Slicing, Chopping, and Path Conditions with Barriers

Jens Krinke
FernUniversitat in Hageh Germany

Abstract. One of the critiques on program slicing is that slices presto the user are hard
to understand. This is mainly related to the problem thatradi ‘dumps’ the results onto the
user without any explanation. This work will present an apgh that can be used to ‘filter’
slices. This approach basically introduces ‘barriers’clifare not allowed to be passed during
slice computation. An earlier filtering approach is chogpivhich is also extended to obey
such a barrier. The barrier variants of slicing and choppirayide filtering possibilities for
smaller slices and better comprehensibility. The concéfitaoriers is then applied to path
conditions, which provide necessary conditions under vait influence between the source
and target criterion exists. Barriers make those conditioore precise.

Keywords: program slicing, program dependence graph, path condition

1. Introduction

Program slicing answers the question “Which statementsafiiegt the com-
putation at a dferent statement?”. At first sight, an answer to that ques-
tion should be a valuable help to programmers. After Wessgrst publi-
cation (Weiser, 1979) on slicing, almost 25 years have jpkaisd various ap-
proaches to compute slices have evolved. Usually, invesiiocomputer sci-
ence are adopted widely after around 10 years. Why aregliechniques not
easily available yet? William Griswold gave a talk at PASTI2 (Griswold,
2001) on that topic-Making Slicing Practical: The Final MileHe pointed
out why slicing is still not widely used today. One of the mairoblems
is that slicing ‘as-it-stands’ is inadequate to essentidiwsare-engineering
needs. Usually, slices are hard to understand. This isypdu to bad user
interfaces, but mainly related to the problem that slicidgmps’ the results
onto the user without any explanation. Griswold stated thednfor “slice
explainers” that answer the question why a statement igdecl in the slice,
as well as the need for “filtering”. This work will present sua “filtering”
approach to slicing; it basically introduces ‘barriers’iethare not allowed to
be passed during slice computation. Especially for chapgiarriers can be
used to focus a chop onto interesting program parts.

The next section will present slicing and chopping in detdction three
will introduce barrier slicing and chopping together wittamples. Path con-

* Most of the work was done at Universitat Passau, Germany

T This article appeared in the Software Quality Journal, MauL2, Number 4, December

2004. The original publication is availablelattp: //www.springerlink.com/openurl.
asp?genre=article&id=doi:10.1023/B:SQJ0.0000039792.93414.a5

p;<‘ © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

2

ditions are presented with their barrier variants in Secfwur. This work
closes with a discussion of related work and conclusions.

2. Slicing and Chopping

A slice extracts those statements from a program that palignhave an
influence onto a specific statement of interest which is tioangl criterion.
Slicing has found its way into various applications. Cutiyent is probably
mostly used in the area of software maintenance and reesrgigelt is often
a base technique to ensure the quality of the developed a@fviike in
testing (Gupta et al., 1992; Binkley, 1992; Bates and Ha&wif93; Bink-
ley, 1998), checking a program for robustness (Harman amiciza 1995),
impact analysis (Gallagher and Lyle, 1991), and cohesioasomement (Ott
and Thuss, 1989; Bieman and Ott, 1994; Ott and Bieman, 1998).

Originally, slicing was defined by Weiser in 1979; he presdnan ap-
proach to compute slices based on iterative data flow asalyégiser, 1979;
Weiser, 1984). The other main approach to slicing uses &addldly analy-
sis in program dependence graphs (PDGs) (Ferrante et 8Ir).1Brogram
dependence graphs mainly consist of nodes representirgjategnents of a
program and control and data dependence edges:

— Control dependence between two statement nodes exists statement
controls the execution of the other (e.g. through if- or edstatements).

— Data dependence between two statement nodes exists if didefof a
variable at one statement might reach the usage of the sambleaat
another statement.

The extension of the PDG fanterprocedural programsntroduces more
nodes and edges: For every procedurgr@cedure dependence grajh
constructed, which is basically a PDG witrmal-inand-outnodes for every
formal parameter of the procedure. A procedure call is sepried by aall
node andactual-inand-out nodes for each actual parameter. The call node is
connected to the entry node byall edge, theactual-innodes are connected
to their matchingormal-in nodes vigparameter-inedges, and thactual-out
nodes are connected to their matchfiogmal-out nodes viaparameter-out
edges. Such a graph is callederprocedural Program Dependence Graph
(IPDG). The System Dependence Graph (SD&an IPDG, whersummary
edgeshetween actual-in and actual-out have been added in ordeptesent
transitive dependence due to calls (Horwitz et al., 1990).

To slice programs with procedures, it is not enough to perfarreach-
ability analysis on IPDGs or SDGs. The resulting slices areatcurate as
thecalling contextis not preserved: The algorithm may traverse a parameter-
in edge coming from a call site into a procedure, may travetsee edges

3

there, and may finally traverse a parameter-out edge goiagliterent call
site. The sequence of traversed edges (the path) usi@alizable pathlt is
impossible for an execution that a called procedure doegettn to its call
site. We consider an interprocedural slice topbeciseif all nodes included
in the slice are reachable from the criterion brgalizablepath.

Definition 1. (Slice in an IPDG) he (backward slice S(n) of an IPDGG =
(N, E) at noden € N consists of all nodes on whiai(transitively) depends
via an interprocedurally realizable path:

S(n) ={me N|m-znj

Here,m —x n denotes that there exists an interprocedurally realizpate
frommto n.
We can extend the slicing criterion to allow a set of no@es N instead

of one single node:
S(C)={meN|m—-rnAneC}

These definitions cannot be used in an algorithm directlgabse it is
impractical to check paths whether they are interprocéigur@alizable. Ac-
curate slices can be calculated with a modified algorithm DG S (Horwitz
et al., 1990): The benefit of SDGs is the presenceswhmaryedges that
represent transitive dependence due to calls. Summarg edgebe used to
identify actual-out nodes that are reachable from actualides by an inter-
procedurally realizable path through the called proceaitieout analyzing
it. The idea of the slicing algorithm using summary edgesr¢¥tz et al.,
1990; Reps et al., 1994) is first to slice from the criterioly@scending into
calling procedures, and then to slice from all visited noolely descending
into called procedures. We refer the reader to (Krinke, 2060hke, 2003)
for a presentation of the algorithms.

