
Empirical Study of Optimization Techniques for
Massive Slicing

DAVID BINKLEY,

Loyola College in Maryland

MARK HARMAN,

King’s College London

and

JENS KRINKE,

FernUniversität in Hagen

This paper presents results from a study of techniques that improve the performance of graph-
based interprocedural slicing of the System Dependence Graph (SDG). This is useful in “massive
slicing” where slices are required for many or all of the possible set of slicing criteria. Several
different techniques are considered, including forming strongly connected components, topological
sorting, and removing transitive edges.

Data collected from a test bed of just over 1,000,000 lines of code are presented. This data
illustrates the impact on computation time of the techniques. Together, the best combination
produces a 71% reduction in run-time (and a 64% reduction in memory usage). The complete set
of techniques also illustrates the point at which faster computation is not viable due to prohibitive
preprocessing costs.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.2.6 [Software Engineering]: Programming Environments; E.1 [Data Struc-
tures]: Graphs; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Lan-
guages—Program analysis

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Slicing, Internal Representation, Performance Enhancement,
Empirical Study

Authors’ Addresses: David Binkley, Loyola College in Maryland, Baltimore, Maryland, 21210-
2699, USA. binkley@cs.loyola.edu Mark Harman, King’s College London, Strand, London,
WC2R 2LS, UK. Mark.Harman@.kcl.ac.uk Jens Krinke, FernUniversität in Hagen, 58084 Hagen,
Germany. Jens.Krinke@FernUni-Hagen.de

This research is supported by National Science Foundation grant CCR-0305330 and Engineering
and Physical Sciences Research Council grants GR/R98938, GR/M58719 and GR/R71733.
Copyright 2006 by David Binkley, Mark Harman, and Jens Krinke. All rights reserved.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20TBD ACM 0164-0925/20TBD/0500-0001 $5.00

c©ACM, 2006. This is the authors’ version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version will be published in TOPLAS.

2 · David Binkley et al.

1. INTRODUCTION

As originally introduced, program slicing is a source code extraction technique that
allows a software engineer to extract an executable sub-program based upon a
slicing criterion [Weiser 1981; 1982]. Program slicing has applications in debug-
ging [Weiser 1982], testing [Binkley 1998; Harman and Danicic 1995; Hierons et al.
1999; Hierons et al. 2002], program comprehension [Binkley et al. 2000; Fox et al.
2001; Rilling et al. 2001; Zhao 2002], program decomposition [Gallagher and Lyle
1991] and integration [Binkley et al. 1995; Horwitz et al. 1989], software metrics
[Bieman and Ott 1994; Ott and Thuss 1989; Longworth et al. 1986] and re- and
reverse engineering [Canfora et al. 1994; Canfora et al. 1994; Cimitile et al. 1995a;
1995b].

In some applications of slicing, only several slices need be computed, but in others,
particularly those where slicing is used as an intermediate step in the computation
of dependence information, there is a need to slice on many or all of the possible
slicing criteria. This “massive slicing” is the motivation for the present paper,
which studies six dependence graph optimization techniques that support improved
performance for massive slicing.

Ottenstein and Ottenstein [Ottenstein and Ottenstein 1984] first observed the
suitability of the program dependence graph for computing (intraprocedural) slices
as the solution to a reachability problem. The program dependence graph and its
applications were also studied by Ferrante et al. [Ferrante et al. 1987]. Horwitz
et al. later provided an algorithm for context-sensitive interprocedural slicing that
computed slices as the solution to a graph reachability problem over the system
dependence graph [Horwitz et al. 1990; Reps et al. 1994; Reps 1998]. It is this
interprocedural formulation of the dependence graph which forms the subject of
the studies in the present paper.

The context for the work reported here is that of providing assistance to tool de-
signers making decisions regarding the incorporation of a particular graph technique
and representation. The paper studies six techniques that improve the performance
of computing context sensitive interprocedural slices as the solution to a graph
reachability problem. Results collected from a test bed of just over 1,000,000 lines
of source code quantify the impact on the running time (and thus the applicability)
of the techniques. It is expected that these techniques may also be applicable to
and beneficial for other related graph-reachability-based analyses. However, future
work is necessary to formally verify this belief.

The remainder of the paper is organized as follows: Section 2 explains the ap-
plications of massive slicing (slicing on every possible slicing criterion). Section 3
provides background on program slicing and the tools used to collect the data. Sec-
tion 4 describes the optimization techniques, while Section 5 reports the results of
the study. Finally, Sections 6 and 7 present related work and then summarize the
paper.

2. THE APPLICATIONS OF MASSIVE SLICING

This paper presents techniques for scaling up slicing so that it becomes possible to
realistically slice medium to large programs on every possible slicing criterion. This
section briefly describes some of the applications of this “massive slicing.”
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 3

Following Weiser’s original suggestion in his thesis [Weiser 1979], several authors
have described techniques that use slicing to measure the cohesion of programs
[Bieman and Ott 1994; Meyers and Binkley 2004; Longworth et al. 1986; Ott
and Thuss 1989; Ott and Bieman 1992; Ott and Thuss 1993; Ott 1992]. In this
approach, slices for all “principal variables” are constructed and the relationships
between these slices are explored to provide a basis for cohesion measurement. For
example, in a program where there is a large degree of overlap among the program’s
slices, this would tend to indicate that the program is cohesive; that is, there is a
large degree of shared computation, upon which all the primary computational
results depend. This observation is at the heart of the work on slice-based cohesion
measurement.

In order to measure cohesion using this approach, it is necessary to construct a
slice of all principal variables in the program. The definition of what constitutes
a ‘principal’ variable is a parameter in these approaches to cohesion measurement.
However, common choices [Ott and Thuss 1989; Ott and Bieman 1992; Ott and
Thuss 1993; Ott 1992] include local variables whose value is output, global variables
which are affected by a procedure, and a procedure’s reference-value parameters.
This approach can result in a large number of slices being required. For example,
in a recent study of forward and backward slice sizes [Binkley and Harman 2005a]
a code base of just over 1M lines of code was found to contain 1.8M global variable
instances that would play the role of a principal variable according to this approach
(i.e., summed over all procedures, there are 1.8M global variable instances that
would be deemed to be principal variables). Therefore, taking global variables
alone, the cohesion measurement for this code base would require the construction
of almost 2M slices.

Massive slicing is also required in applications of slicing to software maintenance,
most notably in the technique of union slicing [Beszédes and Gyimóthy 2002; Dani-
cic et al. 2004] and of decomposition slicing [Gallagher and Lyle 1991]. A union slice
is constructed from the union of many slices from the program, each constructed for
a different dynamic slicing criterion. The aim is to approximate the precise static
slice. This cannot always be fully determined, because minimal slicing is known to
be undecidable [Weiser 1979; 1984].

The goal of union slicing is to provide a lower bound on the value of the precise
static slice, by combining the results of many dynamic slices. Together with the
static slice itself (which provides an upper bound on the precise slice) this provides
an approach to incrementally reducing the interval in which the precise slice can
be determined to lie. Of course, to construct such a union slice requires that many
slices be computed. The more slices that can be computed the greater the precision,
so there is a direct connection between the precision of the approach and the level
of massive slicing ability. While many different dynamic slicing algorithms exist, it
is not uncommon for these algorithms to reuse the same dependence graph for all
slices (for example, the algorithms of Agrawal and Horgan [Agrawal and Horgan
1990]).

In decomposition slicing, the goal is to construct a partial order of slices that
decomposes the program under maintenance. From this decomposition, a set of
complement slices can be constructed such that changes to the complement can

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

4 · David Binkley et al.

be shown to leave certain decomposition slices unaffected. This approach sup-
ports maintenance activities that change the software; the decomposition and its
complement delimit the ares of the software which can be safely changed without
introducing ripple effects [Black 2001].

Other work on program analysis has used slicing as a bench mark application
[Liang and Harrold 1999; Mock et al. 2002]. One aspect of this work was to assess
the impact of different points-to analyses upon slice size. In order to ensure that
the results were not biased by the choice of slicing criterion, the authors used as
wide a selection of slicing criteria as possible [Liang and Harrold 1999]. The work of
the present paper goes some way towards supporting this kind of investigation by
increasing the chance that this form of study could routinely apply massive slicing,
thereby removing possible experimenter bias in the choice of slicing criteria.

The authors developed the optimization techniques reported in the present pa-
per in order to investigate, empirically, the nature of program dependence [Binkley
and Harman 2004; 2005a; 2005b]. All of these studies required the construction of
large numbers of slices, because slices had to be constructed for every valid slicing
criterion in every procedure of every program. The ability to slice on every possible
slicing criterion allowed for investigations of the relationship between forward and
backward slicing [Binkley and Harman 2005a] and of the levels of predicate depen-
dence, and of their correlation to parameter list size [Binkley and Harman 2004].
By a similar ‘massive slicing’ approach the authors were able to reveal the presence
of dependence clusters, which may cause problems for maintenance [Binkley and
Harman 2005b].

3. BACKGROUND

This section describes the interprocedural slicing algorithm, the subject programs,
threats to the validity of the experiment, and the data collection environment.

3.1 Interprocedural Slicing of SDGs

The System Dependence Graph (SDG) is a collection of Procedure Dependence
Graphs (PDGs) connected at call-sites by interprocedural control- and flow-depen-
dence edges [Horwitz et al. 1990]. A PDG represents a procedure as a collection of
vertices and edges. The vertices represent the components of the program (e.g., as-
signment statements and predicates) and the edges represent dependences between
them. With the exception of call statements, a single vertex represents predicates
(e.g., from if and while statements), assignment statements, etc. A call state-
ment is represented using a call vertex and four kinds of parameter vertices that
represent parameter passing: on the calling side, parameter passing is represented
by actual-in and actual-out vertices, while in the called procedure it is represented
by formal-in and formal-out vertices.

There are two kinds of edges in a PDG: control dependence edges and data
dependence edges. A control dependence edge is labeled either true or false.
Informally, it connects a predicate vertex v to a vertex u if, during execution,
when the predicate represented by v is evaluated and its value matches the edge’s
label, then the program component represented by u will eventually be executed
(provided the program terminates normally) [Horwitz et al. 1990; Ferrante et al.
1987]. The only kind of data-dependence edge used is the flow dependence edge. A
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 5

Intraprocedural control dependence
Intraprocedural data dependence

sum += a[i] i = i + 1

while (i < 10)
{

{

 sum += a[i]
 i = i + 1

 (i < 10)while

Fig. 1. Intraprocedural SCC Example. The two bold vertices form an SCC.

Original Program Slice on “print i”

int main()

{
sum = 0
i = 1
while i ≤ 10
sum = add(sum , i)
i = add(i, 1)

print sum
print i
}

int add(a, b)
{
return a + b
}

int main()

{

i = 1
while i ≤ 10

i = add(i, 1)

print i
}

int add(a, b)
{
return a + b
}

Fig. 2. A slice computed with respect to (the vertex representing) the value of i at the statement
“print i”.

flow dependence edge runs from a vertex that represents a definition of a variable
to a vertex that represents a use of the variable reached by that definition [Horwitz
et al. 1990; Ferrante et al. 1987]. The dependence edges are safe approximations
to the semantic dependences found in the program [Podgurski and Clarke 1990],
which are generally not computable and therefore must be (safely) approximated.
For example, Figure 1 shows a fragment of a procedure and the corresponding PDG
fragment including both control and data dependence edges.

Taken with respect to vertex v, a slice includes the vertices that represent state-
ments that potentially affect the computation represented at v. Figure 2 shows a
simple program and the statements corresponding to the vertices in one of its slices.
An interprocedural slice can be computed using simple graph reachability. How-
ever, the resulting slice is imprecise as it fails to take calling context into account.
For example, both calls to add from Figure 2 would be included in such a slice. A
two-pass reachability algorithm [Horwitz et al. 1990] avoids this imprecision.

