
Slicing, Chopping, and Path Conditions with Barriers

Jens Krinke
FernUniversität in Hagen∗ , Germany

Abstract. One of the critiques on program slicing is that slices presented to the user are hard
to understand. This is mainly related to the problem that slicing ‘dumps’ the results onto the
user without any explanation. This work will present an approach that can be used to ‘filter’
slices. This approach basically introduces ‘barriers’ which are not allowed to be passed during
slice computation. An earlier filtering approach is chopping which is also extended to obey
such a barrier. The barrier variants of slicing and choppingprovide filtering possibilities for
smaller slices and better comprehensibility. The concept of barriers is then applied to path
conditions, which provide necessary conditions under which an influence between the source
and target criterion exists. Barriers make those conditions more precise.

Keywords: program slicing, program dependence graph, path conditions

1. Introduction

Program slicing answers the question “Which statements mayaffect the com-
putation at a different statement?”. At first sight, an answer to that ques-
tion should be a valuable help to programmers. After Weiser’s first publi-
cation (Weiser, 1979) on slicing, almost 25 years have passed and various ap-
proaches to compute slices have evolved. Usually, inventions in computer sci-
ence are adopted widely after around 10 years. Why are slicing techniques not
easily available yet? William Griswold gave a talk at PASTE 2001 (Griswold,
2001) on that topic—Making Slicing Practical: The Final Mile. He pointed
out why slicing is still not widely used today. One of the mainproblems
is that slicing ‘as-it-stands’ is inadequate to essential software-engineering
needs. Usually, slices are hard to understand. This is partly due to bad user
interfaces, but mainly related to the problem that slicing ‘dumps’ the results
onto the user without any explanation. Griswold stated the need for “slice
explainers” that answer the question why a statement is included in the slice,
as well as the need for “filtering”. This work will present such a “filtering”
approach to slicing; it basically introduces ‘barriers’ which are not allowed to
be passed during slice computation. Especially for chopping, barriers can be
used to focus a chop onto interesting program parts.

The next section will present slicing and chopping in detail. Section three
will introduce barrier slicing and chopping together with examples. Path con-
∗ Most of the work was done at Universität Passau, Germany
† This article appeared in the Software Quality Journal, Volume 12, Number 4, December

2004. The original publication is available athttp://www.springerlink.com/openurl.
asp?genre=article&id=doi:10.1023/B:SQJO.0000039792.93414.a5

c© 2004Kluwer Academic Publishers. Printed in the Netherlands.



2

ditions are presented with their barrier variants in Section four. This work
closes with a discussion of related work and conclusions.

2. Slicing and Chopping

A slice extracts those statements from a program that potentially have an
influence onto a specific statement of interest which is the slicing criterion.
Slicing has found its way into various applications. Currently, it is probably
mostly used in the area of software maintenance and reengineering. It is often
a base technique to ensure the quality of the developed software, like in
testing (Gupta et al., 1992; Binkley, 1992; Bates and Horwitz, 1993; Bink-
ley, 1998), checking a program for robustness (Harman and Danicic, 1995),
impact analysis (Gallagher and Lyle, 1991), and cohesion measurement (Ott
and Thuss, 1989; Bieman and Ott, 1994; Ott and Bieman, 1998).

Originally, slicing was defined by Weiser in 1979; he presented an ap-
proach to compute slices based on iterative data flow analysis (Weiser, 1979;
Weiser, 1984). The other main approach to slicing uses reachability analy-
sis in program dependence graphs (PDGs) (Ferrante et al., 1987). Program
dependence graphs mainly consist of nodes representing thestatements of a
program and control and data dependence edges:

− Control dependence between two statement nodes exists if one statement
controls the execution of the other (e.g. through if- or while-statements).

− Data dependence between two statement nodes exists if a definition of a
variable at one statement might reach the usage of the same variable at
another statement.