Slicing identifies statements in a program which may infleeacgiven
statement (the slicing criterion), but it cannot answerdghestion why a spe-
cific statement is part of a slice. A more focused approacthefmChopping
(Jackson and Rollins, 1994) reveals the statements invdlva transitive
dependence from one specific statement (the source cnif¢d@nother (the
target criterion). A chop for a chopping criteriog {) is the set of nodes that
are part of an influence of the (source) namto the (target) node This is
basically the set of nodes which are lying on a path fimt in the PDG.

Definition 2. (Chop)The chop (s t) of an IPDGG = (N,E) from the
source criteriors € N to the target criteriort € N consists of all nodes on
which nodet (transitively) depends via an interprocedurally realiegbath
from nodesto t:

Cst)={neN| pes—ogtAp=(ng,....,m)Adi:n=n}

4

Here,p € s -} t denotes that patp is an interprocedurally realizable path
from stot.

Again, we can extend the chopping criteria to allow sets afeso The
chop C(S, T) of an IPDG from the source criterion nod&sto the target
criterion nodesI consists of all nodes on which a nodeTin(transitively)
depends via an interprocedurally realizable path from a&no& C N to the
node inT C N:

C(S,T)={neN| pes—itAseSAteT
Ap={Ng,....,n)Adi:n=n}

Jackson and Rollins restricteslandt to be in the same procedure and
only traversed control dependence, data dependence, amiasy edges,
but not parameter or call edges. The resulting chop is callédincated
same-level chop &; “truncated” because nodes of called procedures are
not included. Reps and Rosay presented more variants aserelsopping
(Reps and Rosay, 1995). #on-truncatedsame-level choftNS is like the
truncated chop but includes the nodes of called procedlihes, also present
truncated and non-truncatedn-same-levathopsC™ andCNN (which they
call interprocedura), where the nodes of the chopping criterion are allowed
to be in diferent procedures. Again, the algorithms are explained iimki,
2002; Krinke, 2003).

3. Barrier Slicing and Chopping

The presented slicing and chopping techniques compute fiseg results
where the user has no influence. However, during slicing dmpming a
user might want to give additional restrictions or addiibknowledge to
the computation:

1. A user might know that a certain data dependence canngit 8dcause
the underlying data flow analysis is a conservative appration and the
pointer analysis is imprecise, it might be clear to the ukat & depen-
dence found by the analysis cannot happen in reality. Fample the
analysis assumes a dependence between a defialtidn-. . . and a us-
age...=a[j] of an array, but the user discovers thiandj never have
the same value. If such a dependence is removed from the dimpen
graph, the computed slice might be smaller.

2. A user might want to exclude specific parts of the prograniclwiare
of no interest for his purposes. For example, he might kna@w ¢krtain
statement blocks are not executed during runs of interedteanight
want to ignore error handling or recovery code if he is ontgiiasted in
normal execution.

5

3. During debugging, a slice might contain parts of the aredyprogram
that are known (or assumed) to be bug-free. These partscsheuie-
moved from the slice to make the slice more focused.

These points have been tackled independently: For exartmgleemoval of
dependences from the dependence graph by the user has h@ied ap
Steindl’'s slicer (Steindl, 1999). The removal of parts franslice is called
dicing (Lyle and Weiser, 1987).

The following approach integrates both into a new kind afisti, called
barrier slicing, where nodes (or edges) in the dependence graph are declared
to be abarrier that transitive dependence is not allowed to pass.

Definition 3. (Barrier Slice)The barrier slice S¢(C, B) of an IPDGG =
(N, E) for the slicing criterionC < N with the barrier set of nodeB C N
consists of all nodes on which a nodec C (transitively) depends via an
interprocedurally realizable path that does not pass a moBe

SyC,B)={meN| pem—rnaneC

ApP={(Ng,...,N)
AVl<i<l:n ¢B}

The barrier may also be defined by a set of edges; the previfustmn is
adapted accordingly.

From barrier slicing it is only a small step to barrier choppi

Definition 4. (Barrier Chop)Thebarrier chop G(S, T, B) of an IPDGG =
(N, E) from the source criterio® C N to the target criterio < N with the
barrier set of nodeB consists of all nodes on which a nodeTirftransitively)
depends via an interprocedurally realizable path from &8 to the node
in T that does not pass a nodeBrc N:

CuS.T,B)={neN| pes—rtaseSAteT
Ap={Ny,....,nHpAdi:n=n;
AV1<j<l:nj¢B}

The barrier may also be defined by a set of edges; the previfustmn is
adapted accordingly.

Again, the forwargbackward, truncatgdon-truncated, same-leyebn-
same-level variants can be defined, but are not presented her

The computation of barrier slices and chops causes a profdlamad-
ditional constraint of the barrier destroys the usabilitysommary edges as
they do not obey the barrier. Even if summary edges would ¢pnviih
the barrier, the advantage of summary edges is lost: Theywadanger be

6

Algorithm 1 Computation of Blocked Summary Edges

Input: G = (N, E) the given SDGB c N the given barrier
Output: A setS of blocked summary edges

S =0, W = 0 Initialization
Block all reachable summary edges
foreach n e Bdo
Let P be the procedure containimg
Let Sp be the set of summary edges for call$to
S =SUSp,W=WU{(mm) | mis aformal-out node oP}

repeat
So=S
foreach x —~ye Sdo
Let P be the procedure containing
Let Sp be the set of summary edges for callg*to
S=SUSp,W=WU {(m m)| mis aformal-out node oP}
until So =S

Unblock some summary edges, Invariants:
1. WC M
2. (n,m) € M = n —* mvia a barrier-free intraprocedural path,
m is a formal-out node.