In more detail, to address the calling-context problem, an SDG includes summary
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

6 · David Binkley et al.

edges, which represent transitive dependences due to procedure calls. A summary
edge at call-site c connects actual-in vertex v to actual-out vertex u if there is
a path in the SDG from v to u that respects calling context by matching calls
with returns (i.e., there is an interprocedurally realizable path from v to u). For
the slice taken with respect to vertex v, the two-pass algorithm first identifies the
necessary vertices in v’s procedure P and in procedures calling P . It does this
without descending into called procedures (by ignoring interprocedural edges from
formal-out to actual-out vertices). This avoids the difficulty of identifying to which
call site analysis should “return.” The second pass identifies the necessary vertices
from called procedures by descending only into procedures, again side-stepping the
calling-context problem.

3.2 The Subjects

The study considers just over 1 million lines of C code from 43 subject programs
that range in size from 563 to 167K lines-of-code. Three programs were obtained
from the European Space Agency (ESA), while the remainder are publicly available.
Figure 3 presents summary information for these programs. It includes the size of
each subject as measured in lines of code (LOC), the size of the resulting SDG
(given by both vertex and edge counts), and finally the number of slices computed
for each program.

Note that the number of lines-of-code and the number of slices do not match
for two reasons. First, lines-of-code were counted using the Unix word count util-
ity which is a rather crude method. Word count was chosen to make the results
comparable with other studies that report lines-of-code as counted by word count
[Anderson et al. 2001; Eisenbarth et al. 2002; Krinke 2002]. Second, a slice was com-
puted for every vertex that represents executable source code. One “line of code,”
as counted by word count, may be represented by multiple vertices. For example,
the single line “if (a && b)” is represented by two vertices to correctly model the
sequence point and short-circuit (conditional) evaluation of boolean expressions in
C.

The subject programs cover a wide range of programming styles. For example,
the program prepro is Fortran-esque in its use of arrays. In contrast, several other
programs make heavy use of function pointers. The program ed is rather tight
knit and “single minded.” In contrast, the program acct contains many different
(related) computations.

3.3 Threats to Validity

With any empirical experiment, it is important to consider threats to validity. In
the absence of human subjects, only two potential threats to validity need to be
considered. These are threats to external validity and internal validity.

External validity, sometimes referred to as selection validity, is the degree to
which the findings can be generalized. In this experiment, a single platform and
SDG construction algorithm were used and it is possible that the selected programs
are not representative of programs in general. Thus, the results might not transfer
to other platforms or SDG constructions (e.g., using an alternate points-to analysis)
and may not apply to “typical” programs.

The use of other slicing algorithms might lead to different results. For example
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 7

name LOC vertices edges slices

a2ps 53,900 417,513 6,303,686 58,009

acct-6.3 9,536 18,531 80,584 7,222

barcode 5,562 10,916 35,796 3,824

bc 14,609 14,903 49,523 5,105

byacc 6,337 34,019 114,377 10,150

cadp 11,068 42,212 122,478 15,672

compress 1,234 5,211 14,749 1,085

copia 1,170 43,513 126,943 4,680

csurf-pkgs 36,593 295,220 973,703 42,777

ctags 16,946 120,014 422,034 20,313

cvs 93,309 6,219,909 28,981,757 102,353

diffutils 18,374 36,079 195,348 16,622

ed 12,493 44,387 222,858 16,368

empire 53,895 496,033 2,022,295 105,918

epwic-1 8,631 22,217 79,026 12,447

espresso 22,050 93,326 467,165 29,044

findutils 16,891 30,322 170,697 14,320

flex2-4-7 15,143 39,037 186,523 11,104

flex2-5-4 20,252 55,019 386,413 14,114

ftpd 15,914 56,981 366,095 24,820

gcc.cpp 4,079 19,095 89,513 7,354

gnubg-0.0 7,229 25,138 80,922 9,447

gnuchess 16,659 44,957 163,465 15,069

gnugo 15,217 278,766 1,044,525 58,373

go 28,547 111,246 416,404 35,594

ijpeg 24,822 62,698 265,650 23,954

indent 6,100 25,737 582,728 6,602

li 6,916 889,260 3,762,858 13,521

named 103,670 1,326,070 21,824,057 104,567

ntpd 45,647 204,420 804,652 39,573

oracolo2 14,326 20,654 65,734 10,846

prepro 14,328 20,578 65,353 10,779

replace 563 1,097 3,500 867

sendmail 75,156 1,111,054 37,774,280 46,889

space 9,126 20,018 64,537 10,311

spice 149,050 1,774,846 31,308,396 213,625

termutils 6,697 8,869 27,442 3,096

tile-forth 3,717 59,247 215,288 11,940

time-1.7 6,033 4,583 14,092 1,049

userv-0.95.0 7,150 70,796 272,726 12,511

wdiff.0.5 5,958 7,213 21,793 2,421

which 4,880 4,666 13,327 1,156

wpst 17,321 54,658 209,465 20,667

sum 1,007,098 14,241,028 140,412,757 1,176,158

average 23,421 331,187 3,265,413 27,353

Fig. 3. Characteristics of the subject programs studied.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

8 · David Binkley et al.

using a less precise points-to algorithm would have a significant, though predictable
effect. Considering 43 subject programs helps to mitigate the second concern. The
diversity of these programs makes it more likely that the conclusions about the
techniques generalize. However, as most of these are open-source programs, it
remains possible that non-open source programs would exhibit significantly different
behavior.

Internal validity is the degree to which conclusions can be drawn about the causal
effect of the independent variable on the dependent variable. In this experiment, the
only serious threat comes from potential for faults in the seven slicers studied. Other
common forms of internal validity, for example construct validity (the degree to
which the variables used in the study accurately measure the concepts they purport
to measure) are not an issue as the variables measured (e.g., slice size and time),
can both be measured with high precision. Thus, the only serious internal validity
concern comes from the assumption that slicers correctly implement each slicing
algorithm. In practice, the slicing tools might contain errors, or employ imprecise
analyses (e.g., imprecise data-flow analysis or imprecise points-to analysis). To
mitigate this concern, for each program the output of the seven slicers was compared
(and found identical in all cases). Thus, any slicing fault is present in all of the
slicers. This reduces the impact implementation faults may have on the conclusions
reached.

3.4 Data Collection

The data was collected on a dual processor Linux box running Red Hat Linux
7.1/kernel version 2.4.2-2. Each processor is a 1000MHz Pentium III and has a
256Kb cache with a 32 byte cache line. The processors share 4Gb of main memory.
Memory contention between the two processors slows each down by 15.5% relative
to a single processor in an identical environment. CPU utilization was 99+% for
all runs of each slicer. Each slicer was built using the GNU compiler, gcc version
2.96 with -O3 optimization.

Data was collected by slicing on every vertex in a program’s SDG that directly
represents source code. The most common cause of vertices that do not directly
represent source code are vertices that represent the passing of global variables to
and from procedures. Including the slices on these non-source vertices does not
affect the results, other than providing more data for each program. Finally, slices
were not taken with respect to vertices representing the standard C libraries libc
and libm.

4. TECHNIQUES

This section introduces the six optimization techniques investigated and describes
how they are combined to form the seven slicers studied in the next section. The
six are summarized in Figure 4. They include four algorithmic techniques: the
formation of three kinds of strongly connected components and topological sorting,
or top sorting, (labeled SCC, iSCC-s, and iSCC-c, and TS, respectively), and two
“low level” techniques: vertex size reduction and redundant transitive edge removal
(labeled Pack and Tran, respectively). These six are all preprocessing steps; thus,
other than the time taken, they do not affect the two-pass slicing algorithm.

The seven slicers are based on Std, the standard (unoptimized) slicer. Std is a
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 9

Version Description

SCC intraprocedural SCC formation
iSCC-s separate interprocedural SCC formation
iSCC-c combined interprocedural SCC formation
Pack memory packing and field layout
TS topological sorting of vertices
Tran transitive edge removed

Fig. 4. The six techniques studied.

straightforward implementation of the two-pass interprocedural slicing algorithm
presented by Horwitz et al. [Horwitz et al. 1990]. The vertex data structure and
excerpts from the slicer’s implementation are shown in Figure 5. The function
b_slice drives the computation. It marks the vertices of Pass 1 by calling function
b1_flood, which avoids descending into called procedures by considering only in-
terprocedural edges into formal-in and entry vertices. These edges connect the pro-
cedure to calling procedures. The actual-out vertices identified in Pass 1 form the
starting point for the second pass. Function b_slice calls Function b2_flood (not
shown) starting from each actual-out vertex encountered during Pass 1. Function
b2_flood is similar to b1_flood except interprocedural edges into called procedures
are traversed rather than those out to calling procedures.

The six optimization techniques exploit certain patterns in the dependence graph
in an attempt to reduce slice computation time. The first three techniques form
different kinds of Strongly Connected Components (SCCs). All three satisfy two key
requirements: first all vertices in an SCC will have the same slice and, second, any
slice that includes a vertex from an SCC will include all the vertices of the SCC.
Satisfying these two requirements allows each SCC to be collapsed into a single
representative node. This is an instance of a minimal, consistent, and sharp vertex
coarsening [Harman et al. 2001], which means that the slices produced are identical
to those that would have been produced without merging vertices into SCCs.

The first SCC formation technique, denoted by SCC, builds intraprocedural SCCs
by ignoring interprocedural edges during SCC construction. Because slicing within
a procedure amounts to computing a transitive closure, SCC clearly satisfies the
two requirements. An example of an intraprocedural SCC can be seen in Figure 1
where the vertices labeled “while (i < 10)” and “i = i + 1” form a two-vertex SCC.
Any slice that includes one of these vertices will also include the other: thus, the
two vertices can be treated as one. Intraprocedural SCCs are the simplest and most
efficient of the three SCC formation techniques to compute.

The remaining two SCC techniques consider interprocedural edges. Such SCCs
are created as a result of recursion or when a procedure call occurs in a loop where
results from one call flow into a call in a subsequent loop iteration. The first
interprocedural SCC technique is Separate Interprocedural SCC, denoted by iSCC-
s. In some sense this technique clones and then creates two specialized versions of
the SDG. The clones are specialized to match the two passes of the interprocedural
slicing algorithm. Thus, a vertex may be in two separate SCCs, one that is used
during Pass 1 of a backward interprocedural slice and a second that is used during
Pass 2 of a backward interprocedural slice. Of the three techniques, this produces

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

10 · David Binkley et al.

typedef

{

int name;

int mark;

int kind;

PdgVertex *outgoing_intra_edges;

PdgVertex *incoming_intra_edges;

PdgVertex *incoming_inter_edges;

PdgVertex *outgoing_inter_edges;

} *PdgVertex;

b_slice(PdgVertex from)

{

// ignore non-source vertices

if ((from->kind & FROM_LIBC) || (from->kind & NO_SOURCE))

return;

actual_outs = list_initialize();

b1_flood(from);

list_foreach(actual_outs, b2_flood);

}

b1_flood(PdgVertex v)

{

if (v->mark != current_mark)

{

int kind = v->kind;

PdgVertex *edges;

v->mark = current_mark;

slice_size++;

edges = v->incoming_intra_edges;

if (edges != NULL)

while (*edges != NULL)

b1_flood(*edges++);

if (formal_in(kind) || entry(kind))

{

edges = v->incoming_inter_edges;

if (edges != NULL)

while (*edges != NULL)

b1_flood(*edges++);

}

if (actual_out(kind))

list_insert_beginning(actual_outs, v);

}

}

Fig. 5. Std: The Unoptimized Version of the Slicer.

the largest SCCs.
For example, using the program shown in Figure 6, Figures 7 and 8 illustrate

the pass specific SCCs formed by iSCC-s. Figure 7 illustrates the two SCCs found
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 11

int g()

{

a = f(0);

return a;

}

int f(int x)

{

x = f(x);

while (...)