The extension of the PDG forinterprocedural programsintroduces more
nodes and edges: For every procedure, aprocedure dependence graphis
constructed, which is basically a PDG withformal-inand-outnodes for every
formal parameter of the procedure. A procedure call is represented by acall
node andactual-inand-out nodes for each actual parameter. The call node is
connected to the entry node by acall edge, theactual-innodes are connected
to their matchingformal-in nodes viaparameter-inedges, and theactual-out
nodes are connected to their matchingformal-out nodes viaparameter-out
edges. Such a graph is calledInterprocedural Program Dependence Graph
(IPDG). TheSystem Dependence Graph (SDG)is an IPDG, wheresummary
edgesbetween actual-in and actual-out have been added in order torepresent
transitive dependence due to calls (Horwitz et al., 1990).

To slice programs with procedures, it is not enough to perform a reach-
ability analysis on IPDGs or SDGs. The resulting slices are not accurate as
thecalling contextis not preserved: The algorithm may traverse a parameter-
in edge coming from a call site into a procedure, may traversesome edges



3

there, and may finally traverse a parameter-out edge going toa different call
site. The sequence of traversed edges (the path) is anunrealizable path: It is
impossible for an execution that a called procedure does notreturn to its call
site. We consider an interprocedural slice to bepreciseif all nodes included
in the slice are reachable from the criterion by arealizablepath.

Definition 1. (Slice in an IPDG)The (backward) slice S(n) of an IPDGG =
(N,E) at noden ∈ N consists of all nodes on whichn (transitively) depends
via an interprocedurally realizable path:

S(n) = {m ∈ N | m→⋆

R n}

Here,m→⋆

R n denotes that there exists an interprocedurally realizablepath
from m to n.

We can extend the slicing criterion to allow a set of nodesC ⊆ N instead
of one single node:

S(C) = {m ∈ N | m→⋆

R n ∧ n ∈ C }

These definitions cannot be used in an algorithm directly, because it is
impractical to check paths whether they are interprocedurally realizable. Ac-
curate slices can be calculated with a modified algorithm on SDGs (Horwitz
et al., 1990): The benefit of SDGs is the presence ofsummaryedges that
represent transitive dependence due to calls. Summary edges can be used to
identify actual-out nodes that are reachable from actual-in nodes by an inter-
procedurally realizable path through the called procedurewithout analyzing
it. The idea of the slicing algorithm using summary edges (Horwitz et al.,
1990; Reps et al., 1994) is first to slice from the criterion only ascending into
calling procedures, and then to slice from all visited nodesonly descending
into called procedures. We refer the reader to (Krinke, 2002; Krinke, 2003)
for a presentation of the algorithms.

Slicing identifies statements in a program which may influence a given
statement (the slicing criterion), but it cannot answer thequestion why a spe-
cific statement is part of a slice. A more focused approach canhelp:Chopping
(Jackson and Rollins, 1994) reveals the statements involved in a transitive
dependence from one specific statement (the source criterion) to another (the
target criterion). A chop for a chopping criterion (s, t) is the set of nodes that
are part of an influence of the (source) nodesonto the (target) nodet. This is
basically the set of nodes which are lying on a path froms to t in the PDG.

Definition 2. (Chop)The chop C(s, t) of an IPDGG = (N,E) from the
source criterions ∈ N to the target criteriont ∈ N consists of all nodes on
which nodet (transitively) depends via an interprocedurally realizable path
from nodes to t:

C(s, t) = {n ∈ N | p ∈ s→⋆

R t ∧ p = 〈n1, . . . , nl〉 ∧ ∃i : n = ni}



4

Here,p ∈ s→⋆

R t denotes that pathp is an interprocedurally realizable path
from s to t.