M=W
whileW # (0 worklist is not emptylo

W = W/{(n, m)} remove one element from the worklist

if nis a formal-in nodehen

A barrier-free path from formal-in n to formal-out m exists

foreach ” 5 nwhich is a parameter-in edgk®
foreach m 25 v which is a parameter-out-edge
if n’eB/\rrfeB/\n’grweSthen
S =S/{n 3 nY} unblock summary edge
foreach (M, x) e M A (", X) ¢ M do
M=MuU{(,x)},W=WuU{,X)}
else

dd.cd
foreachn” = ndo
if " ¢gBA (M, m)¢M then
M=MuU{(r,m}, W=WuU {(n',m)}
foreach ' > ndo
if"gBA M, m¢M /\n’iineSthen
M=Mu{, m},W=Wu{(n,m)}
return S the set of blocked summary edges

7

computed once and used foffférent slices and chops because they have to
be computed for each barrier slice and chop individually.

The usual algorithm (Reps et al., 1994) can be adapted to wenspim-
mary edges which obey the barrier: The new version (algorithis based on
blocking and unblocking summary edges. First, all summeges stemming
from calls that might call a procedure with a node from theribaiat some
time are blocked. This set is a too conservative approxanatind the second
step unblocks summary edges where a barrier-free paths doastveen the
formal-in and -out node corresponding to the summary edagisal-in and
-out node. The algorithm propagates paingnf) which state that formal-out
nodemis intraprocedurally reachable fromvia a barrier-free path. The pairs
are propagated via worklis¥/ and kept in seM. If a pair from a formal-in
to a formal-out node is encountered, all corresponding saimredges in
calling procedures must be unblocked. That step must atquagate earlier
encountered pairs along the now unblocked summary edge.gfbpagation
may have stopped at the blocked summary edge earlier.)

The first phase of the algorithm replaces the initializagrase of the
original algorithm and the second phase does not generatesnamary
edges (like the original), but unblocks them. Only the \@rsivhere the bar-
rier consists of nodes is shown. This algorithm is cheapan the complete
re-computation of summary edges, because it only propagaide pairs to
find barrier-free paths between actughout nodes if a summary edge, and
therefore a (not necessarily barrier-free) path, exists.

Example 1.Consider the example in Figure 1: If a slice farkg in line
33 is computed, almost the complete program is in the sligst lihes 11
and 12 are omitted. One might be interested in why the varigbtd is in
the slice and has an influence onkg. Therefore, a chop is computed: The
source criterion are all statements containing variabled (lines 9, 21, 23,
24 and 31) and the target criterionuskg in line 33. The computed chop is
shown in Figure 2. In that chop, line 19 looks suspiciousiade u_kg is
defined, using variableal_kg. Another chop from all statements containing
variablecal_kg to the same target consists only of lines 14, 19, 26, 28 and
33 (figure 3). A closer look reveals that statements 26 andra®smit” the
influence fromp_cd onu_kg.

To check that no other statement is responsible, a barrigp &hcom-
puted: The source are the statements withd again, the target criterion is
still u_kg in line 33, and the barrier consists of lines 26 and 28. Thepded
chop is empty and reveals that lines 26 and 28 are the “hogspot

The barrier slice with the criterion_kg in line 33 and the same barrier
reveals the “intended” computation, which consists ofdiBe 13, 14, 16-19
and 33.

#define TRUE 1
#define CTRL2 O
#define PB 0
#define PA 1

void main()

{
int p_ab[2] {0, 13};
int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float cal_kg = 1.0;

O NO VT i WIN -

O

15
16 while(TRUE) {
17 if ((p_ab[CTRL2] & 0x10)==0) {
18 u = ((p_ab[PB] & 0x0f) << 8)
+ (unsigned int)p_ab[PA];
19 u_kg = (float) u * cal_kg;
20 }
21 if ((p_cd[CTRL2] & 0x01) != 0) {
22 for (idx=0;idx<7;idx++) {
23 e_puf[idx] = (char)p_cd[PA];
24 if ((p_cd[CTRL2] & 0x10) != 0) {
25 if (e_pufl[idx] == "+7)
26 cal_kg *= 1.01;
27 else if (e_puf[idx] == ’-’)
28 cal_kg *= 0.99;
29 }
30 }
31 e_puf[idx] = ’\0’;
32 }
33 printf("Article: %7.7s\n %6.2f kg ",
e_puf,u_kg);
34 }
35 %

Figure 1. An example

O NO VT i WIN -

O

int p_cd[1] = {0};
10
11
12
13
14
15
16
17
18

19 u_kg = (float) u * cal_kg;

20

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_pufl[idx] == "+7)

26 cal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 cal_kg *= 0.99;

29 }

30 }

31 e_pufl[idx] = ’\0’;

32

33 printf("Article: %7.7s\n %6.2f kg ",
e_puf,u_kg);

34

35

Figure 2. A chop for the example in Figure 1

10

O NO VT i WIN -

O

10
11
12
13
14 float cal_kg = 1.0;
15
16
17
18

19 u_kg = (float) u * cal_kg;

20

21

22

23

24

25

26 cal_kg *= 1.01;

27

28 cal_kg *= 0.99;

29

30

31

32

33 printf("Article: %7.7s\n %6.2f kg ",
e_puf,u_kg);

34

35

Figure 3. Another chop for the example

11
3.1. Gore CHor

A specialized version of a barrier chop iscare chop where the barrier
consists of the source and target criterion nodes.