{

b = x;

x = f(b);

}

c = f(b);

return x;

}

Fig. 6. Program used to illustrate SCC computation.

f_out = x

c = f_out

call f(x)

a = f_out

g_out = a
Enter g

x_in = 0

call f(b)

Intraprocedural control dependence

Interprocedural dependence (control and data)

Intraprocedural data dependence
Summary (transitive dependence) edge

1

4

2

3

5

x = f_outx_in = b

call f(b)

while (...)

b = xx = f_outx_in = x

call f(x)

x = x_in

x_in = b

Enter f

7

8

109 12

11

6

13 17

16

19

18

1514

Fig. 7. Combined Interprocedural SCC Formation Example I

by iSCC-s for use during Pass 1: The bold vertices form two SCCs that include
interprocedural edges only considered during Pass 1. Figure 8 illustrates an SCC
found by iSCC-s for use during Pass 2: The bold vertices form an SCC that includes
interprocedural edges only considered during Pass 2. Consider, for example the two

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

12 · David Binkley et al.

Enter f
x = x_in

call f(x)

x_in = x

while (...)

call f(b)

call f(b)

c = f_outx_in = b

call f(x)

a = f_out

g_out = a
Enter g

x_in = 0

Intraprocedural control dependence

Interprocedural dependence (control and data)

Intraprocedural data dependence
Summary (transitive dependence) edge

4

16

x = f_out b = x

x_in = b x = f_out

f_out = x

11

14 15

17 181312109

8

7

3

6

19

5
1

2

Fig. 8. Combined Interprocedural SCC Formation Example II

SCCs in Figure 7. One of them contains the Vertices 6, 8, 11, 13, and 16. It is due
to the call edges (connecting Vertices 8, 13, and 16 to Vertex 6). The other SCC,
which contains the Vertices 7, 9, 10, 12, 14, 15, and 17 is due to the parameter-in
edges (connecting Vertices 9, 14, 17 to Vertex 7). If any bold vertex is encountered
during Pass 1, all of the bold vertices of the corresponding SCC will be included
in the slice. However, this is not true when one of these vertices is encountered
during Pass 2. For example, consider the computation of a backward slice starting
at Vertex 5. The slice will include only Vertices 1–5 during Pass 1 (the edge
between Vertices 4 and 19 is not traversed during Pass 1). During Pass 2, this
edge is traversed and some of the vertices in the SCC in Figure 8 are encountered
(e.g., Vertex 15). However, Vertex 16, for example, is not included in the Pass 2
slice. If the SCC in Figure 7 were also used in Pass 2, the slice would incorrectly
include both complete SCCs, and Vertices 16 and 17 in particular, which should
not be included (e.g., the computation represented by Vertex 17 never influences
the computation represented by Vertex 5).

The final SCC formation technique, denoted by iSCC-c, attempts to strike a bal-
ance between the first two. Unlike iSCC-s, its SCCs can be used by both slicing
passes. However, unlike SCC, interprocedural edges are considered. This technique
simulates the two passes of the slicing algorithm by intersecting the results of two
SCC-building passes. Thus, its interprocedural SCCs must involve recursive calls.
The first pass traverses only intraprocedural edges and edges reaching called pro-
cedures (ignoring edges from formal-out to actual-out vertices). The second pass
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 13

typedef

{

int name;

int mark;

int kind;

PdgVertex *incoming_intra_edges;

PdgVertex *incoming_inter_edges;

PdgVertex *outgoing_intra_edges;

PdgVertex *outgoing_inter_edges;

// fields to support SCC discovery

int scc_size;

int number;

int low_link;

PdgVertex scc_rep;

} *PdgVertex;

Fig. 9. SCC: Vertex Declaration

builds SCCs along intraprocedural edges and edges leaving called procedures (edges
from formal-out to actual-out vertices). The final SCCs are built from the nodes
that belong to the same SCC in the first and the second passes. The final SCCs
are not true SCCs, but they fulfill the two requirements.

For example, Figures 7 and 8 illustrate the SCCs found during Pass 1 and Pass
2. Vertices 10, 12, 14, and 15 are in the same SCC during Pass 1 and Pass 2. Thus,
they form an untrue SCC that can be used both during passes 1 and 2. Whenever
one of these four vertices is included in a Pass 1 or Pass 2 slice, the other three will
also be included. In comparison, with intraprocedural SCC formation only Vertex
10 has been additionally included in an SCC.

The implementation of the three SCC techniques is similar. The first, SCC, in-
cludes a straightforward implementation of intraprocedural SCC construction [Fis-
cher and LeBlanc 1988]. As seen in Figure 9 intraprocedural SCC formation in-
creases the size of a vertex by four additional fields, which has a negative impact on
slicer performance. The creation of separate interprocedural SCCs by iSCC-s fur-
ther increases the vertex size as it requires replacing the field PdgVertex scc rep
with two fields: tPdgVertex pass1 scc rep and tPdgVertex pass2 scc rep. Fi-
nally, forming combined interprocedural SCCs by iSCC-c adds a field scc1, which
is used to map the nodes to SCCs of the technique’s first pass for comparisons in
the second pass.

In addition to the three SCC techniques, the final algorithmic technique changes
the order of the vertices in memory. This is achieved by splitting the implemen-
tation into two phases. The first phase writes the vertices out in the desired or-
der. The second phase reads them into an array, thereby preserving vertex order.
Three orders were considered: depth-first-search order, breath-first-search order,
and topological-sort order. The first two produced no significant improvement
from the random order in which vertices are initially read in. However, topological
sorting proved beneficial; thus, the fourth algorithmic technique, denoted by TS,
topologically sorts the vertices of each PDG. Note that, intraprocedural SCC for-
mation is a necessary preprocessing step to topological sorting, since a precondition

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

14 · David Binkley et al.

typedef

{

PdgVertex *incoming_edges;

int scc_size; // negative -> scc_rep;

int kind;

int mark; // holds low_link

// during scc computation

PdgVertex *outgoing_edges;

int name; // holds ’number’ during

// scc computation

} *PdgVertex;

Fig. 10. Pack: Vertex Declaration

to the sort is that its input be a DAG.
The final two techniques are “low level” techniques. The first, Pack, employs bit

packing to reduce the memory footprint of a vertex by packing structure fields and
exploiting cache behavior. In particular, the four edge pointers of Std (see Figure 9)
are collapsed to two edge pointers (as shown in Figure 10). This is possible because
the two low-order bits of a pointer on the architecture used in the study are always
zero; thus, the edge kind (intraprocedural or interprocedural) can be “packed” into
these bits. After packing, the core of the function b1_flood becomes

for(; *edges != NULL; edges++)
if (marked_traverse_in_pass1(*edges))

b1_flood(strip_edge_mark(*edges));

This is an example of a classic time-space trade off. It produces extra work at run-
time in the form of packing and unpacking in exchange for reducing vertex size.
However, the relative speed of the memory and the processor make the packing
and unpacking essentially “free.” This relative speed difference exists on all modern
processors. Thus, assuming bits could be found, other processors would be expected
to show similar improvement.

Pack also pays attention to two memory layout issues. First, related fields of a
vertex structure are constructed to be adjacent in an attempt to place them in the
same cache line. For example, on the target architecture kind and mark are now
always in the same cache line. This is not the case using the declaration shown in
Figure 9. Second, vertices’ incoming and outgoing edges are allocated from separate
heaps, thereby improving locality of reference in main memory.

The final technique, Tran, performs transitive edge removal. For example, a code
sequence such as
a = 1;
b = a;
c = a + b;

includes a “redundant” flow dependence edge: There are flow dependence edges
from a = 1 to b = a and c = a + b and from b = a to c = a + b. In terms of
reachability, the edge from a = 1 to c = a + b is redundant. The importance of
this observation is easier to see from the perspective of the definition of dependence
graph slicing than from the perspective of the computation of a slice, which typically
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 15

involves a backward flood along the edges of the dependence graph. The definition
of the slice on Vertex v is the set of vertices from which v is reachable [Horwitz
et al. 1989; Horwitz et al. 1988; Reps et al. 1994].

Transitive edge removal is a compromise between two extremes. At one extreme,
edges could be added to transitively close the graph, thereby reducing reachability
to adjacency (i.e., connected by an edge). Adding these edges would speed reach-
ability (at a tremendous space cost). The other extreme is to perform minimal
transitive reduction, which yields the least graph whose transitive closure is the
same as the transitive closure of the input graph. Finding a minimal transitive
reduction is NP–complete and thus, is prohibitively expensive to compute. The re-
sulting graph would require less memory but cause no increase in slice computation
time.

Tran represents an easy-to-compute space-efficient compromise between these two
extremes. For each vertex v in the graph, the following two-step procedure is
performed. First, all vertices to which v has an outgoing edge are marked as directly
reachable. Then, staying within the PDG (i.e., considering only intraprocedural
edges), edges are walked starting from each of these vertices in a forward direction.
If a vertex w marked directly reachable is encountered during this walk, then the
edge from v to w is removed as a transitive edge. This process takes O(N ∗n) time,
where N is the number of vertices in the SDG and n is the number of vertices in
the largest PDG. Removing these edges saves the space needed to store them and
the time needed to traverse them during slicing.

The six optimization techniques are combined to form seven different slicers. This
is a small fraction of the possible number of slicers that could be produced. For
example, if all six techniques were independent, 6! possible slicers could be formed.
However, the techniques are interrelated. For example, as noted earlier, topological
sorting requires the removal of (intraprocedural) cycles and thus must follow one
of the three SCC techniques. Also, only one of the three SCC techniques can be
applied, as all are mutually exclusive. Even after taking these interrelations into
account, there are still too many combinations to run all possible slicers. The seven
slicers summarized in Figure 11 were chosen for study. They cover the primary
interesting combinations and are described in the remainder of this section.

The first slicer, Std, is included to compute base-line data. The next four incor-
porate the techniques SCC, Pack, TS, and Tran to form a chain of increasingly op-
timized slicers. In more detail, the SCC optimization technique is used to augment
Std producing +SCC. Next, the “low-level” packing algorithm is used to augment
+SCC resulting in +Pack. This version is further augmented by topological sorting
to produce +TS. Finally, transitive edge removal is applied, to produce the fully
optimized version, +Tran. The final two slicers are produced by replacing SCC,
the intraprocedural SCC computation, with one of the two interprocedural SCC
formation techniques. The first, w/iSCC-c, replaces SCC with iSCC-c, while the
second, w/iSCC-s, is a separate pass applied after intraprocedural SCCs are formed
by SCC.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

16 · David Binkley et al.

Version Description

Std Unoptimized “standard” implementation
+SCC Std with SCC formation
+Pack +SCC incorporating memory packing

and field layout work
+TS +Pack with vertices sorted

topologically in each procedure
+Tran +TS with transitive edges removed
w/iSCC-c +Tran with SCC replaced by iSCC-c
w/iSCC-s +Tran with SCC replaced by iSCC-s

Fig. 11. The Seven Versions of the Slicer.

5. RESULTS AND ANALYSIS

This section describes the results of running each of the seven slicers described
in Figure 11 on the programs described in Section 3. Summary data covering all
executions is first discussed, followed by an examination of data specific to each
different slicer (such as the number and size of the different SCCs). A discussion
of memory use appears at the end of the section.