Again, we can extend the chopping criteria to allow sets of nodes: The
chop C(S,T) of an IPDG from the source criterion nodesS to the target
criterion nodesT consists of all nodes on which a node inT (transitively)
depends via an interprocedurally realizable path from a node inS ⊆ N to the
node inT ⊆ N:

C(S,T) = {n ∈ N | p ∈ s→⋆

R t ∧ s∈ S ∧ t ∈ T
∧ p = 〈n1, . . . , nl〉 ∧ ∃i : n = ni}

Jackson and Rollins restricteds and t to be in the same procedure and
only traversed control dependence, data dependence, and summary edges,
but not parameter or call edges. The resulting chop is calleda truncated
same-level chop CTS; “truncated” because nodes of called procedures are
not included. Reps and Rosay presented more variants of precise chopping
(Reps and Rosay, 1995). Anon-truncatedsame-level chopCNS is like the
truncated chop but includes the nodes of called procedures.They also present
truncated and non-truncatednon-same-levelchopsCTN andCNN (which they
call interprocedural), where the nodes of the chopping criterion are allowed
to be in different procedures. Again, the algorithms are explained in (Krinke,
2002; Krinke, 2003).

3. Barrier Slicing and Chopping

The presented slicing and chopping techniques compute veryfixed results
where the user has no influence. However, during slicing and chopping a
user might want to give additional restrictions or additional knowledge to
the computation:

1. A user might know that a certain data dependence cannot exist. Because
the underlying data flow analysis is a conservative approximation and the
pointer analysis is imprecise, it might be clear to the user that a depen-
dence found by the analysis cannot happen in reality. For example, the
analysis assumes a dependence between a definitiona[i]=... and a us-
age...=a[j] of an array, but the user discovers thati andj never have
the same value. If such a dependence is removed from the dependence
graph, the computed slice might be smaller.

2. A user might want to exclude specific parts of the program which are
of no interest for his purposes. For example, he might know that certain
statement blocks are not executed during runs of interest; or he might
want to ignore error handling or recovery code if he is only interested in
normal execution.



5

3. During debugging, a slice might contain parts of the analyzed program
that are known (or assumed) to be bug-free. These parts should be re-
moved from the slice to make the slice more focused.

These points have been tackled independently: For example,the removal of
dependences from the dependence graph by the user has been applied in
Steindl’s slicer (Steindl, 1999). The removal of parts froma slice is called
dicing (Lyle and Weiser, 1987).

The following approach integrates both into a new kind of slicing, called
barrier slicing, where nodes (or edges) in the dependence graph are declared
to be abarrier that transitive dependence is not allowed to pass.

Definition 3. (Barrier Slice)The barrier slice S#(C, B) of an IPDGG =
(N,E) for the slicing criterionC ⊆ N with the barrier set of nodesB ⊆ N
consists of all nodes on which a noden ∈ C (transitively) depends via an
interprocedurally realizable path that does not pass a nodein B:

S#(C, B) = {m∈ N | p ∈ m→⋆

R n∧ n ∈ C
∧ p = 〈n1, . . . , nl〉

∧ ∀1 < i ≤ l : ni < B}

The barrier may also be defined by a set of edges; the previous definition is
adapted accordingly.

From barrier slicing it is only a small step to barrier chopping:

Definition 4. (Barrier Chop)Thebarrier chop C#(S,T, B) of an IPDGG =
(N,E) from the source criterionS ⊆ N to the target criterionT ⊆ N with the
barrier set of nodesB consists of all nodes on which a node inT (transitively)
depends via an interprocedurally realizable path from a node inS to the node
in T that does not pass a node inB ⊆ N:

C#(S,T, B) = {n ∈ N | p ∈ s→⋆

R t ∧ s∈ S ∧ t ∈ T
∧ p = 〈n1, . . . , nl〉 ∧ ∃i : n = ni

∧ ∀1 < j < l : n j < B}

The barrier may also be defined by a set of edges; the previous definition is
adapted accordingly.

Again, the forward/backward, truncated/non-truncated, same-level/non-
same-level variants can be defined, but are not presented here.

