the
missing changes will appear in a later version.

This work will verify the two hypotheses by studying the
changes that are applied to code clones during 200 weeks of
evolution of five open source software systems. The contri-
butions of this paper are:

• A large empirical study that examines the changes to
code clones in evolving systems. This study involves
both a greater number and diversity of systems than
previous empirical studies.

• The study will show that both hypotheses are not gen-
erally valid for the five studied systems. In summary,
clone groups are changed consistently in roughly half
of the time, invalidating the first hypothesis. The sec-
ond hypothesis is only partially valid. This is because

c©2007 IEEE. To be published in the Proceedings of the 14th Working Conference on Reverse Engineering, 2007 in Vancouver, Canada. Personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

only a small amount of the missing changes can be
observed, while the inconsistent changes appear much
more often.

The next section presents the theoretical framework that
defines changes, code clones, and clone groups. The setup
of the empirical study is presented in Section 3 and its re-
sults in Section 4. After Section 5 discusses related work,
the last section will conclude and present ongoing activities.

2 A Framework for Changes to Clones

This section will present the framework in which code
clones, groups of code clones, and changes to code clones
are defined and related to the evolution of software systems
in terms of the versions of the system.

2.1 Code Clones

Code clones are usually described as source code ranges
(or fragments) that are identical or very similar. They are
grouped into clone groups (sometime called clone classes)
which are sets of identical or very similar code clones. A
code clone c = (s, l, f) is the source code range starting at
line s with the following l lines of code in file f , thus the
last line of the code clone is s + l − 1. A clone group G =
{c1, . . . , cn} is a set of n code clones c1, . . . , cn, where each
of the code clones is a clone of the others. For the purpose
of this study, the effects of split or fragmented code clones
are ignored. Such clones would consist of multiple source
code ranges in the same file. An example of such a code
clone is a source code range that is copied and afterward
additional source code is inserted into the cloned code.

The code clones don’t have to be disjunct: it is possible
for two code clones c1 = (s1, l1, f) and c2 = (s2, l2, f) that
they share a common source range (min(s1 + l1, s2 + l2) >
max(s1, s2)).

Most of the available tools for code clone detection gen-
erate a list of clone groups. Usually, a minimal size k
of an identified code clone c = (s, l, f) can be speci-
fied, i.e. size(c) > k. In the following it is assumed that
size(c) = l. However, many tools use the number of lexi-
cal tokens that is covered by a code clone as the size of the
code clone.

2.2 Changes

Changes to a software are usually described as a source
code range that has been replaced by other source code. A
change d = (s, l, f, n, t) is the source code range starting at
line s in file f with a size l ≥ 0 (number of lines) that will
be replaced by the text t with a size of n ≥ 0 (number of
lines). Note that a change is not specified with the last line

number because that would not allow the specification of an
empty range. The kind of change is usually distinguished
between deletion, addition, or change. Because addition
and deletion are special cases with l = 0 or n = 0 resp. this
distinction will not be made in the following. The changes
to a software can be expressed by a set of changes D =
{d1, . . . , dk} where the di don’t overlap.

2.3 Software Systems and their Version History

For the purpose of the study, a software system S =
{f1, . . . , fn} consists of a set of n source code files fi, 1 ≤
i ≤ n. Independent of the specific kind of version, it is
assumed that a system exists in multiple versions v where
the complete system can be retrieved for every version v:
S(v) = {fv

1 , . . . , fv
n} is the system in version v. In a ver-

sioning system like CVS, the version v can be specified
in a very flexible way, for example it can be specified as
a time or by a name given to a specific version (branch-
ing will be ignored in this work). The differences between
two versions x and y of a system can be identified by a set
of changes as described above: Let D(v, w) be the set of
changes {d1, . . . , dk} between S(v) and S(w).