Definition 5. (Core Chop)A core chop C(S, T) is defined as
Co(S,T) =Cx(S,T,SUT)

It is well suited for chops with large source and target dote sets: Only
the statements connecting the source to the target arefthe ohop. Here
is important that a barrier chop allows barrier nodes to lobuded in the
criteria. In that case, the criterion nodes are only stasrar nodes of the
path and are not allowed elsewhere.

3.2. Sir CHopr

When slices or chops are computed for large criterion seis,sometimes
important to know which parts of the criterion set influenkerselves and
which statements are part of such an influence. If thesenséaits have been
identified, they can be handled particularly during follogianalyses. They
can simply be computed byslf chop where a set is both source and target
criterion:

Definition 6. (Self ChopA self chop G,(S) is defined as
C.(S) =C(S,9)

It computes the strongly connected components of the SD@hatwntain
nodes of the criterion. These components can be of sped¢&ksi to the
user, or they are used to make core chops even stronger:

Definition 7. (Strong Core Choph strong core chop (S, T) is defined as

C.(S,T) = CHSUCL(S),
T UC(T),
SUTUCL(S)UCL(T))

It only contains statements that connect the source @ited the target cri-
terion, none of the resulting statements will have an inite@eon the source
criterion, and the target criterion will have no impact oe tlesulting state-
ments.

Thus, the strong core chop only contains the most importadés of the
influence between the source and target criterion. Thisheillemonstrated
with the example before:

12

Table I. Comparison of normal and core chopping

Program LOC nodes chops normal chops core chops
time nodes % time nodes %
agrep 3968 22823 8100 2680 4609 20 4346 4035 17
ansitape 1744 8509 5776 651 1022 12 1580 901 10
cdecl 3879 13339 2809 241 690 5 655 501 3
ctags 2933 12961 10201 2162 1753 13 5396 1567 12

football 2261 18879 5329 1318 2285 12 4420 2060 10
gnugo 3305 7787 1444 139 2645 33 171 2232 28
simulator 4476 14705 15376 6767 4753 32 7460 4503 30

Example 2.Let us compute a core chop with criteria similar to Example 1:
The source criterion are all statements containing vagipbtd (lines 9, 21,
23, 24 and 31) and the target criterion consists of acce$sesiableu_kg in
lines 19 and 33. The computed chop is shown in Figure 4 andhicenonly
statements that are involved in an influence betweernl andu_kg.

If a strong core chop is computed instead, line 22 will no Emge in the
computed chop, thus revealing an even stronger result.

3.3. BVvALUATION

To evaluate the barrier variants of slicing and chopping haee performed
a comparison of standard and core chopping. For a subsee girttgrams
used in the evaluation in (Krinke, 2002), we computed steth@ad core
chops between the program’s procedures. The set of all no@egrocedure
was used as source or target criterion, and a chop was cothfartevery
pair of the criteria (similar to the visualization befor@he programs, their
sizes (in lines of code, LOC), the number of nodes in their@Pand the
number of computed chops is shown in Table I. We have measestine
(in seconds) that was needed to compute all the chops, ainéteeage size
in nodes (absolute and as percentage of the complete IPDé&jawsee that
the computation of the core chops needs on average up totthreg more
time. The reason is the recomputation of blocked summargséty every
chop. On the other hand, the computed barrier chops are betd% and
27% smaller than their normal counterparts.

Whether the barrier variants of slicing and chopping arealst useful
cannot easily be evaluated just by measuring times or sSttesdiference in
results between the barrier and the usual variant depertearhbsen barrier.

O NO VT i WIN -

O

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

for (idx=0;idx<7;idx++) {

if (e_pufl[idx] == "+7)
cal_kg *= 1.01;

else if (e_puf[idx] == ’-’)
cal_kg *= 0.99;

Figure 4. A core chop for the example

13

14

AnChoVis 2.0 (c) 2002 by Silvia Bre

0 5 10 15 30 35 37 6374
‘El 1 1R

|]]
SN B]]

| I
| I
lﬂII I . I-

15 %
20
25
30
35
37

Figure 5. Visualization of thegnugo program

3737
2099

4462

20 23
]
]

3824

3187

2330

1912

1273

637

from fy-axisy: 16 endgame;/0
10 (- axis): 12 showboard/0

size: 1564

3.4. VISUALIZATION

To understand a previously unknown program, it is helpfuidentify the
‘hot’ procedures and global variables—those with the higli@pact on the
system. A simple measurement is to compute slices for evargegdure or
global variable and record the size of the computed slicesvever, this
might be too simple and a slightly better approach is to camphops be-
tween the procedures or variables. A visualization toolir(ke, 2004) has
been implemented that computesxan matrix for n procedures or variables,
where every elemem ; of the matrix is the size of a chop from the procedure
or variablen; to nj. The matrix is drawn using a color that corresponds to the
size for every entry—the bigger, the darker.

Example 3.Figure 5 shows such a visualization for theugo program.
The three windows contain the chop matrix visualization tfiis case for
procedure-procedure-chops), a scale that maps colorads, sind a window
that shows the names of the procedures and their chop’s cizéhé last
chosen matrix element. The columns show the procedures @ 3burce
criteria and the rows the procedures as target criteriah Eatryn; j of the
matrix represents the size of a chop from all nodes of prageduto all
nodes of procedurg;. For instance, the grey box at (1&2) represents the
size of the chop from procedusadgame to procedureshowboard, which is

15

30 33 37

B 1 1

1

0

I]l.l
H B
SH §

20 23
-"-
H I I
H I I
lﬂrl 1-.-
H B

|
15
20
25
30
35
37

Figure 6. Visualization of thegnugo program with core chops

=
HEE e N

1564 nodes. Through the light color of column 16 for procedurdgame it
is obvious that it has only a small impact on the rest of theesgsA close
look reveals that this procedure performs the board cleabapgame’s end.
There are only two dark rows, they correspond to procedurést £ (8) and
showboard (12) which are called irndgame.