The computation of barrier slices and chops causes a problem: The ad-
ditional constraint of the barrier destroys the usability of summary edges as
they do not obey the barrier. Even if summary edges would comply with
the barrier, the advantage of summary edges is lost: They canno longer be



6

Algorithm 1 Computation of Blocked Summary Edges

Input: G = (N,E) the given SDG,B ⊂ N the given barrier
Output: A setS of blocked summary edges

S = ∅, W = ∅ Initialization
Block all reachable summary edges
foreach n ∈ B do

Let P be the procedure containingn
Let SP be the set of summary edges for calls toP
S = S ∪ SP, W =W∪ {(m,m) | m is a formal-out node ofP}

repeat
S0 = S
foreach x⇀ y ∈ S do

Let P be the procedure containingx
Let SP be the set of summary edges for calls toP
S = S ∪ SP, W =W∪ {(m,m) | m is a formal-out node ofP}

until S0 = S

Unblock some summary edges, Invariants:
1. W⊆ M
2. (n,m) ∈ M ⇒ n→⋆ m via a barrier-free intraprocedural path,

m is a formal-out node.
M =W
while W , ∅ worklist is not emptydo

W =W/{(n,m)} remove one element from the worklist
if n is a formal-in nodethen

A barrier-free path from formal-in n to formal-out m exists

foreach n′
pi
→ n which is a parameter-in edgedo

foreach m
po
→ m′ which is a parameter-out-edgedo

if n′ < B ∧ m′ < B ∧ n′
su
→ m′ ∈ S then

S = S/{n′
su
→ m′} unblock summary edge

foreach (m′, x) ∈ M ∧ (n′, x) < M do
M = M ∪ {(n′, x)}, W =W∪ {(n′, x)}

else

foreach n′
dd,cd
→ n do

if n′ < B ∧ (n′,m) < M then
M = M ∪ {(n′,m)}, W =W∪ {(n′,m)}

foreach n′
su
→ n do

if n′ < B ∧ (n′,m) < M ∧ n′
su
→ n < S then

M = M ∪ {(n′,m)}, W =W∪ {(n′,m)}
return S the set of blocked summary edges



7

computed once and used for different slices and chops because they have to
be computed for each barrier slice and chop individually.

The usual algorithm (Reps et al., 1994) can be adapted to compute sum-
mary edges which obey the barrier: The new version (algorithm 1) is based on
blocking and unblocking summary edges. First, all summary edges stemming
from calls that might call a procedure with a node from the barrier at some
time are blocked. This set is a too conservative approximation, and the second
step unblocks summary edges where a barrier-free path exists between the
formal-in and -out node corresponding to the summary edge’sactual-in and
-out node. The algorithm propagates pairs (n,m) which state that formal-out
nodem is intraprocedurally reachable fromn via a barrier-free path. The pairs
are propagated via worklistW and kept in setM. If a pair from a formal-in
to a formal-out node is encountered, all corresponding summary edges in
calling procedures must be unblocked. That step must also propagate earlier
encountered pairs along the now unblocked summary edge. (The propagation
may have stopped at the blocked summary edge earlier.)

The first phase of the algorithm replaces the initializationphase of the
original algorithm and the second phase does not generate new summary
edges (like the original), but unblocks them. Only the version where the bar-
rier consists of nodes is shown. This algorithm is cheaper than the complete
re-computation of summary edges, because it only propagates node pairs to
find barrier-free paths between actual-in/-out nodes if a summary edge, and
therefore a (not necessarily barrier-free) path, exists.

Example 1.Consider the example in Figure 1: If a slice foru_kg in line
33 is computed, almost the complete program is in the slice: Just lines 11
and 12 are omitted. One might be interested in why the variable p_cd is in
the slice and has an influence onu_kg. Therefore, a chop is computed: The
source criterion are all statements containing variablep_cd (lines 9, 21, 23,
24 and 31) and the target criterion isu_kg in line 33. The computed chop is
shown in Figure 2. In that chop, line 19 looks suspicious: variable u_kg is
defined, using variablecal_kg. Another chop from all statements containing
variablecal_kg to the same target consists only of lines 14, 19, 26, 28 and
33 (figure 3). A closer look reveals that statements 26 and 28 “transmit” the
influence fromp_cd onu_kg.