2.4 Consistent and Inconsistent Changes

In this study, the changes to a system S between two
versions v and w will be analyzed with respect to the
clones in the system. Let c(v) be the set of code clones
{c1, . . . , cn} in S(v), and let G(v) be the set of clone
groups {G1, . . . , Gm} in system S(v). The first step is
to identify the changes that overlap with a code clone: A
change di = (si, li, fi, ni, ti) is relevant to a code clone
cj = (sj , lj , fj) if the source code ranges overlap, i.e.

fi = fj ∧ (max(si, sj) < min(si + li, sj + lj)
∨ (li = 0 ∧ sj < si < sj + lj − 1))

Note that additions (li = 0) have to be handled explicitly
and are ignored if they appear at the beginning or end of the
code clone.

The next step is to map the changes that are relevant to a
code clone on the source range of the code clone such that
the start and size of the change is expressed in respect to
the start of the code clone. The set of (mapped) changes
between version v and w that are relevant to a code clone cj

is then the set

δ(cj , v, w) = {(s′, li, ni, ti)
| cj = (sj , lj , f)
∧ di = (si, li, f, ni, ti) ∈ D(v, w)
∧ (max(si, sj) < min(si + li, sj + lj)

∨ (li = 0 ∧ sj < si < sj + lj − 1))
∧ s′ = si − sj}

2

The set of mapped changes will contain two different
kinds of mapped changes: the change may be completely
embedded in the code clone (0 ≤ s′ ≤ s′ + li ≤ sj + lj)
or it starts before (s′ < 0) or ends after the code clone
(s′ + li > sj + lj).

For better understanding, first assume that all mapped
changes are completely embedded in their code clone. In
this case it is easy to distinguish if a clone group only has
consistent changes to its code clones or not: Consider a
clone group G = {c1, . . . , ck} ∈ G(v). The changes be-
tween versions v and w to the clone group’s code clones are
consistent changes, if each code clone has the same set of
mapped changes:

∀ci ∈ G : ∀cj ∈ G : δ(ci, v, w) = δ(cj , v, w)

Things are more complicated with changes that are not
completely embedded in their code clone. In this case, it is
better not only to map, but also to reduce the change to the
part that is completely embedded in the code clone. This
will cut the part of the change that starts before the code
clone and the part that ends after the code clone. The cut-
ting will be performed by the cutting function γ(c, d) which
maps or reduces a change d = (s, l, f, n, t) into a code
clone c. The reduction of the source range is a simple math-
ematical operation, however special care has to be take of
the added text specified by t for n > 0:

• If the change starts before the code clone, it could rep-
resent that the beginning of the code clone is deleted
and the added text is added to the source code before
the clone.

• If the change ends after the code clone, it could repre-
sent that the end of the code clone is deleted and the
added text is added to the source code after the clone.

• If the change starts before the code clone and ends af-
ter it, it could represent that the code clone is deleted
completely and replaced by different source code.

Because the kind of the change is not obvious, it is as-
sumed that the above cases always apply. Therefore, the
cutting function will replace the change with a deletion.
The cutting function is now defined as (c = (sj , lj , f) and
d = (si, li, fi, ni, ti)):

γ(c, d) =

(si − sj , li, ni, ti)
if (sj < si) ∧ (sj + lj > si + li)

(max(si − sj , 0),
min(si + li, sj + lj)− sj ,
0, ∅)

otherwise

This function maps the source range of the change into the
code clone if the change is completely embedded in the

code clone. Otherwise, the source range is reduced and the
change operation is replaced with a deletion.

The set of mapped and reduced changes between ver-
sions v and w that are relevant to a code clone cj is now the
set

∆(cj , v, w) = {γ(cj , di)
| cj = (sj , lj , f)
∧ di = (si, li, f, ni, ti) ∈ D(v, w)
∧ (max(si, sj) < min(si + li, sj + lj)

∨ (li = 0 ∧ sj < si < sj + lj − 1))}

Again, consider a clone group G = {c1, . . . , ck} ∈
G(v). The changes between version v and w to the clone
group’s code clones are consistent changes, if each code
clone of the group has the same set of mapped and reduced
changes:

∀ci ∈ G : ∀cj ∈ G : ∆(ci, v, w) = ∆(cj , v, w)