Overall, the combination of optimization techniques produces an average four-
fold performance increase. Each individual technique produces an average increase
in performance in its own right. However, for the two approaches to interproce-
dural strongly connected components, although there are performance increases,
there are some programs which do not benefit from some of the strongly connected
component techniques. The results indicate that the behavior of the graph reacha-
bility algorithm, optimized according to strongly connected components, is highly
program-specific. This may suggest an alternative approach to cohesion measure-
ment, in terms of the nature of the dependence graph’s strongly connected compo-
nents. However, this remains a topic for future study, as it is outside the scope of
the present paper.

In this section, relative slice computation times for all seven slicers are shown in
Figure 12. This same data is shown graphically in Figure 13. The times are scaled
so that the running time for the unoptimized version (Std) is 1.00 for each program.
This was necessary because the raw slicing times for Std ranged from 0.05 seconds
to 768,391 seconds, making summary statistics, such as averages, meaningless (for
reference, the unscaled times for +Tran are shown in Figure 14). In Figure 12, the
last three rows show the sum, average, and the total percent run-time reduction.
As can be seen in the data, the average performance increases as each of the first
four techniques is incorporated into the slicer. Combined, the first four techniques
produce an average 71% time reduction. The final two columns in Figure 12 show
the performance increase when SCC is replaced by iSCC-c and iSCC-s, respectively.
Both produce a mild improvement over +Tran. Figure 12 includes the performance
increases for backward slicing. In general, the performance increases for forward
slicing are slightly better (about 4% faster for each slicer), but overall show the
same trend.

The performance of each slicer is now considered. First, the implementation of
+SCC allocates the fields related to SCC formation as part of a vertex, rather than
as a separate table. This has the advantage of being faster since a separate table
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 17

Version
Program Std +SCC +Pack +TS +Tran w/iSCC-c w/iSCC-s

a2ps 1.00 3.33 4.59 6.64 7.13 7.75 9.15
acct-6.3 1.00 1.54 2.74 4.35 5.70 5.82 6.91
barcode 1.00 0.99 2.15 3.62 5.51 5.47 6.59
bc 1.00 1.06 1.84 3.10 3.88 4.85 4.54
byacc 1.00 1.38 2.08 3.28 3.58 3.95 4.48
cadp 1.00 1.14 1.63 2.94 3.28 3.46 3.96
compress 1.00 1.25 1.67 1.67 1.67 2.00 2.50
copia 1.00 0.88 1.18 1.43 1.50 1.38 330.50
csurf-pkgs 1.00 0.82 1.11 1.39 1.47 1.86 2.41
ctags 1.00 1.17 1.60 2.36 2.57 2.77 3.27
cvs 1.00 0.86 1.07 1.56 1.73 3.43 3.87
diffutils 1.00 1.80 2.68 3.93 4.43 4.95 5.81
ed 1.00 1.83 2.62 3.72 4.20 4.85 5.52
empire 1.00 1.32 1.82 2.57 2.79 3.14 3.60
epwic-1 1.00 1.14 2.32 5.32 7.36 7.51 9.11
espresso 1.00 1.18 1.59 2.25 2.48 2.84 2.92
findutils 1.00 1.56 2.48 3.94 4.56 5.29 5.43
flex2-4-7 1.00 1.63 2.29 3.16 3.37 3.78 4.23
flex2-5-4 1.00 2.34 3.23 4.66 5.29 5.67 6.23
ftpd 1.00 1.79 2.44 3.24 3.44 3.97 4.21
gcc.cpp 1.00 1.48 2.37 3.89 4.62 5.99 6.04
gnubg-0.0 1.00 1.00 1.52 2.31 2.64 2.88 2.98
gnuchess 1.00 1.34 1.91 2.79 3.25 3.52 3.69
gnugo 1.00 0.93 1.32 1.73 1.84 2.25 2.41
go 1.00 1.13 1.87 2.37 2.63 2.92 3.08
ijpeg 1.00 1.18 1.79 2.22 2.57 3.68 3.45
indent 1.00 5.40 7.85 11.59 14.01 14.96 15.44
li 1.00 0.90 1.20 1.62 1.77 3.29 4.93
named 1.00 1.35 1.66 2.16 2.25 3.15 5.08
ntpd 1.00 1.10 1.49 1.90 2.13 2.29 3.05
oracolo2 1.00 0.87 1.43 2.19 2.51 3.01 3.26
prepro 1.00 0.89 1.43 2.44 2.65 2.80 3.47
replace 1.00 1.67 2.50 2.50 2.50 5.00 5.00
sendmail 1.00 1.67 1.82 2.33 2.36 3.53 6.15
space 1.00 0.89 1.50 2.38 2.69 2.98 3.46
spice 1.00 1.02 1.52 1.80 1.80 1.99 2.72
termutils 1.00 1.09 3.15 4.31 5.28 5.41 6.39
tile-forth 1.00 1.00 1.41 1.80 1.97 2.43 2.84
time-1.7 1.00 1.25 2.50 1.67 1.67 1.67 1.67
userv-0.95.0 1.00 1.02 1.44 1.91 2.06 2.41 3.04
wdiff.0.5 1.00 1.56 1.87 1.87 2.33 2.55 2.80
which 1.00 1.33 1.50 1.71 2.00 2.00 3.00
wpst 1.00 1.19 1.72 2.45 2.75 3.12 3.36

sum 43.00 60.28 89.91 127.07 146.24 168.58 522.56
average 1.00 1.40 2.09 2.96 3.40 3.92 12.15
percent
reduction

29% 52% 66% 71% 74% 92%

Fig. 12. Backward Slicing Speedup (scaled to Std = 1.00). (Excluding the outlier
copia from w/iSCC-s, the total, average and percent reduction for the final column
are 192.06, 4.57, 78%, respectively.)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

18 · David Binkley et al.

Fig. 13. Performance Increase of Backward Slicing for All Seven Slicers on All
Programs.

lookup is not required. It has the disadvantage that fields for the SCC computation
cannot be easily deallocated once SCCs have been formed. The impact of this
can be seen in the data from the Column +SCC of Figure 12: SCC formation is
not beneficial for all programs. The worst case, csurf-pkgs, has a performance
increase of 0.82 (i.e., runs 18% slower). Lack of a universal benefit is caused by
two conflicting effects on run-time. First, the increase in vertex size required to
maintain data used by SCC formation tends to increase computation time as it
negatively affects cache performance. On the other hand, not repeatedly processing
the vertices that make up each SCC tends to decrease computation time. Over all
programs studied, SCC formation causes a net performance increase, as seen in the
last three rows of the table.

Next, consider the +Pack column, which shows the effect of the two related
packing techniques: the vertex size reduction and structure field reordering. On
the target architecture, pointers and integers take four bytes: thus, a vertex from
the Std version takes 28 bytes and a vertex from the SCC version takes 44 bytes
(iSCC-s and iSCC-c require 48 and 52, respectively). In comparison, a vertex from
the Pack version takes only 24 (respectively 28 and 32 for iSCC-s and iSCC-c). This
reduction was achieved by reducing the number of edge pointers and by reusing
certain fields for different purposes during different phases of the computation. For
example, the field mark used to mark vertices as “in a slice” during the slicing
phase, is also used to hold low_link (see Figure 9) during SCC formation. The
total memory used by some of the larger subject programs is discussed at the end
of the next section.

In comparison with +SCC, size reduction accounts for three quarters of the im-
provement seen with +Pack and layout is responsible for the remaining quarter. For
+Pack, the smallest performance increase is 1.11 and the largest is 7.85. The rather
large spread between these figures suggests future work on why SCC formation is
more effective in some cases than others. In particular, this might say something in-
teresting about the underlying cohesiveness of programs and give general guidelines
for program development.

Packing makes it possible to isolate the effect of SCC formation by reusing the
fields of a vertex so that SCC formation does not need any additional fields. In other
words, it forms SCCs without changing the size of a vertex (as +SCC does). This can
be done by considering only the vertex size reduction (and ignoring the reordering),
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 19

thereby obtaining the true effect of SCC formation, without the confounding effect
of node size. Doing so, the average performance increase is 1.92 (compared to 2.09
when including the reordering). More importantly, each of the 43 programs shows
some reduction. Thus, given constant vertex size, SCC formation always leads to
an improvement.

As seen in Figure 10, Pack biases the computation in favour of operations that
use incoming edges over those that use outgoing edges because the latter is in a
different cache line from the scc size, kind, and mark fields (the name field holds a
unique vertex-id, and is not used after the SCC formation). This bias shows up in
the data. The overall improvement for backward slicing, which traverses incoming
edges is 14%, while the overall improvement for forward slicing is only 7% (the first
7% is accounted for by the bit packing in the edge lists).

Next, consider the column for top sorting (the +TS slicer). To facilitate placing
vertices in topological order, the slicer +TS includes two phases (run in separate
processes). The first forms SCCs, topologically sorts, and sends the vertices to
the second phase, which computes the slices. During slicing, this allows further
reduction in vertex size from 20 to 16 bytes as memory for fields required only
during SCC formation need not be allocated during Phase 2.

Slicer +TS provides another significant improvement. This improvement has two
main constituents: the top sorting and a drop in vertex size. While not shown in
the figure, top sorting accounts for 86% of the reduction. This result suggests future
work on techniques for automatically laying out data structures. Such work would
mirror similar “lower-level” layout work [Chilimbi et al. 1999].

The only slowdown with this version is for program time-1.7 whose performance
increase goes from 2.50 to 1.67. Program time-1.7 is the second smallest program.
The times taken to slice these small programs approach the resolution of the system
timer. Thus, this apparent reduction is in fact an artifact of timer’s resolution.

Column six shows the performance increases for +Tran, which incorporates tran-
sitive edge removal. Like +TS, the slicer +Tran includes two phases. The first
forms SCCs, topologically sorts, marks transitive edges for deletion, and sends the
vertices to the second phase, which computes the slices. Edges marked for deletion
are never written out by Phase 1 and thus are never considered by Phase 2. At first
glance, transitive edge removal appears to be another time-space trade off. In other
words, the removal of transitive edges should save the space used to store transitive
edges at the expense of having to rediscover the path’s transitive edges. However,
for slicing, the removal of these edges saves both time and space. The explanation
for this behavior lies in the realization that the transitive edges in the SDG have
no exploitable pattern; therefore, the slicer cannot exploit their presence.

Over all 43 programs, an average of 25% of the intraprocedural edges were re-
moved as redundant transitive edges, producing a 15% run-time improvement. Al-
though this is considerably less than the 40% increases for each of SCC formation
and topological sorting, it is still worthwhile.

Having large procedures and in particular one large procedure also affects the
other techniques. The effect of TS is amplified by having large functions because
topological sorting is done on a per-procedure basis: thus, programs with lots of
small functions get less benefit than those with fewer larger functions. This is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

20 · David Binkley et al.

clearly the case with indent’s large function. A similar observation applies to Tran
which does not consider interprocedural edges and thus would be expected to work
(slightly) better in the presence of large functions.

For indent, vertex packing provides the average benefit, but the program is small
and its SDG may fit entirely in the L2 or even the L1 cache. Over all programs,
the improvement caused by Pack also has the lowest standard deviation of all the
techniques. Inspection of several programs reveal no source pattern that explains
the variation in Pack. A particularly poor cache layout that improved because
vertices shrank and thus changed cache lines is the leading contender.

The worst overall improvement was for csurf-pkgs followed closely by copia. Both
of these include primarily small functions. Small functions do not support the
formation of large intraprocedural SCCs. In addition, they reduce the effectiveness
of TS, as sorting the vertices of a small function provides little advantage within the
PDG, and the order of the PDGs is essentially random. The same is true for Tran
to a lesser extent. As described below, the functions of copia are largely mutually
recursive (csurf-pkgs’ are not), which does create large interprocedural SCCs.