This visualization shows some typical features of progréikesgnugo:
The left and upper part of the matrix contain light colorsamiag the chops
between the corresponding procedures are small. The preedith small
numbers are typically system routines that return sometrmdtion from the
operating system. Because that information is normallyinfatenced by the
program, the chops with that procedures are small or evenyeffipe upper
very dark row 8 represents the size of the chops with proespltint £ as
target criterion. Indeed, as most generated informatipninged on the screen
at some point, the chops must be large. The lower and rightairde matrix
(rows and columns 13-37) has an almost uniform color, whielams that the
chops are of similar size. In programs liggugo which have one central task
(here to play Go), this can be observed very often. All chapgain a large
share of the system, because everything influences evegyttge.

Figure 6 shows the same visualization but now with core clvgisad. It
shows a much more expressive picture. Of course, the chepsnaaller on
average, but there are many regions with extrenfier@inces to the previous
example. These flerences are usually related to recursion: Programs like
gnugo often have large components of recursive procedures. lbeepiure
of such a component is source or target criterion of a chap,ctiop will

16

always contain the complete component. This feedént with core chops: If
the source criterion is a procedure of the component, the cdeop will omit

the parts of the component which only reach the target @itdoy passing
through the source criterion again. If the target criteri®ra procedure of
the component, the core chop will omit the parts of the corepbnrvhich

are only reachable from the source criterion by passingutiitadhe target
criterion before. The omitted parts are usually not intiémgs and thus, the
core chops are more expressive.

With this tool, it is easy to get an overall impression of tléware to
analyze. Important procedures or global variables can éetiited on first
sight and their relationship can be studied.

3.5. EEecutioN BARRIERS

The barriers are generated to capture observed behavigorofyjgam. These
observations may stem from profiling, audits, or even tetst gathered from
deployed software (Orso et al., 2003). Such data usualltagmninformation
about which statements or procedures of the deployed s@ftivave been
executed or have not. The straightforward approach wowgtganerate the
barrier from the nodes of the not executed statements oeguves. How-
ever, the barrier can and should be made stronger. As an éxaagsume
gathered data reveals that a procedpim@as never executed. Instead of just
including all nodes op into the barrier, all nodes of all call sites pocan be
included, too. Even all nodes of the basic blocks contaittiregcall sites can
be included. More formally, the barri@&is extended by all nodes wheren
has only predecessors in the control flow graph also cordamB, or where
n has only successors in the control flow graph also containé?l B is a
complete execution barriéf no such node exist. For application of complete
execution barriers, all previous definitions and algoritohslices and chops
stay unchanged—we only have to extend the barriers as dedanitil they
are complete execution barriers.

We should recall that the presented barrier slicing is nopragsise as
generally possible. Consider the following fragment:

1 void p(int b, int c) {
2 int a;
read(a);
if (b) {
a=c;
} else {
b = c;
}
print(a);

©O© 00 N O U1 v W

17

Here, two data dependence edges related to statement:Jrexisthe defini-
tion due to theread (a) in line 3 and from the definition in line 5. If gathered
field data has revealed that statement 7 has never beenexgitigt definition
of line 3 never reached line 7, because it was always killdithé5. However,
if a barrier slice for barrieB = {7} and criterionC = {9} is computed, it will
contain line 3, because the data dependence from 3 to 7limskie IPDG.

The only way to reach that precision is to generate the babeforedata
flow analysis: All nodes of the barrier are removed from theSCRnd the
IPDG and the slices are computed based on the reduced CF@isHuvan-
tage of this approach is that whenever the barrier is charthedexpensive
construction of the IPDG must be repeated. Thus, the preljiquresented
approach of barrier slicing is much cheaper in comparison.

4, Path Conditions

Slicing can answer the questiowhich statements have an influence on state-
ment X?, chopping can answer the questidmotv does statement Y influence
statement X7 but neither slicing nor chopping can answer the questiohy’
does statement Y influence stateméent X

Example 4.Consider Figure 7 for an example: First, the questiamith
statements influence the output of variapléen line 8’ is simply answered
by computing a slice for this criterion. Figure 8 shows thsute Just one
statement or node does not influence the criterion. Now, \sfstatement 1
included in the slice and how does statement 1 influencenséate8? This
can be answered by a chop between statement 1 and statentoweéver,
the result is a chop almost identical to the previous slicdyetv does not
help at all.

Here, the computation gfath conditions(Snelting, 1996) can assist. Path
conditions give necessary conditions under which a tri@esitependence
between the source and target (criterion) node exists.eTbasditions give
the answer to “why is this statement in the slice?” which @oisl (Griswold,
2001) categorized as a question hard to answer.

This section will first introduce the basic concepts of pathditions, and
then show how the concept of barriers can be used for moréspreath
conditions.

4.1. SwmpLE Para CoNpITIONS

A simple approach to compute path conditions between tweswdndy in
a program dependence graph consists of the following steps:

1. Compute all pathg; from x toy in the program dependence graph.

18

1 if (i > 0)
2 a = X;
3 j = b;
4 CcC = Zz;

5 if (j < 5)
6 if (i < 8)
7 y = a;
8 print(y);

Figure 7. Simple fragment with program dependence graph

if (4> 0
a = X;
j = b;

if (1 < 8)
y = a;
print(y);

1
2
3
4
5 if (5 < 5)
6
7
8

Figure 8. Slice of the fragment

2. For every nodethat is part of a patip;, compute the&xecution condition
E(X).

3. Combine the execution conditions to compute the pathitondPC(x, y).

These three steps will be discussed next.