The set of clone groups for a system S(v) with consistent
changes between version v and w is now

GC(v, w) = {G ∈ G(v) | ∀ci ∈ G : ∀cj ∈ G :
∆(ci, v, w) = ∆(cj , v, w)
∧ ∆(ci, v, w) 6= ∅}

The set of clone groups with inconsistent changes be-
tween version v and w is

GI(v, w) = {G ∈ G(v) | ∃ci ∈ G : ∃cj ∈ G :
∆(ci, v, w) 6= ∆(cj , v, w)}

And the set of clone groups with changes between ver-
sion v and w is simply

GD(v, w) = {G ∈ G(v) | ∃ci ∈ G : ∆(ci, v, w) 6= ∅}

With the now defined framework it is possible to ana-
lyze the version history of a system and identify the sets of
clone groups with consistent and inconsistent changes from
version to version.

This framework is general enough for the usual line
based clone detection, change identification, and version
control tools. However, because of the matching of changes
to clones and the comparison of changes, the framework
is to be used only with tools that identify identical or pa-
rameterized clones [7]. The advantage of this restriction is
that the distinction between consistently and inconsistently
changed clone groups is automated.

Although the framework is defined in terms of textual
properties, it can be used with clone detectors based on syn-
tax or semantics. Defining the framework in syntactic or
semantic notions would prevent its usage with source code
that is not parseable.

3

Figure 1. General Setup of the Study

3 Experiment Setup

For the study the version histories of five open source
systems have been retrieved, which have a sufficiently long
development history:

• The first system is ArgoUML1. It is a UML modeling
tool that includes support for standard UML diagrams.
It is written in Java and its version archive is available
via subversion.

• The second system is CAROL2, a library allowing to
use different RMI implementations. Its version archive
is also available via CVS and the carol CVS-module
has been used.

• The third system is the JDT core subsystem of
Eclipse3. From Eclipse’s version archive the
org.eclipse.jdt.core CVS-module has been
used.

• The fourth system is GNU Emacs4, the famous text
editor. It is written in C.

• The fifth system is FileZilla5, a FTP client with a
graphical user interface for Windows, written in C++.

All five systems are large enough and have enough changes
in their version archive within the 200 observed weeks.
Moreover, they cover different applications, different plat-
forms, and different programming languages. Two of the
systems, ArgoUML and CAROL, have been used in previ-
ous studies by Kim et al. [15] and Aversano et al. [4]. A
sixth system has been prepared for the study because both

1http://argouml.tigris.org/
2http://carol.objectweb.org/
3http://www.eclipse.org/
4http://www.gnu.org/software/emacs/
5http://filezilla.sourceforge.net/

previous studies have analyzed it: DNSJava, an implemen-
tation of DNS in Java. However, this system had too few
and too small changes affecting clones and thus has been
rejected.

The sources of all five systems have been retrieved based
on their status in the version archive on 200 different dates,
such that each version is exactly one week later or earlier
than the next or previous version. A one week cycle has
been chosen because CVS activity is usually dependent on
the weekday [22] and projects often use a week oriented
process (e.g. within Eclipse). For all systems, the first ver-
sion was from 2002-08-08 and the last version was from
2006-06-01.

In all systems, only the Java, C, and C++ source and
header files have been analyzed. Also, the source files
have been transformed to eliminate spurious changes be-
tween versions: Comments have been removed from the
sources and afterward the source files have been reformat-
ted with the pretty printer Artistic Style6. The transformed
sources are saved to a repository. With this repository, all
S(v), 0 ≤ v < 200 can be accessed.

The changes between the versions of the systems have
been identified by the standard diff tool. For each version v
of the analyzed system, the changes between version v and
v + 1 (the version of the next week) have been identified,
generating D(v, v + 1).