To check that no other statement is responsible, a barrier chop is com-
puted: The source are the statements withp_cd again, the target criterion is
still u_kg in line 33, and the barrier consists of lines 26 and 28. The computed
chop is empty and reveals that lines 26 and 28 are the “hot spots”.

The barrier slice with the criterionu_kg in line 33 and the same barrier
reveals the “intended” computation, which consists of lines 8, 13, 14, 16–19
and 33.



8

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float cal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];

19 u_kg = (float) u * cal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 cal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 cal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Article: %7.7s\n %6.2f kg ",

e_puf,u_kg);

34 }

35 }

Figure 1. An example



9

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float cal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];

19 u_kg = (float) u * cal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 cal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 cal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Article: %7.7s\n %6.2f kg ",

e_puf,u_kg);

34 }

35 }

Figure 2. A chop for the example in Figure 1



10

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float cal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];

19 u_kg = (float) u * cal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 cal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 cal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Article: %7.7s\n %6.2f kg ",

e_puf,u_kg);

34 }

35 }

Figure 3. Another chop for the example



11

3.1. C C

A specialized version of a barrier chop is acore chop, where the barrier
consists of the source and target criterion nodes.

Definition 5. (Core Chop)A core chop C◦(S,T) is defined as

C◦(S,T) = C#(S,T,S ∪ T)

It is well suited for chops with large source and target criterion sets: Only
the statements connecting the source to the target are part of the chop. Here
is important that a barrier chop allows barrier nodes to be included in the
criteria. In that case, the criterion nodes are only start orend nodes of the
path and are not allowed elsewhere.

3.2. S C

When slices or chops are computed for large criterion sets, it is sometimes
important to know which parts of the criterion set influence themselves and
which statements are part of such an influence. If these statements have been
identified, they can be handled particularly during following analyses. They
can simply be computed by aself chop, where a set is both source and target
criterion:

Definition 6. (Self Chop)A self chop CZ(S) is defined as

CZ(S) = C(S,S)

It computes the strongly connected components of the SDG which contain
nodes of the criterion. These components can be of special interest to the
user, or they are used to make core chops even stronger:

Definition 7. (Strong Core Chop)A strong core chop C•(S,T) is defined as

C•(S,T) = C#(S ∪CZ(S),
T ∪CZ(T),
S ∪ T ∪CZ(S) ∪CZ(T))

It only contains statements that connect the source criterion to the target cri-
terion, none of the resulting statements will have an influence on the source
criterion, and the target criterion will have no impact on the resulting state-
ments.

Thus, the strong core chop only contains the most important nodes of the
influence between the source and target criterion. This willbe demonstrated
with the example before:



12

Table I. Comparison of normal and core chopping

Program LOC nodes chops normal chops core chops

time nodes % time nodes %

agrep 3968 22823 8100 2680 4609 20 4346 4035 17

ansitape 1744 8509 5776 651 1022 12 1580 901 10

cdecl 3879 13339 2809 241 690 5 655 501 3

ctags 2933 12961 10201 2162 1753 13 5396 1567 12

football 2261 18879 5329 1318 2285 12 4420 2060 10

gnugo 3305 7787 1444 139 2645 33 171 2232 28

simulator 4476 14705 15376 6767 4753 32 7460 4503 30

Example 2.Let us compute a core chop with criteria similar to Example 1:
The source criterion are all statements containing variable p_cd (lines 9, 21,
23, 24 and 31) and the target criterion consists of accesses of variableu_kg in
lines 19 and 33. The computed chop is shown in Figure 4 and contains only
statements that are involved in an influence betweenp_cd andu_kg.

If a strong core chop is computed instead, line 22 will no longer be in the
computed chop, thus revealing an even stronger result.