Finally, the two alternate SCC algorithms provide additional improvement when
used to replace SCC in +Tran. Over all programs, w/iSCC-c provides a 15% im-
provement over +Tran. Excluding the performance increase for copia, w/iSCC-s
provides a further 16.5% improvement over w/iSCC-c (the 50% improvement for
which in Figure 12 is also a “timer-resolution” artifact). Copia is an outlier. Its
performance increase of 330 is due to a 13,040 vertex Pass 1 SCC that is included
in 4,461 of the 4,680 slices. As the size of these slices ranges between 13,000 and
14,000 vertices, their computation is very fast (the large SCC is likely to reside in
the L1 cache during the entire computation).

The programs that received the best and the worst overall speedup using +Tran
are now considered. In particular, program characteristics that cause the extremes
are discussed. The program indent shows the best overall improvement (a speedup
of 14.01). An inspection of its source code reveals that the main function includes
a large (over 1400-line or almost 25% of the code) loop that processes input tokens.
This loop includes a “switch on type code” case statement with over 1150 lines.
Because this code is all in one function it is possible for it to be part of a large
intraprocedural SCC. This indeed happens as the processing of various type codes
influence each other, resulting in an SCC that includes about one third of the SDG:
47.5% of indent’s 25,737 vertices that belong to SCCs including one of 8,623 vertices
(from the main loop).

An inspection of the source code for those programs that had large SCCs reveled
two causes. First, programs such as indent, with a few disproportionately large
functions, support the formation of large intraprocedural SCCs. The second cause
produced the largest improvement of any of the techniques. The reduction is for
w/SCC-s when applied to copia. While copia has few global variables and small
functions, it essentially implements a finite state machine with a central dispatch
function that calls most other functions and is called by all of these. This recursion
leads to large interprocedural SCCs and thus the tremendous speedup. The vertices
of these SCCs are mostly procedure inputs and outputs that are treated separately
by iSCC-s; however this means that iSCC-c does not discover large SCCs nor does
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 21

SCC.
The observation that some programs have very large SCCs is important not

only for optimization purposes. It has practical significance, since large clusters
of dependence can be an inhibitor to continued maintenance. This observation
motivated a study of dependence clustering using massive slicing, which revealed
a striking prevalence of large dependence clusters in the code base, suggesting
opportunities for refactoring to reduce this ‘dependence pollution’ [Binkley and
Harman 2005b].

The remainder of this section considers data related to each slicer independently.
To begin with, for the +Tran slicer, two additional views of the data are presented.
First, the following table shows the time taken (averaged over all programs) by
each step in the computation. Note that slicing includes the time to compute
both backward and forward slices [Horwitz et al. 1990] for every statement in the
program. Average time per slice over all programs is 0.32 seconds while the average
for cvs, which has the highest average, is 5.5 seconds.

Step Percent Time Taken
Read in Graph 1.7%
SCC Computation 1.3%
Top Sorting 0.1%
Transitive Edge Removal 0.9%
Slicing 96.0%

For +Tran, Figure 14 shows some additional statistics related to raw slicing times.
These include the average slice size, the total time taken to compute the two-
pass closure for every executable code vertex from the program, and the pace of
this computation. This data provides targets for future tools performing related
analyses. Note that the data does not include parsing and preprocessing time-just
the slice computation time. The final three columns include the number of slices
that must be taken to pay for the preprocessing time.

Figure 14 also shows the point at which the pre-processing time invested in
applying the optimization techniques pays off. That is, it shows the number of
slices which must be computed before both the unoptimized and fully optimized
forms of slicing would take identical time. For most of the programs this is well
below 10% of the total slices in the program, making the technique applicable for
massive slicing in all these cases. For a few of the smaller programs–compress,
replace, time, wdiff and which–the break even point is not reached for some
time. However, these programs each have no more than 2,500 slices, which is fewer
than 10% of the average number of slices for all programs studied. They are all
small programs with few slices, relatively speaking. Clearly, for such programs with
only a few slices, optimizations for massive slicing may not be worthwhile.

Columns 5 and 6 show the number of slices Std could compute in the time it takes
+Tran to perform its preprocessing. Column 5 assumes that each slice is computed
“from scratch”, while Column 6 assumes the graph is read in only once. The final
column shows the number of slices that would need to be computed in order for
the faster slicer +Tran to take less time than Std, assuming both slices read the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

22 · David Binkley et al.

Std Slices Computable

Average Total during pre-processing

Slice Size Time Pace Including Excluding Break Even

Program (vertices) (sec) (KLOC/sec) read read count as %

a2ps 237,041 3835.6 463 7.0 910 1,042 1.8%

acct-6.3 1,770 1.0 6,783 0.6 188 219 3.0%

barcode 4,010 1.5 5,315 0.6 52 62 1.6%

bc 8,986 7.3 6,169 0.6 22 30 0.6%

byacc 9,731 16.8 1,098 0.6 61 84 0.8%

cadp 4,738 13.4 1,451 0.4 85 119 0.8%

compress 655 0.1 2,805 0.4 413 964 88.9%

copia 13,034 22.1 74 1.4 90 202 4.3%

ctags 72,960 360.3 581 0.5 22 34 0.2%

cvs 4,872,236 280298.2 27 2.4 1,507 3,243 3.2%

diffutils 9,477 28.6 2,802 0.9 87 116 0.7%

ed 30,883 85.6 1,662 1.8 76 99 0.6%

empire 336,665 7664.5 505 1.7 177 269 0.3%

espresso 40,583 351.3 793 2.5 173 284 1.0%

findutils 10,160 25.2 3,215 0.4 32 41 0.3%

flex2-4-7 12,510 30.7 1,756 0.7 61 85 0.8%

flex2-5-4 9,971 46.8 1,108 0.8 66 83 0.6%

ftpd 27,788 157.2 1,225 0.8 46 61 0.2%

gcc.cpp 10,097 12.5 1,272 0.4 22 28 0.4%

gnubg-0.0 9,520 20.9 1,239 0.4 25 39 0.4%

gnuchess 22,385 73.5 1,701 0.7 31 42 0.3%

gnugo 145,428 3145.9 147 1.6 100 195 0.3%

go 92,147 785.7 1,071 0.9 28 43 0.1%

ijpeg 28,414 193.8 1,390 0.5 22 33 0.1%

li 684,492 5181.0 14 3.1 285 610 4.5%

named 987,310 100196.2 81 4.3 931 1,648 1.6%

ntpd 98,652 1452.7 600 1.8 106 188 0.5%

oracolo2 6,363 14.4 3,329 0.7 68 107 1.0%

prepro 6,243 13.5 3,471 0.8 67 103 1.0%

replace 423 0.0 9,417 0.5 173 289 33.3%

sendmail 820,749 53917.1 48 9.2 2,422 4,212 9.0%

space 6,494 13.6 2,240 0.7 62 94 0.9%

spice 849,030 425938.2 36 2.4 523 1,252 0.6%

termutils 2,126 0.4 12,424 0.5 89 110 3.6%

time-1.7 324 0.0 14,922 0.5 734 2,448 233.3%

userv-0.95.0 30,217 141.4 270 1.2 71 127 1.0%

wdiff.0.5 775 0.1 12,916 0.5 415 632 26.1%

which 811 0.1 16,337 0.4 311 578 50.0%

wpst 10,151 50.5 1,316 0.6 95 144 0.7%

average 223,936 20586.9 3,006 1.4 254 473 1.7%

Fig. 14. Time and pace for the +Tran slicer. The Break Even column give the number of slices
that must be computed to pay for the preprocessing costs.

SDG in once during initialization. Ignoring the 5 smallest programs, for which the
resolution of the timer makes the computation errant, the average is about 1% of
the total slices taken. Thus, for a user computing individual slices (from scratch),
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 23

the preprocessing is paid for on average before the 3rd slice. For a user computing
a collection of slices, the preprocessing is paid for after about 1% of all slices have
been computed.

Total time, Column 3, was used to generate a linear model predicting the com-
putation time based on a graph’s size as measured by the number of vertices and
the number of edges encountered during slicing. The resulting linear model is

Time (in µsec) = 0.102× V + 0.103× E

where V is the number of vertices encountered (a vertex is counted each time it is
included in a slice) and E is the number of edges encountered (an edge is counted
each time it is traversed). This model has an R value of 95.9, which implies an
excellent linear fit. There are approximately 5.9 edges for every vertex. Using this
factor, the two coefficients can be combined, yielding Time = 0.710× V . Inverting
the coefficients yields the pace of the computation, which is approximately 1.4
million vertices per second. As there are approximately 14.1 vertices per line of
code, this denotes a pace of approximately 100 KLOC per second.

Finally, Column 4 shows the computation pace for each program. Recall that
this includes the slicing time only and not the time for parsing the input nor for
building the dependence graph. The final row of this column gives an average pace
of 3,006 KLOC per second. One reason why this figure is higher than the 100
KLOC is because it is an unweighted average, and the pace of several of the small
subject programs is rather fast. The weighted average is 1,177 KLOC per second.
Both figures should be treated as approximations.

Three SCC algorithms were studied. Figures 15, 16, 17, and 18 present statistics
that compare the different kinds of SCCs formed. Figure 15 shows numbers for
+SCC and w/iSCC-c. This includes the number of vertices in SCCs, the number
of SCCs, and the number and percentage of the vertices per SCC. For +SCC, this
latter value ranges from 0.2% to 47.5% with three programs having over 30% of
their vertices in SCCs (indent, ed, and empire). It is interesting to note that only
indent is in the top three when ranked by level of performance increase. Programs
a2ps and diffutils with performance increases of 3.33 and 2.18, respectively,
show greater improvement than ed and empire. This is explained by observing
that, while they have fewer vertices in SCCs, these SCCs are contained in a larger
number of slices and thus their smaller savings have a large frequency of occurrence.

In general, w/iSCC-c produces larger but fewer SCCs than +SCC: the average
size goes from 29.7 to 142.1 and the average count goes from 1,709 to 769 SCCs.
This causes the percentage of vertices in SCCs to rise from 16.9% to 19.2%. Not
all programs experience a benefit in terms of performance increase: a program-
by-program comparison shows that 18 of the 43 programs have the same SCCs as
+SCC.

Figure 16 shows the statistics for the two passes of the third SCC algorithm,
w/iSCC-s. Computing separate SCCs for Pass 1 and Pass 2 should create larger
SCCs. The data supports this observation. In general, when compared to the
SCCs computed by +SCC and w/iSCC-c, those computed by w/iSCC-s are larger
and fewer in number. The difference can be dramatic. For example, copia’s Pass 1
SCCs are over 235 times larger than with +SCC.

Excluding the outlier copia, when compared to +SCC the average SCC is 70%
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

24 · David Binkley et al.

larger for Pass 1 and 56% larger for Pass 2. When compared to w/iSCC-c, the
average SCC is 45% larger for Pass 1 and 34% larger for Pass 2. At the other end
of the spectrum, 8 of the smaller programs (e.g., compress and space) have only
intraprocedural SCCs and thus have the same size SCCs for all three techniques.
Program li has the largest percentage of vertices in SCCs with 72.4% of the vertices
in Pass 1 SCCs and 65.0% in Pass 2 SCCs. Both are significantly greater than the
averages of 27.1% and 24.7% respectively.

The final two rows of the table in Figure 16 show the sum and average of each
column. On average there are more vertices in Pass 1 SCCs than in Pass 2 SCCs
(7,509,911 versus 6,851,449) and more Pass 1 SCCs than Pass 2 SCCs (49,337 versus
46,198). The number of vertices per SCC is slightly greater with Pass 1 (10,885.0
versus 10,282.5 for Pass 2). This is because there are more procedure inputs than
procedure outputs. Thus, there are more interprocedural edges considered during
Pass 1, which has the effect of including slightly more vertices.