For each of the 200 versions, the clone groups G(v)
have been identified by the use of the clone detection tool
Simian7 from RedHill Consulting Pty. Ltd. It is a text-based
clone detector that detects almost identical clones. The pos-
sibility to relax the identification by assuming that all lit-
erals are identical has not been used. The decision to use
Simian was based on the following requirements for the
clone detector:

6http://astyle.sourceforge.net/
7Available at http://www.redhillconsulting.com.au/

products/simian/index.html

4

Source Changes Clones
System LOC LOC LOC Groups

ArgoUML 118366 2816 14862 13% 313
CAROL 9824 248 601 6% 17
jdt.core 192930 2478 29438 15% 644
Emacs 227964 578 22966 10% 528
FileZilla 90138 698 14362 16% 210

Table 1. Analyzed Systems

1. It has to analyze Java, C, and C++ source files.

2. It has to be freely available.

3. It has to be fast.

4. It has to have textual output of the results for further
processing.

5. It has to be usable with a batch processor.

6. It has to match the above defined framework.

Most of the other (freely) available clone detectors cannot
be used because they require the use of a GUI or are re-
stricted to Java source files. Simian has been instructed to
identify clones with a size of at least 11 source code lines
(the reason for this choice will be discussed below).

The framework described in the previous section has
been implemented in a tool that takes a list of clone groups
G(v) as detected by Simian and a list of changes D(v, w)
as produced by diff that are then mapped and reduced on
the code clones. The tool will produce a list of clone groups
that only have consistent changes (GC(v, w)) and a list of
clone groups with inconsistent changes (GI(v, w)). Fig-
ure 1 shows the setup of the study and the arrangement of
the tools.

The analysis has been done on 200 versions. For each
week w, 1 ≤ w ≤ 200, the tool has generated the list
of clone groups with consistent and inconsistent changes
(GC(w − 1, w), GI(w − 1)), based on the clone groups of
the analyzed system in week w − 1 and the changes from
week w − 1 to week w.

Table 1 shows some properties of the analyzed systems:
The second column contains the average size of the ana-
lyzed source base (in LOC) for a week. The next column
contains the average number of added and deleted lines
from one week to the next. The last three columns con-
tain the average size of cloned source code (in LOC and as
an percentage of the source code) and the number of clone
groups for a week. For example, GNU Emacs is the largest
system with 228 KLOC on average, from which 10% (23
KLOC) is cloned code in 528 clone groups. It is the least
active system, as only 0.13% of its source code is changed
within a week (578 added or deleted lines).

|GC| |GI| |GI|
|GD|

ArgoUML 1049 1050 50%
CAROL 66 69 49%
jdt.core 1375 1124 55%
Emacs 440 543 45%
FileZilla 246 204 55%

Table 2. Number of Changed Clone Groups

4 Results

This section presents the results of the study as de-
scribed in the previous section. Table 2 shows the num-
ber of clone groups with consistent (|GC|) and inconsistent
(|GI|) changes and the percentage of clone groups that only
have consistent changes (|GI|

|GD|). For example, ArgoUML
has 2099 changed clone groups during the 200 weeks time
period, where 1049 are changed consistently and 1050 in-
consistently (roughly 3% of all 62600 clone groups are
changed). For all five systems, only 45%–55% of the clones
groups are changed consistently (roughly half of the clone
groups).

4.1 Impact of Minimum Clone Size

These numbers are smaller than expected and it might
be the case that the numbers are low because of the study’s
parameters. First of all, the minimum size of the detected
clones might be a reason for the small percentage of con-
sistent changes. It is known that small detected clones are
often only incidental clones. Therefore, the study has been
repeated for different minimum sizes of detected clones (in
a range between 6 and 30 lines). The observed impact of
increasing the minimum clone size has been:

• ArgoUML increases, but not monotonously, from 50%
to a maximum of 55% (at a minimum clone size of 28
lines).

• CAROL decreases, but not monotonously, from 49%
(maximum of 51% at 8).

• jdt.core increases for a short time from 55% to 57% (at
15), but then decreases (not monotonously).

• GNU Emacs increases for a short time from 45% to
46% (at 19), but then decreases (not monotonously).

• FileZilla increases, but not monotonously, from 55%
to a maximum of 64% (at 28).