4.1.1. Execution Conditions

The execution conditio&(x) gives the conditions under which a noxenay

be executed. This can simply be computed by following thenmag control
dependence edges and collecting the predicates of thetanoesles until

the root 6TART) node is reached. In the example in Figure 7, the execution
condition for statement 7 iE(7) = (j < 5) A (i < 8). More generally, an
execution condition for a nodeis computed by

d
E(Y) = A y(n S m)
nSMSTARTS * NS+ x
: d
u(n) if v(n « m) = true
cd . cd
y(n—>m) = ¢ —4(n) if v(n - m) = false

u(n) =v(n L m) otherwise

19

E(Q) = true

E2Q) =i>0

E(R) =i>0

E(5) = true

E®) = j<5

E(7) = (j <5)A(<8)

E(8) = true

Figure 9. Execution conditions

whereu(n) returns the (predicate) expression of a nodadv(e) returns the
label of edgee. Control dependence edges leaving predicates of if- ankwhi
statements are labeled with eithere or false, and control dependence edges
leaving expressions of switch statements are labeled hltonstant of the
target case.

Example 5.Figure 9 shows the execution conditions for each of the exam-
ple’s statements.

In the presence of unstructured control flow, the controkedeence sub-
graph may not be a tree, and there may be more than one sirtflérpa
the root to the node of interest. Under such circumstandes execution
conditions compute as follows:

d
E(p) = A y(n S m)
NS mp=STARTS+ nSmS x
E0 = \/ E®

P=STARTS * x

In the presence of unstructured control flow, the controkdelence subgraph
may even be cyclic, which causes the set of possible pathg tofimite.
Snelting (Snelting, 1996) proved that cycles in executionditions can be
ignored, and thus, execution conditions are only computed the finite set
of cycle-free paths.

Other actions to handle unstructured control flow are nots&ary.

4.1.2. Combining Execution Conditions

The execution conditions are used to form the path conditi&or a pathp
in a program dependence graph, the execution conditionscajanctively
combined to result in the conditions under which this patty roa taken
during execution:

20

PCE) = /\ EM (1)

Usually, more than one path exists between two nodasdy, and the path
conditions for the single paths are combined disjunctitelyorm the path
condition PCK, y):

PCxy) = \/ PCE) 2)

p=x—xy

A program dependence graph is typically cyclic which maylhteis an in-
finite number of paths between two nodes. Again, cycles ihgatn be
ignored (Snelting, 1996) and only cycle-free paths are .used

Example 6.The example in Figure 7 contains two paths from statement 1
to8:p1 =(1,2,7,8) andp, = (1, 3,5, 6,7, 8). Their path conditions are:

PC(p1)

PC(p2)

true A(1>0)A (G <5 A (1 <8)Atrue
A>0A(<5A@{E<8)

true A(1>0)Atrue A (3 <B5)A(F <5)A (@ <8)Atrue
A>0A(<5A@{E<8)

Both path conditions can be combined disjunctively and 8frag: The path
condition from statement 1 to 8 is then PCL= (i > 0)A(j < 5)A(d < 8).

Example 7.We now compute a path condition for the example in Figure 2.
There, we have computed a chop between all statements miogt&ariable
p_cd (lines 9, 21, 23, 24 and 31), and the target criterion, nartiedyuse
of u_kg in line 33. To reveal the necessary conditions for the intteenve
compute the path condition between line 9 and line 33:

PC(233) = (p_ab[CTRL2] & 0x10 = 0)
A (p_cd[CTRL2] & 0x01 # 0)
A (p_cd[CTRL2] & 0x10 # 0)
A (1dx < 7)
A ((e_pufl[idx] = ‘+’) V (e_puf[idx] = *-"))

With some domain knowledge, this path conditions can bepntted as “If
the keyboard input is or -, and (not necessarily at the same time) the ‘paper
out’ signal is active, there is data flow from the keyboardhe tisplayed
weight value”. A human would have a hard time to extract suatements!

This section has only explained the required basics of patfuitons;
more detailed presentations, including interprocedurdlraulti-threaded path
conditions, are given by (Krinke and Snelting, 1998; Robdchnd Snelting,

21

2002; Snelting et al., 2003; Krinke, 2003). The presentqui@grh has been
implemented and evaluated. Using sophisticated optiioizsit it is possi-
ble to compute path conditiondfieiently even in the interprocedural case
(Robschink and Snelting, 2002; Snelting et al., 2003).

4.2. RrH CoNDITIONS WITH BARRIERS

We will now extend the computation of path conditions in a \tregt barriers

are obeyed. The barri@® now specifies all nodes that are guaranteed to not
be part of an influence betwearandy in a path condition P&Xx, y, B). First,

we revisit equations 1 and 2, which are extended to obey théb®. For
simplicity, the notatiorp ~ B denotes that no node of paghis contained in

the barrieB, p=(n,...,m) AVl<i<l:n ¢B:

PG(xY.B) = \/ PGB

p=x—*yA p~B

PC(p.B)= /\ E«nB)
Nl p=(...n,..) A p~B
This definition just restricts the path conditions to patbispassing through
the barrier. Second, the execution conditions must be adapt

E4(x B) = \/ Ex(p. B)
p= STARTS* X A pwB
d
E«(p.B) = A\ y(n = m)

d d cd_cd
nC—>m| p:STARTC—n nSmSx x A p~B

Again, the introduced restriction is the omission of pathsging through
the barrier. This restriction ensures that whenever a olliny predicate is
part of the barrier, no controlled statement will be partha path condition.