SCC computation provides two further illustrations of how excessive preprocess-
ing can become prohibitively expensive. First, consider the costs and benefits of
the three SCC formation techniques. Figure 17 presents the relevant data. The
middle section of the table shows the computation time for SCC formation in the
slicers +SCC, w/iSCC-c, and w/iSCC-s. The last two columns show the percentage
increase in SCC formation time when SCC is replaced by iSCC-c and iSCC-s. Only
programs for which one of the three SCC formation techniques took more than five
seconds are shown. For the rest, the comparison is less interesting, as they are all
“fast”. For reference, the data includes the backward slicing time of the +Tran
slicer, which incorporates the intraprocedural SCC technique SCC. As can be seen
in the table, SCC takes negligible time relative to the time taken to compute the
slices. This is not true of the two interprocedural SCC formation techniques. In
fact, for some of the larger programs, forming the SCCs takes longer than slicing,
making it inappropriate as an optimization technique for slicing.

The second illustration considers the formation time for intraprocedural SCCs
by +SCC and w/iSCC-s, which computes intraprocedural SCCs as a preprocessing
step. The data in Figure 18 show how w/iSCC-s takes longer to compute the same
intraprocedural SCCs. This increase is caused by a vertex size increase. Comparing
the columns labeled “SCC” and “iSCC-s intra only” allows the impact of an increase
in vertex structure size to be assessed on the SCC computation (rather than on
slicing as seen in Figure 12). The additional cost for iSCC-s varies from 7% to
1,826% and illustrates the impact cache effects have on graph algorithms such as
SCC formation.

This section concludes with a brief look at the memory used by the slicers. Data
was collected on the space used by each slicer. The two main constituents are the
memory needed to store vertices and the memory needed to store edges. While the
techniques affect the vertex size, the size of an edge remains constant, at 4 bytes
throughout the experiments. Thus, for the most part, the memory usage tracks the
vertex size, dampened by the storage used for edges.

Most of the subject programs require negligible memory. For programs on which
Std used at least 15Mb of memory, Figure 19 shows the memory used by Std and the
most memory efficient slicer +Tran. The +Tran data is divided into the two phases
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 25

Intraprocedural SCCs Combined Interprocedural SCCs

Vertices SCC Vertices Percent Vertices SCC Vertices Percent

Program Vertices in SCCs count per SCC in SCCs in SCCs count per SCC in SCCs

a2ps 417,513 118,167 2,175 54.3 28.3% 126,622 1,793 70.6 30.3%

acct-6.3 18,531 4,154 116 35.8 22.4% 4,154 116 35.8 22.4%

barcode 10,916 961 117 8.2 8.8% 961 117 8.2 8.8%

bc 14,903 1,779 102 17.4 11.9% 2,080 102 20.4 14.0%

byacc 34,019 7,055 375 18.8 20.7% 7,055 375 18.8 20.7%

cadp 42,212 3,157 149 21.2 7.5% 3,157 149 21.2 7.5%

compress 5,211 350 39 9.0 6.7% 350 39 9.0 6.7%

copia 43,513 100 29 3.4 0.2% 100 29 3.4 0.2%

csurf-pkgs 295,220 17,585 2,976 5.9 6.0% 33,662 2,016 16.7 11.4%

ctags 120,014 28,373 1374 20.6 23.6% 28,373 1,359 20.9 23.6%

cvs 6,219,909 1,016,205 28,769 35.3 16.3% 522,101 786 664.3 8.4%

diffutils 36,079 8,455 335 25.2 23.4% 8,457 335 25.2 23.4%

ed 44,387 17,655 602 29.3 39.8% 17,850 584 30.6 40.2%

empire 496,033 165,822 2,783 59.6 33.4% 165,913 2,756 60.2 33.4%

epwic-1 22,217 4,115 561 7.3 18.5% 4,115 561 7.3 18.5%

espresso 93,326 18,375 929 19.8 19.7% 20,009 983 20.4 21.4%

findutils 30,322 6,208 202 30.7 20.5% 6,430 214 30.0 21.2%

flex2-4-7 39,037 7,327 296 24.8 18.8% 7,366 298 24.7 18.9%

flex2-5-4 55,019 7,345 381 19.3 13.3% 10,916 379 28.8 19.8%

ftpd 56,981 14,395 734 19.6 25.3% 14,454 699 20.7 25.4%

gcc.cpp 19,095 4,151 201 20.7 21.7% 4,430 177 25.0 23.2%

gnubg-0.0 25,138 2,781 323 8.6 11.1% 2,866 328 8.7 11.4%

gnuchess 44,957 10,470 695 15.1 23.3% 10,639 695 15.3 23.7%

gnugo 278,766 27,038 1,693 16.0 9.7% 35,149 1,660 21.2 12.6%

go 111,246 26,052 1,315 19.8 23.4% 26,052 1,315 19.8 23.4%

ijpeg 62,698 12,690 698 18.2 20.2% 17,541 509 34.5 28.0%

indent 25,737 12,229 132 92.6 47.5% 12,249 132 92.8 47.6%

li 889,260 91,302 926 98.6 10.3% 358,953 101 3554.0 40.4%

named 1,326,070 266,182 3,967 67.1 20.1% 439,454 1,966 223.5 33.1%

ntpd 204,420 18,814 2,141 8.8 9.2% 34,130 1,695 20.1 16.7%

oracolo2 20,654 767 71 10.8 3.7% 767 71 10.8 3.7%

prepro 20,578 750 71 10.6 3.6% 750 71 10.6 3.6%

replace 1,097 309 15 20.6 28.2% 309 15 20.6 28.2%

sendmail 1,111,054 324,204 1,446 224.2 29.2% 522,101 786 664.3 47.0%

space 20,018 770 72 10.7 3.8% 770 72 10.7 3.8%

spice 1,774,846 380,480 15,533 24.5 21.4% 426,236 8,701 49.0 24.0%

termutils 8,869 996 67 14.9 11.2% 996 67 14.9 11.2%

tile-forth 59,247 4,073 131 31.1 6.9% 4,857 67 72.5 8.2%

time-1.7 4,583 215 10 21.5 4.7% 215 10 21.5 4.7%

userv-0.95.0 70,796 7,347 398 18.5 10.4% 8,669 361 24.0 12.2%

wdiff.0.5 7,213 1,078 39 27.6 14.9% 1,078 39 27.6 14.9%

which 4,666 452 31 14.6 9.7% 452 31 14.6 9.7%

wpst 54,658 8,397 460 18.3 15.4% 8,921 526 17.0 16.3%

sum 14,241,028 2,649,130 73,479 2,901,709 33,085

average 331,187 61,608 1,709 29.7 16.9% 67,482 769 142.1 19.2%

Fig. 15. SCC Statistics from the slicers +SCC and w/iSCC-c.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

26 · David Binkley et al.

Initial Pass 1 SCCs Pass 2 SCCs
Vertex Vertices SCC Vertices Percent Vertices SCC Vertices Percent

Program count in iSCCs count per iSCC in iSCCs in iSCCs count per iSCC in iSCCs
a2ps 417,513 158,006 1,892 83.5 37.8% 139,777 1,856 75.3 33.5%
acct 18,531 4,165 118 35.3 22.5% 4,158 118 35.2 22.4%
barcode 10,916 961 117 8.2 8.8% 961 117 8.2 8.8%
bc 14,903 2,422 104 23.3 16.3% 3,284 102 32.2 22.0%
byacc 34,019 7,088 375 18.9 20.8% 7,058 374 18.9 20.7%
cadp 42,212 4,415 355 12.4 10.5% 3,958 185 21.4 9.4%
compress 5,211 350 39 9.0 6.7% 350 39 9.0 6.7%
copia 43,513 23,640 30 788.0 54.3% 12,916 47 274.8 29.7%
csurf-packages 295,220 100,758 2,234 45.1 34.1% 77,666 2,097 37.0 26.3%
ctags 120,014 32,371 1,424 22.7 27.0% 30,430 1,347 22.6 25.4%
cvs 6,219,909 3,936,362 15338 256.6 63.3% 3,618,536 13736 263.4 58.2%
diffutils 36,079 9,365 335 28.0 26.0% 8,777 335 26.2 24.3%
ed 44,387 19,864 584 34.0 44.8% 21,032 519 40.5 47.4%
empire 496,033 171,443 2,792 61.4 34.6% 168,023 2,734 61.5 33.9%
EPWIC-1 22,217 4,220 567 7.4 19.0% 4,144 570 7.3 18.7%
espresso 93,326 23,758 999 23.8 25.5% 21,636 978 22.1 23.2%
findutils 30,322 8,279 250 33.1 27.3% 7,446 214 34.8 24.6%
flex2-4-7 39,037 7,816 379 20.6 20.0% 7,406 313 23.7 19.0%
flex2-5-4 55,019 12,204 465 26.2 22.2% 11,228 404 27.8 20.4%
ftpd 56,981 15,760 776 20.3 27.7% 14,888 747 19.9 26.1%
gcc.cpp 19,095 7,347 185 39.7 38.5% 5,960 167 35.7 31.2%
gnubg-0.0 25,138 5,238 338 15.5 20.8% 3,977 336 11.8 15.8%
gnuchess 44,957 12,000 699 17.2 26.7% 10,926 695 15.7 24.3%
gnugo 278,766 42,132 1,753 24.0 15.1% 38,193 1,737 22.0 13.7%
go 111,246 26,486 1,314 20.2 23.8% 26,845 1,312 20.5 24.1%
ijpeg 62,698 26,433 502 52.7 42.2% 20,113 491 41.0 32.1%
indent-1.10.0 25,737 12,312 127 96.9 47.8% 12,261 132 92.9 47.6%
li 889,260 644,016 88 7,318.4 72.4% 578,234 80 7,227.9 65.0%
named 1,326,070 714,200 2,029 352.0 53.9% 650,444 1,942 334.9 49.1%
ntpd 204,420 48,467 1,671 29.0 23.7% 42,854 1,617 26.5 21.0%
oracolo2 20,654 767 71 10.8 3.7% 767 71 10.8 3.7%
prepro 20,578 750 71 10.6 3.6% 750 71 10.6 3.6%
replace 1,097 328 16 20.5 29.9% 311 15 20.7 28.4%
sendmail 1,111,054 724,154 788 919.0 65.2% 673,048 740 909.5 60.6%
space 20,018 770 72 10.7 3.8% 770 72 10.7 3.8%
spice 1,774,846 655,716 9,195 71.3 36.9% 580,454 8,769 66.2 32.7%
termutils 8,869 996 67 14.9 11.2% 996 67 14.9 11.2%
tile-forth-2.1 59,247 12,398 72 172.2 20.9% 11,954 54 221.4 20.2%
time-1.7 4,583 215 10 21.5 4.7% 215 10 21.5 4.7%
userv-0.95.0 70,796 19,454 373 52.2 27.5% 17,139 371 46.2 24.2%
wdiff.0.5 7,213 1,089 41 26.6 15.1% 1,082 41 26.4 15.0%
which 4,666 452 31 14.6 9.7% 452 31 14.6 9.7%
wpst 54,658 10,944 651 16.8 20.0% 10,030 545 18.4 18.4%
sum 14,241,028 7,509,911 49,337 10,885.0 6,851,449 46,198 10,282.5
average 331,187 174,649 1,147 253.1 27.1% 159,336 1,074 239.1 24.7%

Fig. 16. SCC Statistics for iSCC-s.

of the implementation. Phase One computes SCC, Pack, TS and Tran. It then
outputs the SCC representatives in topological order, without the edges removed
by Tran. Phase one also outputs the remaining vertices (those in SCCs that are not
the SCC representative) so that they can be used as slicing criteria. Phase Two
reads in the resulting graph and slices it.