In four of the five systems the percentage of consistent
changes increases with an increased minimum size. The dif-
ferent behavior for CAROL can be explained by the small

5

n = 0 1 2 3 4 5
ArgoUML 50% 52% 52% 52% 52% 52%
CAROL 49% 52% 47% 47% 47% 46%
jdt.core 55% 57% 56% 56% 55% 53%
Emacs 45% 47% 48% 49% 50% 50%
FileZilla 55% 58% 58% 59% 59% 61%

Table 3. Impact of Removing Lines

size of the system and the small number of changed clone
groups. However, if the minimum limit is very large, all
systems have a smaller percentage of consistent changes.
If the minimum size is decreased, the percentage of con-
sistently changed groups decreases for all systems except
CAROL, for which the percentage stays within 49%–51%.
In spite of everything, the impact of the minimum size is
not dramatic.

4.2 Impact of Maximization of Clones

Another reason might be related to the way how clone
detector tools work (in comparison to human oracles). Like
any other clone detection tool, Simian tries to detect maxi-
mal sized code clones. This can result in code clones that
are actually larger than the ‘intended’ or ‘real’ code clone.
For example, the code clones may include source code lines
at the beginning or end of the clone that are only identical
by incident. If a change is now applied in such regions, it
may be detected as an inconsistent change, while the ‘in-
tended’ or ‘real’ code clone is changed consistently or not
at all. Such a change is classified as irrelevant for the study.
To eliminate this kind of problems, the code clones as listed
by Simian can be reduced before further analysis: a number
of source code lines at the beginning and the end of the de-
tected code clone can be removed. In the presented study,
five additional experiments have been done: At the begin-
ning and at the end of the detected cloned between one and
five lines are removed automatically (with a minimal clone
size of 11 and five removed lines at the beginning and the
end of a clone, only a single line is left of a minimal sized
clone).

The observed impact is shown in Table 3, where each
of the column 0–5 show the percentage of consistently
changed clone groups when n number of lines at the begin-
ning and the end of the clone are removed. If only one line
is removed, the percentage of consistently changed groups
increase as expected. However, for larger numbers of re-
moved lines, there is no common trend:

• ArgoUML does not change and stays at 52%

• CAROL decreases to 46% with 5 removed lines

• jdt.core decreases to 53% with 5 removed lines

• GNU Emacs increases to 50% with 5 removed lines

• FileZilla increases to 61% with 5 removed lines

Again, the changes in percentage is not dramatic and the
general observation is that a little bit more than half of clone
groups with changes are consistently changed.

4.3 Impact of Change Detection

Another reason of the lower than expected percentages
might be related to the way how changes are compared. In
the presented setup, the changes are first computed by the
diff tool. The risk that two changes are considered to be dif-
ferent changes while they are identical changes is decreased
by a combination of techniques:

• The original sources are transformed as described
above in the Introduction. Thus, changes cannot be
different due to comments, indentation or formatting.

• Whitespace like linebreaks, tabulators, etc. are re-
moved before changes are compared.

This reduces the risk, but does not eliminate it. Therefore, a
manual inspection for the systems CAROL, GNU Emacs,
and FileZilla has been done to examine the 332 critical
changes where the same source lines of every clone in a
group are replaced by different source text. Almost all of
the changes are very similar, but most of them cause subtle
semantic differences. Typical examples are different param-
eters for the same method call, differences in thrown excep-
tions, or differences in predicates in otherwise identical if-
or while-statements.

These observations seems to indicate that a large part of
clones start as identical clones and evolve independently,
often with just subtle differences.

4.4 Effects of Comments and Indentation

As mentioned in the previous section, the source code
has been transformed by comment removal and reformat-
ting. The intention was to get rid of spurious changes. The
same analysis has been applied to the original sources to see
if the transformation has the intended effect.