Example 8.We now turn back to the example in Figure 7, where we now
specify a barrieB = {6}, which states that the predicate of line 6 has no influ-
ence. The barrier allows only one path from statement 1 m 8: (1, 2,7, 8),
because the other patha = (1, 3,5, 6, 7, 8) passes through the barrier:

P(:#(X’ Y, B) PQ&(pl’ B)
E4(L B) A E4(2, B) A E4(7, B) A Ex(8, B)

The execution conditiofie(7, B) now results infalse, because there is only
one path fromsTART to 7, but this path contains line 6 which is an element
of the barrier. Thus, the complete path condition is:@(8, {6}) = false.
This is in contrast to the barrier sli&x(8, {6}) = {1, 2, 7, 8} which contains
statement 1, stating a barrier-free influence of statementstatement 8.

22

5. Related Work

Chopping as presented here has been introduced by JackdoRadlins

(Jackson and Rollins, 1994), extended by Reps and Rosay @epRosay,
1995), and implemented in CodeSurfer (Anderson and Teiteih 2001).
An evaluation of various slicing and chopping algorithms baen done in
(Krinke, 2002).

A decomposition slicéGallagher and Lyle, 1991; Gallagher, 1996; Gal-
lagher and O’Brien, 1997) is basically a slice for a varigdtiall statements
writing that variable. The decomposition slice is used tof@ graph using
the partial ordering induced by proper subset inclusiorhefdecomposition
slices for all variables.

Beck and Eichmann (Beck and Eichmann, 1993) use slicingdiates
statements of a module that influence an exported behavieir Work uses
interface dependence graphadinterface slicing

Steindl (Steindl, 1998; Steindl, 1999) has developed @iskor Oberon
where the user can choose certain dependences to be remorethé de-
pendence graph.

Set operations on slices produce various variants: Chgppses inter-
section of a backward and a forward slice. The intersectiomvo forward
or two backward slices is calledtamckbone sliceDicing (Lyle and Weiser,
1987) is the subtraction of two slices. However, set openaton slices need
special attention because the union of two slices may nolyz®a valid slice
(De Lucia et al., 2003).

Orso et al (Orso et al., 2001) present a slicing algorithmcivlsiugments
edges with types and restricts reachability onto a set a@sypreating slices
restricted to these types. Their algorithm needs to comphéesummary
edges specific to each slice (similar to algorithm 1). Howev@nly works
for programs without recursion.

Path conditions have been introduced by (Snelting, 199&)vesy to vali-
date measurement software. The main problem to computepatfitions is
scalability and #&iciency. Therefore, a divide-and-conquer strategy is egpli
Paths and path conditions are decomposed before compugstishown in
(Snelting, 1996; Krinke and Snelting, 1998) and (Robsclank Snelting,
2002; Snelting et al., 2003), which also contain case ssualiel evaluations.

Path conditions are somewhat similardonditioned slicing(De Lucia
et al., 1996; Canfora et al., 1998; Danicic et al., 2000; Foalg 2004).
In conditioned slicing, a program isonditionedin a first step: Based on
constraints over the input variables in first order logiariafa, the program
is partially evaluated via symbolic execution. After cdiatiing, slices are
computed in the transformed and in this way smaller progrdowever,
the computation of path conditions is not based on symbolec@tion or
partial evaluation, and does not handle control flow exgigonly implic-

23

itly through the dependences). Both techniques use theprewers or con-
straint solvers to simplify the generated predicates; veeRedlog (Sturm and
Weispfenning, 1998). Though similar in spirit, both techues have dierent
goals: Conditioned slicing is used to compute smaller ancerprecise slices
while path conditions explaiwhysomething is in a slice.

6. Conclusions

The presented variants of barrier slicing and chopping igeoa filtering
approach to reduce the size of slices and chops. The exastpieged the
helpfulness of this approach: Barriers can be used to fdaessand chops
on interesting parts, to validate assumptions about shoelschops, and to
improve the expressiveness of chop visualization.

Path conditions give necessary conditions under whichnaitree depen-
dence between source and target (criterion) nodes exiseserconditions
give the answer to “Why is this statement in the slice?”. Ifriea or core
chops are used instead of traditional chops during pathitondjeneration,
only the important parts will be represented in the path tammd making it
smaller and thus, more comprehensible. The adaption ofquatitiitions to
obey barriers make their use more flexible; instead of a gat& @pproach,
path conditions with barriers can use data from dynamic wi@ts of the
analyzed programs. The use of barriers can make the gearermaiti path
conditions more precise.

Acknowledgements

Thomas Zimmermann implemented earlier versions of theepted algo-
rithms. Silvia Breu implemented the visualization tool.

References

Anderson, P. and T. Teitelbaum: 2001, ‘Software Inspedtising CodeSurfer’. IntWorkshop
on Inspection in Software Engineering (CAV 2001)

Bates, S. and S. Horwitz: 1993, ‘Incremental Program Tgstleing Program Dependence
Graphs'. In:Conference Record of the Twentieth ACM SIGPLAN-SIGACT &jom on
Principles of Programming Languagesp. 384—396.

Beck, J. and D. Eichmann: 1993, ‘Program and interfaceng)itr reverse engineering’. In:
IEEEACM 15" Conference on Software Engineering (ICSE:98). 509-518.

Bieman, J. M. and L. M. Ott: 1994, ‘Measuring Functional Csiba’. IEEE Transactions on
Software Engineering0(8), 644—657.

24

Binkley, D.: 1992, ‘Using Semantic Berencing to Reduce the Cost of Regression Testing'.
In: Proceedings of the International Conference on Softwarendaance pp. 41-50.

Binkley, D.: 1998, ‘The application of program slicing t@ression testing’Information and
Software Technologg0(11-12), 583-594.

Canfora, G., A. Cimitile, and A. De Lucia: 1998, ‘ConditiahBrogram Slicing’ Information
and Software Technologio(11-12), 595-607.

Danicic, S., C. Fox, M. Harman, and R. Hierons: 2000, ‘Con@\Tconditioned program
slicer’. In: International Conference on Software Maintenange. 216—226.