These two phases are run in series: thus, the total memory needed is the larger
of the two figures. Compared to the 17% average savings for Phase 1 of +Tran
over Std, the average reduction for Phase 2 is 66%; thus, a program requiring three
times as much memory can be proceeded by Phase 2 of +Tran than by Std. This
is practical, even though Phase 1 requires more memory, because Phase 1 takes
only a fraction of the total run time: thus, swapping during this phase might be
acceptable.

The memory used by the other slicers, and Phase 1 of +Tran, is proportional to
that used by Std. The actual proportion varies slightly from program to program
depending primarily on the ratio of vertices to edges. In comparison, the memory
drop for Phase 2 of +Tran is more dramatic and more varied. It is more dramatic
primarily because fields for preprocessing attributes need not be allocated (e.g.,
fields used in the SCC construction). It is more varied because Tran has varying
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 27

b-slice Percent Increase

time for SCC Computation Times (seconds) +SCC to +SCC to

Program +Tran +SCC w/iSCC-c w/iSCC-s w/iSCC-c w/iSCC-s

tile-forth-2.1 142.4 0.9 8.0 21.7 784% 2313%

userv-0.95.0 141.4 1.1 11.8 26.6 970% 2318%

copia 22.1 0.4 15.0 90.9 4078% 25153%

flex2-5-4 46.8 0.9 16.0 9.1 1597% 872%

gnugo 3145.8 4.8 16.6 27.3 250% 474%

ftpd 157.2 1.7 18.4 13.6 998% 710%

empire 7664.5 9.1 26.3 37.9 188% 314%

ijpeg 193.8 0.6 44.3 20.1 7410% 3312%

ntpd 1452.7 3.2 61.4 67.8 1794% 1992%

indent-1.10.0 14.6 2.6 124.1 49.8 4709% 1829%

csurf-packages 1363.7 2.7 158.5 903.6 5685% 32877%

a2ps 3835.6 859.5 48,268.9 4,669.8 5516% 443%

li 5181.0 17.7 57,164.9 64,879.4 322865% 366450%

spice 425938.0 1,611.0 81,971.7 37,404.7 4988% 2222%

named 100196.1 1,622.2 223,962.9 70,742.9 13706% 4261%

sendmail 53917.1 2,186.7 600,791.7 55,907.2 27375% 2457%

cvs 280298.1 174.05 2,210,013.5 1,596,458.2 1269658% 917141%

Fig. 17. Computation time comparison for the three SCC techniques (only programs
for which one of the three took more than 5 seconds are shown).

Computation Time
iSCC-s Percent

Program SCC intra only Increase

tile-forth-2.1 0.9 1.2 29%
userv-0.95.0 1.1 1.2 7%
copia 0.4 0.5 36%
flex2-5-4 0.9 9.0 852%
gnugo 4.8 7.3 52%
ftpd 1.7 13.4 699%
empire 9.1 14.8 62%
ijpeg 0.6 0.9 51%
ntpd 3.2 10.2 214%
indent-1.10.0 2.6 49.7 1826%
csurf-packages 2.7 3.6 31%
a2ps 859.5 4,347.8 406%
li 17.7 33.7 90%
spice 1,611.0 3,214.2 100%
named 1,622.2 5,119.8 216%
sendmail 2,186.7 4,391.1 101%
cvs 174.05 1,509.2 767%

Fig. 18. The effect of increased vertex size on the intraprocedural SCC computation
time (only the longer running programs from Figure 17 are shown).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

28 · David Binkley et al.

degrees of success removing redundant edges, which Phase 2 never need allocate.

6. RELATED WORK

While source code analysis begins with the source code, source code is rarely the
best representation for an analysis tool to work with. Many alternate represen-
tations have proven useful. Graphs (including their degenerate form, trees) make
up a majority of these representations. For example, one of the earliest source
code analysis tools, the compiler, led to two of the most widely used graphs: the
control-flow graph and the call graph [Fischer and LeBlanc 1988].

Compilers were arguably the first, but are not the only, source-code analysis tool
to make use of graphs as internal representations. For example, dependence graphs,
developed in connection with aggressive optimizing compilers [Ferrante et al. 1987],
have been suggested for use in a variety of alternative applications. These include,
for example, program slicing [Binkley and Gallagher 1996; Harman and Hierons
2001; Tip 1995; Weiser 1984], whole program documentation [Balmas 2002], and
heap variable modeling [Horwitz et al. 1989].

The optimizations presented here are not restricted to dependence graphs and
slicing. Cycle elimination, to which SCC formation belongs, is a very general opti-
mization technique. For example, in data flow analysis it is used to decompose the
control flow graph for hybrid analysis algorithms [Lee and Ryder 1994]. Within the
SCCs the analysis is iterative and elimination-like during propagation between the
SCCs. SCC formation is essential for fast pointer analysis [Fähndrich et al. 1998;
Rountev and Chandra 2000; Heintze and Tardieu 2001].

Another example is the efficient computation of path conditions [Snelting et al.
2006], which compute necessary conditions for information flow between two pro-
gram points. The generation makes heavy use of interval analysis to identify nested
SCCs and paths are then decomposed into parts that can be analyzed indepen-
dently.

In software re-engineering SCC formation can be used as a clustering technique.
Koschke [Koschke 1999] uses it for incremental semi-automated component recov-
ery; components in a SCC mutually depend on one another. Systems that analyze
dependences and relationships between components, e.g., Rigi [Müller and Klashin-
sky 1988], use SCC formation to transform cyclic dependence graphs into acyclic
graphs.

The present paper is an extended version of a paper presented at the 3rd Source
Code Analysis and Manipulation Workshop (SCAM 2003) [Binkley and Harman
2003b]. Also an analysis similar to the one presented here was undertaken by
Krinke, who proposed several techniques similar to those discussed in Section 3
for reducing the cost of graph based operations [Krinke 2003]. Two are briefly
mentioned herein. First, Krinke observes that the standard computation of SDGs
leads to a set of redundant vertices and edges. For example, function parameters
that are never used before being defined generate formal-in vertices with no outgoing
edges. Such vertices can be removed together with the incident edges without loss
of precision, leading to 9% fewer vertices and 13% fewer edges.

Second, his notion of folding cycles is essentially the formation of intraprocedural
SCCs. He shows that the computation of SCCs for chopping [Jackson and Rollins
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 29

+Tran
Phase

program Std 1 2

espresso 15 10 4
go 16 11 4
ctags 18 13 5
ntpd 22 17 7
gnugo 34 27 11
csurf-pkgs 35 28 12
empire 59 50 17
a2ps 86 77 15
li 105 90 40
named 278 257 121
sendmail 384 364 180
spice 386 360 208
cvs 739 656 271

Average of shown 167 151 69
Average of all 56 48 22

Fig. 19. Slicer memory usage (in MB) for high memory using programs.

1994] must be handled differently to the computation for slicing. The computation
of SCCs for slicing includes summary edges, and thus it may fold vertices of different
call sites into one SCC. This cannot be used for chopping, because the computation
of chops relies upon the mapping of summary edges to call sites. This leads to a
smaller reduction than for slicing (a 41% reduction in vertices for slicing and only
26% for chopping).

Krinke also observes that folding interprocedural cycles loses context sensitiv-
ity, but achieves a dramatic reduction in graph size (a 66% reduction in vertices
and a 76% reduction in edges). The loss of context sensitivity causes not only an
avalanche-like loss of precision, but also a large increase in average slice construc-
tion time. This observation, that waiving context sensitivity typically increases
average slice time, has also been reported, with similar results, by Binkley and
Harman [Binkley and Harman 2003a] and Krinke [Krinke 2002].

7. SUMMARY

This paper presents five optimization techniques designed to improve graph process-
ing time for interprocedural program slicing. It empirically quantifies the efficiency
improvements expected from these different algorithms by studying their effect
upon interprocedural slicing performance for a code base of just over one million
lines of code. The paper also investigates the effect of compact data representation
on the implementation of interprocedural slicing.

The paper also explores the point at which these algorithmic and implementation
techniques provide a payoff, relative to the costs of data structure creation. Over all
programs studied, only 1.7% of the slices need be computed before the break-even
point is reached, indicating that the optimizations are useful for massive slicing,
where a much larger percentage of slices would need to be computed. However, the
results also indicate, unsurprisingly, that for programs with only a few slices, the
break-even point is uneconomical, indicating that the techniques are only worth

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

30 · David Binkley et al.

applying for programs with a large number of slices.
This work is important because many client applications of program slicing re-

quire a form of massive slicing–slicing on many or all of the possible criteria within
the program. The number of slicing criteria in a program is of a similar order to
the number of lines of code in the program, so efficiency of slice computation time
is an important issue for massive slicing of large programs.

The empirical evidence provided by the studies reported in the paper gives base-
line data for future work. The data are also useful to tool builders concerned with
the decision as to which, if any, graph technique to incorporate into a tool. The ad-
vantages and disadvantages of identifying strongly-connected components or using
topological order, for example, can be better evaluated given the data presented in
this paper. Future work will investigate the extent to which the techniques explored
here can be extended to apply to other graph-based program analyses.

8. ACKNOWLEDGMENTS

The authors wish to thank GrammaTech Incorporated (www.grammatech.com) for
providing CodeSurfer. Mark Harman is supported by EPSRC Grants GR/R98938,
GR/M58719, GR/M78083 and GR/R43150 and by two grants from DaimlerChrysler.
Dave Binkley is supported by National Science Foundation grant CCR-0305330.
Kathy Newstead and Jeri Hanly assisted with the presentation. The authors also
wish to thank the anonymous referees. Their detailed, constructive and thoughtful
comments greatly improved the presentation of the results in this paper.

REFERENCES

Agrawal, H. and Horgan, J. R. 1990. Dynamic program slicing. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (White Plains, New York). 246–256.

Anderson, P., Binkley, D., Rosay, G., and Teitelbaum, T. 2001. Flow insensitive points-to
sets. In Proceedings of the first IEEE Workshop on Source Code Analysis and Manipulation
(Florence, Italy). IEEE Computer Society Press, Los Alamitos, California, USA, 79–89.

Balmas, F. 2002. Using dependence graphs as a support to document programs. In 2st IEEE
International Workshop on Source Code Analysis and Manipulation (Montreal, Canada). IEEE
Computer Society Press, Los Alamitos, California, USA, 145–154.

Beszédes, A. and Gyimóthy, T. 2002. Union slices for the approximation of the precise slice. In
IEEE International Conference on Software Maintenance (Montreal, Canada). IEEE Computer
Society Press, Los Alamitos, California, USA, 12–20.

Bieman, J. M. and Ott, L. M. 1994. Measuring functional cohesion. IEEE Transactions on
Software Engineering 20, 8 (Aug.), 644–657.

Binkley, D. and Harman, M. 2005a. Forward slices are smaller than backward slices. In 5th

IEEE International Workshop on Source Code Analysis and Manipulation (Budapest, Hungary,
September 30th-October 1st 2005). IEEE Computer Society Press, Los Alamitos, California,
USA, 15–24.

Binkley, D. and Harman, M. 2005b. Locating dependence clusters and dependence pollution. In
21st IEEE International Conference on Software Maintenance (Budapest, Hungary, September
30th-October 1st 2005). IEEE Computer Society Press, Los Alamitos, California, USA, 177–
186.

Binkley, D. W. 1998. The application of program slicing to regression testing. Information and
Software Technology Special Issue on Program Slicing 40, 11 and 12, 583–594.