Table 4 shows the overall numbers for the original and
the transformed source code. It can be seen that the num-
ber of changed clone groups increases, while the percentage
of consistently changed clone groups drops. The most dra-
matic change can be seen for ArgoUML, where the number
of changed groups doubles while the percentage of con-
sistently changed clone groups drops from 50% to 30%.
Overall, the numbers show that the transformation of the

6

Transformed Original
|GC| |GI| |GI|

|GD| |GC| |GI| |GI|
|GD|

ArgoUML 1049 1050 50% 1266 2988 30%
CAROL 66 69 49% 77 170 31%
jdt.core 1375 1124 55% 1416 2194 39%
Emacs 440 543 45% 480 1006 32%
FileZilla 246 204 55% 270 316 46%

Table 4. Comparison of Results for Original
and Transformed Source Code

source code will result in fewer detected changes within
clone groups, thus the transformation achieves the desired
improvement.

4.5 Evolution of Changed Clone Groups

Up to now, the presented results only gave evidence for
the evaluation of the first hypothesis. The second hypoth-
esis “During the evolution of a system, if code clones of
a clone group are not changed consistently, the missing
changes will appear in a later version” has also been eval-
uated within this study. If this hypothesis was true, changes
to a clone group that are not applied to all code clones of a
group would appear in a later version. Until now, the pre-
sented study only considered the changes to a system that
appear within one week. If the hypothesis would be true,
there have to be more consistent changes if a longer time
period is considered. To verify this, the study has been re-
peated with a different time distance between one and 10
weeks.

Table 5 shows the numbers of clone groups changed
within one week (same numbers as in Table 4) and the num-
ber of clone groups changed within 2, 4, 7, and 10 weeks.

The numbers show that during larger periods much more
changes occur than within only the first week. However,
the percentage of consistent changes is very stable and does
not change much. This indicates that the second hypothe-
sis is not valid. If it was valid, the percentage of consistent
changes would increase. There are exceptions to this gen-
eral observation as a manual inspection revealed. However,
the number of these exceptions is too low to be observable
in general.

It can be concluded that both hypotheses cannot be gen-
erally observed in practice. The study showed that clone
groups in general have roughly the same number of in-
consistent changes or consistent changes, invalidating the
first hypothesis. The study also showed that the second hy-
pothesis is also not valid in general, because inconsistently
changed clone groups that become consistently changed
clone groups later can be found rarely.

4.6 Threats to Validity

There are some potential threats to validity in the pre-
sented study. First of all, there is no clear definition of
a clone. Moreover, a clone detected by a clone detector
may not be a clone in reality (false positive) or a clone in
a system may be missed by a clone detector (false nega-
tive). To reduce the number of false positives, we have used
Simian with strict settings such that only identical clones
are detected. Moreover, the analyzed systems have been
transformed by removing comments and pretty printing. It
is known that clone detectors have a low recall [7], so the
false negative cause a threat to validity which cannot be es-
timated. Another potential threat to validity is caused by
the technique to detect changes with diff, however, the risk
is reduced by transformation of the analyzed systems and
by ignoring whitespace in changes.

The experiment is also influenced by the analyzed sys-
tems. To be able to draw general conclusions, five systems
have been chosen that are of different application types,
written in different programming languages, are of suffi-
cient size, and went through enough changes.

Other parameters that influence the experiment, like the
choice of a minimum clone size, have been studied and are
shown to have only a small impact.

5 Related Work

There are only a few empirical studies that analyze the
effect of changes on the code clones of a system. Geiger et
al. [10] studied the relation of code clones and change cou-
plings (files which are committed at the same time, by the
same author, and with the same modification description),
but could not find a (strong) relation. The results of the pre-
vious section give reasons why Geiger et al. could not find
such a relation: the amount of consistent changes is too low.

Kim et al. [15] investigated the evolution of code clones
and provided a classification for evolving code clones.
Their work already showed that during the evolution of the
code clones, consistent changes are fewer than anticipated.
However, the study analyzed the evolution of two very small
systems, DNSJava and CAROL, both written in Java, and
both are a similar type of application.