3.3. E

To evaluate the barrier variants of slicing and chopping, wehave performed
a comparison of standard and core chopping. For a subset of the programs
used in the evaluation in (Krinke, 2002), we computed standard and core
chops between the program’s procedures. The set of all nodesin a procedure
was used as source or target criterion, and a chop was computed for every
pair of the criteria (similar to the visualization before).The programs, their
sizes (in lines of code, LOC), the number of nodes in their IPDGs, and the
number of computed chops is shown in Table I. We have measuredthe time
(in seconds) that was needed to compute all the chops, and their average size
in nodes (absolute and as percentage of the complete IPDG). We can see that
the computation of the core chops needs on average up to threetimes more
time. The reason is the recomputation of blocked summary edges for every
chop. On the other hand, the computed barrier chops are between 5% and
27% smaller than their normal counterparts.

Whether the barrier variants of slicing and chopping are actually useful
cannot easily be evaluated just by measuring times or sizes.The difference in
results between the barrier and the usual variant depend on the chosen barrier.



13

1 #define TRUE 1

2 #define CTRL2 0

3 #define PB 0

4 #define PA 1

5

6 void main()

7 {

8 int p_ab[2] = {0, 1};

9 int p_cd[1] = {0};

10 char e_puf[8];

11 int u;

12 int idx;

13 float u_kg;

14 float cal_kg = 1.0;

15

16 while(TRUE) {

17 if ((p_ab[CTRL2] & 0x10)==0) {

18 u = ((p_ab[PB] & 0x0f) << 8)

+ (unsigned int)p_ab[PA];

19 u_kg = (float) u * cal_kg;

20 }

21 if ((p_cd[CTRL2] & 0x01) != 0) {

22 for (idx=0;idx<7;idx++) {

23 e_puf[idx] = (char)p_cd[PA];

24 if ((p_cd[CTRL2] & 0x10) != 0) {

25 if (e_puf[idx] == ’+’)

26 cal_kg *= 1.01;

27 else if (e_puf[idx] == ’-’)

28 cal_kg *= 0.99;

29 }

30 }

31 e_puf[idx] = ’\0’;

32 }

33 printf("Article: %7.7s\n %6.2f kg ",

e_puf,u_kg);

34 }

35 }

Figure 4. A core chop for the example



14

Figure 5. Visualization of thegnugo program

3.4. V

To understand a previously unknown program, it is helpful toidentify the
‘hot’ procedures and global variables—those with the highest impact on the
system. A simple measurement is to compute slices for every procedure or
global variable and record the size of the computed slices. However, this
might be too simple and a slightly better approach is to compute chops be-
tween the procedures or variables. A visualization tool (Krinke, 2004) has
been implemented that computes an×n matrix forn procedures or variables,
where every elementni, j of the matrix is the size of a chop from the procedure
or variableni to n j . The matrix is drawn using a color that corresponds to the
size for every entry—the bigger, the darker.

Example 3.Figure 5 shows such a visualization for thegnugo program.
The three windows contain the chop matrix visualization (inthis case for
procedure-procedure-chops), a scale that maps colors to sizes, and a window
that shows the names of the procedures and their chop’s size for the last
chosen matrix element. The columns show the procedures 0-37as source
criteria and the rows the procedures as target criteria. Each entryni, j of the
matrix represents the size of a chop from all nodes of procedure n j to all
nodes of procedureni . For instance, the grey box at (16, 12) represents the
size of the chop from procedureendgame to procedureshowboard, which is



15

Figure 6. Visualization of thegnugo program with core chops

1564 nodes. Through the light color of column 16 for procedure endgame it
is obvious that it has only a small impact on the rest of the system. A close
look reveals that this procedure performs the board cleanupat a game’s end.
There are only two dark rows, they correspond to proceduresprintf (8) and
showboard (12) which are called inendgame.

This visualization shows some typical features of programslike gnugo:
The left and upper part of the matrix contain light colors, meaning the chops
between the corresponding procedures are small. The procedures with small
numbers are typically system routines that return some information from the
operating system. Because that information is normally notinfluenced by the
program, the chops with that procedures are small or even empty. The upper
very dark row 8 represents the size of the chops with procedure printf as
target criterion. Indeed, as most generated information isprinted on the screen
at some point, the chops must be large. The lower and right area of the matrix
(rows and columns 13–37) has an almost uniform color, which means that the
chops are of similar size. In programs likegnugowhich have one central task
(here to play Go), this can be observed very often. All chops contain a large
share of the system, because everything influences everything else.