Binkley, D. W. and Gallagher, K. B. 1996. Program slicing. In Advances in Computing,
Volume 43, M. Zelkowitz, Ed. Academic Press, 1–50.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 31

Binkley, D. W. and Harman, M. 2003a. A large-scale empirical study of forward and backward
static slice size and context sensitivity. In IEEE International Conference on Software Main-
tenance (Amsterdam, Netherlands). IEEE Computer Society Press, Los Alamitos, California,
USA, 44–53.

Binkley, D. W. and Harman, M. 2003b. Results from a large–scale study of performance opti-
mization techniques for source code analyses based on graph reachability algorithms. In IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM 2003) (Amster-
dam, Netherlands). IEEE Computer Society Press, Los Alamitos, California, USA, 203–212.

Binkley, D. W. and Harman, M. 2004. Analysis and visualization of predicate dependence on
formal parameters and global variables. IEEE Transactions on Software Engineering 30, 11,
715–735.

Binkley, D. W., Harman, M., Raszewski, L. R., and Smith, C. 2000. An empirical study
of amorphous slicing as a program comprehension support tool. In 8th IEEE International
Workshop on Program Comprehension (Limerick, Ireland). IEEE Computer Society Press, Los
Alamitos, California, USA, 161–170.

Binkley, D. W., Horwitz, S., and Reps, T. 1995. Program integration for languages with
procedure calls. ACM Transactions on Software Engineering and Methodology 4, 1, 3–35.

Black, S. E. 2001. Computing ripple effect for software maintenance. Journal of Software
Maintenance and Evolution: Research and Practice 13, 263–279.

Canfora, G., Cimitile, A., De Lucia, A., and Lucca, G. A. D. 1994. Software salvaging based
on conditions. In International Conference on Software Maintenance (Victoria, Canada). IEEE
Computer Society Press, Los Alamitos, California, USA, 424–433.

Canfora, G., Cimitile, A., and Munro, M. 1994. RE2: Reverse engineering and reuse re-
engineering. Journal of Software Maintenance: Research and Practice 6, 2, 53–72.

Chilimbi, T., Davidson, B., Larus, J., and Hill, M. 1999. Cache-conscious structure defini-
tion. In ACM SIGPLAN Conference on Programming Language Design and Implementation
(Atlanta, Georgia). Association for Computer Machinery, New York, 13–24.

Cimitile, A., De Lucia, A., and Munro, M. 1995a. Identifying reusable functions using specifica-
tion driven program slicing: a case study. In Proceedings of the IEEE International Conference
on Software Maintenance (Nice, France). IEEE Computer Society Press, Los Alamitos, Cali-
fornia, USA, 124–133.

Cimitile, A., De Lucia, A., and Munro, M. 1995b. Qualifying reusable functions using symbolic
execution. In Proceedings of the 2nd Working Conference on Reverse Engineering (Toronto,
Canada). IEEE Computer Society Press, Los Alamitos, California, USA, 178–187.

Danicic, S., De Lucia, A., and Harman, M. 2004. Building executable union slices using
conditioned slicing. In 12th International Workshop on Program Comprehension (Bari, Italy).
IEEE Computer Society Press, Los Alamitos, California, USA, 89–97.

Eisenbarth, T., Koschke, R., and Vogel, G. 2002. Static trace extraction. In IEEE Working
Conference on Reverse Engineering (Richmond, Virginia, USA). IEEE Computer Society Press,
Los Alamitos, California, USA, 128–137.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. 1987. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and Systems 9, 3
(July), 319–349.

Fähndrich, M., Foster, J. S., Su, Z., and Aiken, A. 1998. Partial online cycle elimination in
inclusion constraint graphs. In Proceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation (Montréal, Canada). Association for Computer
Machinery, 85–96.

Fischer, C. N. and LeBlanc, R. J. 1988. Crafting a Compiler. Benjamin/Cummings Series in
Computer Science. Benjamin/Cummings Publishing Company, Menlo Park, CA.

Fox, C., Harman, M., Hierons, R. M., and Danicic, S. 2001. Backward conditioning: a new
program specialisation technique and its application to program comprehension. In 9th IEEE
International Workshop on Program Comprenhesion (Toronto, Canada). IEEE Computer So-
ciety Press, Los Alamitos, California, USA, 89–97.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

32 · David Binkley et al.

Gallagher, K. B. and Lyle, J. R. 1991. Using program slicing in software maintenance. IEEE
Transactions on Software Engineering 17, 8 (Aug.), 751–761.

Harman, M. and Danicic, S. 1995. Using program slicing to simplify testing. Software Testing,
Verification and Reliability 5, 3 (Sept.), 143–162.

Harman, M. and Hierons, R. M. 2001. An overview of program slicing. Software Focus 2, 3,
85–92.

Harman, M., Hierons, R. M., Danicic, S., Howroyd, J., Laurence, M., and Fox, C. 2001.
Node coarsening calculi for program slicing. In 8th Working Conference on Reverse Engineering
(Stuttgart). IEEE Computer Society Press, Los Alamitos, California, USA, 25–34.

Heintze, N. and Tardieu, O. 2001. Ultra-fast aliasing analysis using CLA: A million lines of
C code in a second. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation, C. Norris and J. J. B. Fenwick, Eds. ACM SIGPLAN
Notices, vol. 36.5. ACMPress, New York, 254–263.

Hierons, R. M., Harman, M., and Danicic, S. 1999. Using program slicing to assist in the
detection of equivalent mutants. Software Testing, Verification and Reliability 9, 4, 233–262.

Hierons, R. M., Harman, M., Fox, C., Ouarbya, L., and Daoudi, M. 2002. Conditioned slicing
supports partition testing. Software Testing, Verification and Reliability 12, 23–28.

Horwitz, S., Pfeiffer, P., and Reps, T. 1989. Dependence analysis for pointer variables. In
Proceedings of the ACM SIGPLAN 89 Conference on Programming Language Design and
Implementation (Portland, OR, USA). ACM SIGPLan Notices, 28–40.

Horwitz, S., Prins, J., and Reps, T. 1989. Integrating non–interfering versions of programs.
ACM Transactions on Programming Languages and Systems 11, 3 (July), 345–387.

Horwitz, S., Reps, T., and Binkley, D. W. 1988. Interprocedural slicing using dependence
graphs. In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. Atlanta, Georgia, 25–46. Proceedings in SIGPLAN Notices, 23(7), pp.35–46, 1988.

Horwitz, S., Reps, T., and Binkley, D. W. 1990. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems 12, 1, 26–61.

Jackson, D. and Rollins, E. J. 1994. Chopping: A generalisation of slicing. Tech. Rep. CMU-
CS-94-169, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. July.

Koschke, R. 1999. An incremental semi-automatic method for component recovery. In Pro-
ceedings: Sixth Working Conference on Reverse Engineering (Atlanta, Georgia USA). IEEE
Computer Society Press, Los Alamitos, California, USA, 256–269.

Krinke, J. 2002. Evaluating context-sensitive slicing and chopping. In IEEE International
Conference on Software Maintenance (Montreal, Canada). IEEE Computer Society Press, Los
Alamitos, California, USA, 22–31.

Krinke, J. 2003. Advanced slicing of sequential and concurrent programs. Ph.D. thesis, Univer-
sität Passau.

Lee, Y. and Ryder, B. G. 1994. Effectively exploiting parallelism in data flow analysis. The
Journal of Supercomputing 8, 3 (Nov.), 233–262.

Liang, D. and Harrold, M. J. 1999. Efficient points-to analysis for whole-program analysis. In
ESEC/FSE ’99, O. Nierstrasz and M. Lemoine, Eds. Lecture Notes in Computer Science, vol.
1687. Springer-Verlag / ACM Press, 199–215.

Longworth, H. D., Ott, L. M., and Smith, M. R. 1986. The relationship between program com-
plexity and slice complexity during debugging tasks. In Proceedings of the Computer Software
and Applications Conference (COMPSAC’86). 383–389.

Meyers, T. and Binkley, D. W. 2004. Slice-based cohesion metrics and software intervention.
In 11th IEEE Working Conference on Reverse Engineering (Delft University of Technology,
the Netherlands). IEEE Computer Society Press, Los Alamitos, California, USA, 256–266.

Müller, H. A. and Klashinsky, K. 1988. Rigi—A system for programming-in-the-large. In
Proceedings of the 10th International Conference on Software Engineering. IEEE Computer
Society Press, Singapore. April 11-15, 1988, 80–86.

Mock, M., Atkinson, D. C., Chambers, C., and Eggers, S. J. 2002. Improving program slicing
with dynamic points-to data. In Proceedings of the 10th ACM SIGSOFT Symposium on the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

Optimization Techniques for Massive Slicing · 33

Foundations of Software Engineering (FSE-02), W. G. Griswold, Ed. ACM Press, New York,
71–80.

Ott, L. M. 1992. Using slice profiles and metrics during software maintenance. In Proceedings
of the 10th Annual Software Reliability Symposium. 16–23.

Ott, L. M. and Bieman, J. M. 1992. Effects of software changes on module cohesion. In IEEE
Conference on Software Maintenance. 345–353.

Ott, L. M. and Thuss, J. J. 1989. The relationship between slices and module cohesion. In
Proceedings of the 11th ACM Conference on Software Engineering. 198–204.

Ott, L. M. and Thuss, J. J. 1993. Slice based metrics for estimating cohesion. In Proceedings of
the IEEE-CS International Metrics Symposium (Baltimore, Maryland, USA). IEEE Computer
Society Press, Los Alamitos, California, USA, 71–81.

Ottenstein, K. J. and Ottenstein, L. M. 1984. The program dependence graph in software de-
velopment environments. Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environmt, SIGPLAN Notices 19, 5, 177–184.

Podgurski, A. and Clarke, L. 1990. A formal model of program dependences and its im-
plications for software testing, debugging, and maintenance. IEEE Transactions on Software
Engineering 16, 9, 965–79.

Reps, T. 1998. Program analysis via graph reachability. Information and Software Technology
Special Issue on Program Slicing 40, 11 and 12, 701–726.

Reps, T., Horwitz, S., Sagiv, M., and Rosay, G. 1994. Speeding up slicing. In ACM Founda-
tions of Software Engineering (New Orleans, LA). ACM SIGSOFT Software Engineering Notes
19, 5 (December 1994), 11–20.

Rilling, J., A.Seffah, and J.Lukas. 2001. MOOSE – a software comprehension framework. In
5th World Multi-Conference on Systemics, Cybernetics and Informatics (Orlando, Florida).
312–318.

Rountev, A. and Chandra, S. 2000. Off-line variable substitution for scaling points-to analysis.
In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation. ACM Sigplan Notices, vol. 35.5. ACM Press, New York, 47–56.

Snelting, G., Robschink, T., and Krinke, J. 2006. Efficient path conditions in dependence
graphs for software safety analysis. ACM Transactions on Software Engineering and Method-
ology. To appear.

Tip, F. 1995. A survey of program slicing techniques. Journal of Programming Languages 3, 3
(Sept.), 121–189.

Weiser, M. 1979. Program slices: Formal, psychological, and practical investigations of an auto-
matic program abstraction method. Ph.D. thesis, University of Michigan, Ann Arbor, MI.

Weiser, M. 1981. Program slicing. In 5th International Conference on Software Engineering.
San Diego, CA, 439–449.

Weiser, M. 1982. Programmers use slices when debugging. Communications of the ACM 25, 7
(July), 446–452.

Weiser, M. 1984. Program slicing. IEEE Transactions on Software Engineering 10, 4, 352–357.

Zhao, J. 2002. Slicing aspect-oriented software. In 10th IEEE International Workshop on Pro-
gram Comprehension (Paris, France). IEEE Computer Society Press, Los Alamitos, California,
USA, 351–260.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TBD, TBD 20TBD.