Aversano et al. [4] did a similar empirical study with
a slightly refined framework. Similar to Kim et al., they
analyze so called co-changes that are changes committed
by the same author, with the same notes, and within 200
seconds. They used a Java-only clone detector that com-
pares subtrees in the abstract syntax tree. The analyzed sys-
tems were DNSJava and ArgoUML. Although Aversano et
al. state “that the majority of clone classes is always main-
tained consistently”, the numbers they present contradict
this statement: For ArgoUML, they found that 45% of the

7

1 week 2 weeks 4 weeks 7 weeks 10 weeks
|GC| |GI| |GI|

|GD| |GC| |GI| |GI|
|GD| |GC| |GI| |GI|

|GD| |GC| |GI| |GI|
|GD| |GC| |GI| |GI|

|GD|
ArgoUML 1049 1050 50% 1998 1981 50% 3703 3668 50% 6002 5869 51% 8059 7801 51%
CAROL 66 69 49% 115 124 48% 211 221 49% 338 350 49% 447 461 49%
jdt.core 1375 1124 55% 2629 2114 55% 4842 3996 55% 7706 6565 54% 10097 8911 53%
Emacs 440 543 45% 854 1074 44% 1680 2041 45% 2802 3553 44% 3699 5204 42%
FileZilla 246 204 55% 464 381 55% 819 697 54% 1277 1111 53% 1670 1477 53%

Table 5. Comparison for inconsistent changes during different weeks

clone groups underwent consistent changes – similar to the
50% we found above. It is worth mentioning that Aver-
sano only had to inspect 237 clone groups in a similar time
period, while we found 2099 changed clone groups. The
reasons for this huge difference is not clear.

Our studies have found a little bit higher percentages of
clone groups to be consistently changed. This may be re-
lated to the transformation of the sources. Besides the above
mentioned empirical studies, there is some not directly re-
lated work that focuses on the evolution of systems and the
contained code clones, without looking at the changes:

Antoniol et al. [3] have analyzed the cloning evolution
in the Linux kernel for 19 releases. They found that the
Linux system does not contain a relevant fraction of code
duplication. Furthermore, they found that code duplication
tends to remain stable across releases. Lagüe et al. [19]
have analyzed the amount of clones for different versions
of a large telecommunication switching software. An ex-
perience in applying time series to cloning ratio prediction
was presented by Antoniol et al. [2]. Al-Ekram et al. [1]
investigated the code cloning across software systems.

Kim et al. [14] studied why and how programmers intro-
duce code clones into software systems. Lagüe et al. [19]
show how software development could benefit from the in-
clusion of code clone detection tools into the development
process. The relation of code clones to the reliability and
maintainability of a system has been examined by Monden
et al. [21].

Jarzabek and Li [11] found that at least 68% of the Java
Buffer library’s code was contained in cloned classes or
class methods. Close analysis of program situations that led
to cloning revealed difficulties in eliminating clones with
conventional program design techniques. Kapser and God-
frey [13] list several patterns of cloning that are used in real
software systems and argue that clones can be a reasonable
design decision.

Many approaches and tool for the detection of code
clones have been developed. They can be grouped in based
on the underlying technique: lexical analysis [5, 9, 12],
source code metrics [17, 20], and comparison of structures
like the abstract syntax tree [6] or program dependence
graph [16,18]. Comparative studies have been done by Burd

and Bailey [8], Bellon [7], and Van Rysselberghe and De-
meyer [23, 24].

6 Conclusions and Future Work

The presented study verified two hypotheses that are usu-
ally stated as reasons why cloning of source code is consid-
ered a threat to software maintenance:

1. During the evolution of a system, code clones of a
clone group are changed consistently.

2. During the evolution of a system, if code clones of a
clone group are not changed consistently, the missing
changes will appear in a later version.

The study observed five large open source systems based
on an introduced framework that defines code clones, clone
groups, changes, and how changes apply to the code clones
of a clone group.

The study showed that the hypotheses are not valid gen-
erally. The study showed that clone groups are consistently
changed in roughly half of the time—invalidating the first
hypothesis. The study also showed that the second hy-
pothesis is also not valid in general, because inconsistently
changed clone groups that become consistently changed
clone groups later can be found rarely.