De Lucia, A., A. R. Fasolino, and M. Munro: 1996, ‘Understengd Function Behaviors
through Program Slicing’. In:'3IEEE Workshop on Program Comprehensipp. 9-18.

De Lucia, A., M. Harman, R. Hierons, and J. Krinke: 2003, ‘tims of Slices are not Slices’.
In: 7th European Conference on Software Maintenance and Resgriig

Ferrante, J., K. J. Ottenstein, and J. D. Warren: 1987, ‘“Tlogriam Dependence Graph and
Its Use in Optimization’. ACM Transactions on Programming Languages and Systems
9(3), 319-349.

Fox, C., S. Danicic, M. Harman, and R. Hierons: 2004, ‘ConATfully automated
conditioned program slicerSoftware, Practice and Experien8é(1), 15-46.

Gallagher, K. and L. O’Brien: 1997, ‘Reducing VisualizatiGomplexity Using Decomposi-
tion Slices’. In:Software Visualization Workshopp. 113-118.

Gallagher, K. B.: 1996, ‘Visual Impact Analysis’. IProceedings of the International
Conference on Software Maintenanp. 52-58.

Gallagher, K. B. and J. R. Lyle: 1991, ‘Using Program SlicingSoftware Maintenance’.
IEEE Transactions on Software Engineeritig8), 751-761.

Griswold, W. G.: 2001, ‘Making Slicing Practical: The Findile’. Invited Talk, PASTE’01.
Gupta, R., M. J. Harrold, and M. L. §a: 1992, ‘An approach to regression testing using
slicing’. In: Proceedings of the IEEE Conference on Software Maintengre99-308.

Harman, M. and S. Danicic: 1995, ‘Using Program Slicing t;m@8ify Testing’. Software
Testing, Verification and Reliability(3), 143-162.

Horwitz, S. B., T. W. Reps, and D. Binkley: 1990, ‘Interprdceal Slicing Using Dependence
Graphs’.ACM Transactions on Programming Languages and Sysi2(i3, 26—60.

Jackson, D. and E. J. Rollins: 1994, ‘A New Model of Progranp&w@ences for Reverse
Engineering’. In:Proceedings of the second ACM SIGSOFT Symposium on Foonslati
of Software Engineeringpp. 2-10.

Krinke, J.: 2002, ‘Evaluating Context-Sensitive SlicimglaChopping’. InProc. International
Conference on Software Maintenanpg. 22—31.

Krinke, J.: 2003, ‘Advanced Slicing of Sequential and Caonent Programs’. Ph.D. thesis,
Universitat Passau.

Krinke, J.: 2004, ‘Visualization of Program Dependence 8tides’. In:Proc. International
Conference on Software Maintenanpg. 168-177.

Krinke, J. and G. Snelting: 1998, ‘Validation of Measurem8oftware as an Application of
Slicing and Constraint Solving’Information and Software Technolog®(11-12), 661—
675.

Lyle, J. R. and M. Weiser: 1987, ‘Automatic Program Bug Lamaty Program Slicing’. In:

2 International Conference on Computers and Applicatiqus 877—-882.

Orso, A., T. Apiwattanapong, and M. J. Harrold: 2003, ‘Leaging Field Data for Impact
Analysis and Regression Testing’. IRroceedings of the 11th European Software Engi-
neering Conference and 11th ACM SIGSOFT Symposium on tmel&bons of Software
Engineering (ESEESE 2003)

Orso, A., S. Sinha, and M. J. Harrold: 2001, ‘Incrementati8yj Based on Data-Dependences
Types'. In:International Conference on Software Maintenance

25

Ott, L. M. and J. M. Bieman: 1998, ‘Program Slices as an Alosiva for Cohesion
Measurement’Information and Software Technolog9(11-12), 691-700.

Ott, L. M. and J. J. Thuss: 1989, ‘The Relationship betwe&eSknd Module Cohesion’. In:
Proceedings of th&1" ACM conference on Software Engineeripg. 198—-204.

Reps, T., S. Horwitz, M. Sagiv, and G. Rosay: 1994, ‘Speedmlicing’. In: Proceedings
of the ACM SIGSOFT ’'94 Symposium on the Foundations of Seftiaagineering pp.
11-20.

Reps, T. and G. Rosay: 1995, ‘Precise Interprocedural Ghgpdn: Proceedings of the 3rd
ACM Symposium on the Foundations of Software Engineepingd1-52.

Robschink, T. and G. Snelting: 2002 ffieient Path Conditions in Dependence Graphs’. In:
Proceedings of the 24th International Conference of SaéviEngineering (ICSE)pp.
478-488.

Snelting, G.: 1996, ‘Combining Slicing and Constraint $adyfor Validation of Measurement
Software’. In:Static Analysis Symposiuivol. 1145 of LNCS pp. 332-348, Springer.
Snelting, G., T. Robschink, and J. Krinke: 2003ffitient Path Conditions in Dependence

Graphs for Software Safety Analysis’. Submitted for puddiion.

Steindl, C.: 1998, ‘Intermodular Slicing of Object-Oriedt Programs’. Ininternational
Conference on Compiler Constructiovbl. 1383 of LNCS pp. 264-278, Springer.

Steindl, C.: 1999, ‘Benefits of a Data Flow-Aware Prograngriimvironment’. In\Workshop
on Program Analysis for Software Tools and Engineering (FAS9).

Sturm, T. and V. Weispfenning: 1998, ‘Computational GeagnBroblems in REDLOG'. In:
Automated Deduction in Geometpp. 58-86.

Weiser, M.: 1979, ‘Program slices: formal, psychologi@aid practical investigations of an
automatic program abstraction method’. Ph.D. thesis, &isity of Michigan, Ann Arbor.

Weiser, M.: 1984, ‘Program Slicing’.IEEE Transactions on Software Engineerit§(4),
352-357.