Currently, the study is expanded with the analysis of
more and larger systems. It is also planned to use other
clone detection tools than Simian to achieve more general
results.

References

[1] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning
by accident: an empirical study of source code cloning
across software systems. In International Symposium on
Empirical Software Engineering, 2005.

[2] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Mod-
eling clones evolution through time series. In Proc. Int’l
Conf. Software Maintenance (ICSM’01), pages 273–280,
Nov. 2001.

8

[3] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. An-
alyzing cloning evolution in the linux kernel. Information
and Software Technology, 44(13):755–765, Oct. 2002.

[4] L. Aversano, L. Cerulo, and M. D. Penta. How clones are
maintained: An empirical study. In Proc. 11th European
Conference on Software Maintenance and Reengineering
(CSMR 2007), 2007.

[5] B. S. Baker. On finding duplication and near-duplication in
large software systems. In Proceedings: Second Working
Conference on Reverse Engineering, pages 86–95, 1995.

[6] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proceedings;
International Conference on Software Maintenance, pages
368–378, 1998.

[7] S. Bellon. Vergleich von Techniken zur Erkennung du-
plizierten Quellcodes. Diplomarbeit, Universität Stuttgart,
2002. (In German).

[8] E. Burd and J. Bailey. Evaluating clone detection tools for
use during preventative maintenance. In Second IEEE Inter-
national Workshop on Source Code Analysis and Manipula-
tion (SCAM’02), pages 36–43, 2002.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Proceed-
ings; IEEE International Conference on Software Mainte-
nance, pages 109–118, 1999.

[10] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation
of code clones and change couplings. In Proceedings of the
9th International Conference of Funtamental Approaches to
Software Engineering (FASE), number 3922 in LNCS, pages
411–425. Springer, Mar. 2006.

[11] S. Jarzabek and S. Li. Unifying clones with a generative
programming technique: a case study. Journal of Software
Maintenance and Evolution, 18(4):267–292, 2006.

[12] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Trans. Softw. Eng., 28(7):654–670,
July 2002.

[13] C. Kapser and M. W. Godfrey. “cloning considered harm-
ful” considered harmful. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE’06), pages 19–
28, 2006.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethno-
graphic study of copy and paste programming practices in
oopl. In International Symposium on Empirical Software
Engineering, pages 83–92, 2004.

[15] M. Kim, V. Sazawal, and D. Notkin. An empirical study of
code clone genealogies. In Proceedings of the 10th Euro-
pean software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE), pages 187–196, 2005.

[16] R. Komondoor and S. Horwitz. Using slicing to identify du-
plication in source code. In Eigth International Static Anal-
ysis Symposium (SAS), volume 2126 of LNCS, 2001.

[17] K. Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Proceed-
ings Fourth Working Conference on Reverse Engineering,
pages 44–54, 1997.

[18] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proc. Eigth Working Conference on Re-
verse Engineering, pages 301–309, 2001.

[19] B. Lagüe, D. Proulx, E. Merlo, J. Mayrand, and J. Hudepohl.
Assessing the benefits of incorporating function clone detec-
tion in a development process. In Proc. Int’l Conf. Software
Maintenance (ICSM’97), pages 314–321, 1997.

[20] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance, pages 244–254, 1996.

[21] A. Monden, D. Nakae, T. Kamiya, S. ichi Sato, and K. ichi
Matsumoto. Software quality analysis by code clones in in-
dustrial legacy software. In Eighth IEEE International Sym-
posium on Software Metrics (METRICS’02), 2002.

[22] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? on fridays. In International Work-
shop on Mining Software Repositories (MSR), 2005.

[23] F. van Rysselberghe and S. Demeyer. Evaluating clone
detection techniques. In Proceedings of the International
Workshop on Evolution of Large Scale Industrial Software
Applications, 2003.

[24] F. van Rysselberghe and S. Demeyer. Evaluating clone de-
tection techniques from a refactoring perspective. In 19th
International Conference on Automated Software Engineer-
ing, pages 336–339, 2004.

9