Figure 6 shows the same visualization but now with core chopsinstead. It
shows a much more expressive picture. Of course, the chops are smaller on
average, but there are many regions with extreme differences to the previous
example. These differences are usually related to recursion: Programs like
gnugo often have large components of recursive procedures. If a procedure
of such a component is source or target criterion of a chop, the chop will



16

always contain the complete component. This is different with core chops: If
the source criterion is a procedure of the component, the core chop will omit
the parts of the component which only reach the target criterion by passing
through the source criterion again. If the target criterionis a procedure of
the component, the core chop will omit the parts of the component which
are only reachable from the source criterion by passing through the target
criterion before. The omitted parts are usually not interesting, and thus, the
core chops are more expressive.

With this tool, it is easy to get an overall impression of the software to
analyze. Important procedures or global variables can be identified on first
sight and their relationship can be studied.

3.5. E B

The barriers are generated to capture observed behavior of aprogram. These
observations may stem from profiling, audits, or even test data gathered from
deployed software (Orso et al., 2003). Such data usually contains information
about which statements or procedures of the deployed software have been
executed or have not. The straightforward approach would just generate the
barrier from the nodes of the not executed statements or procedures. How-
ever, the barrier can and should be made stronger. As an example, assume
gathered data reveals that a procedurep was never executed. Instead of just
including all nodes ofp into the barrier, all nodes of all call sites top can be
included, too. Even all nodes of the basic blocks containingthe call sites can
be included. More formally, the barrierB is extended by all nodesn, wheren
has only predecessors in the control flow graph also contained in B, or where
n has only successors in the control flow graph also contained in B. B is a
complete execution barrierif no such node exist. For application of complete
execution barriers, all previous definitions and algorithms of slices and chops
stay unchanged—we only have to extend the barriers as described until they
are complete execution barriers.

We should recall that the presented barrier slicing is not asprecise as
generally possible. Consider the following fragment:

1 void p(int b, int c) {

2 int a;

3 read(a);

4 if (b) {

5 a = c;

6 } else {

7 b = c;

8 }

9 print(a);



17

Here, two data dependence edges related to statement 9 exist: from the defini-
tion due to theread(a) in line 3 and from the definition in line 5. If gathered
field data has revealed that statement 7 has never been executed, the definition
of line 3 never reached line 7, because it was always killed inline 5. However,
if a barrier slice for barrierB = {7} and criterionC = {9} is computed, it will
contain line 3, because the data dependence from 3 to 7 is still in the IPDG.

The only way to reach that precision is to generate the barriers beforedata
flow analysis: All nodes of the barrier are removed from the CFG, and the
IPDG and the slices are computed based on the reduced CFG. Thedisadvan-
tage of this approach is that whenever the barrier is changed, the expensive
construction of the IPDG must be repeated. Thus, the previously presented
approach of barrier slicing is much cheaper in comparison.

4. Path Conditions

Slicing can answer the question “which statements have an influence on state-
ment X?”, chopping can answer the question “how does statement Y influence
statement X?”, but neither slicing nor chopping can answer the question “why
does statement Y influence statement X”.

Example 4.Consider Figure 7 for an example: First, the question “which
statements influence the output of variabley in line 8” is simply answered
by computing a slice for this criterion. Figure 8 shows the result: Just one
statement or node does not influence the criterion. Now, why is statement 1
included in the slice and how does statement 1 influence statement 8? This
can be answered by a chop between statement 1 and statement 8.However,
the result is a chop almost identical to the previous slice—which does not
help at all.

Here, the computation ofpath conditions(Snelting, 1996) can assist. Path
conditions give necessary conditions under which a transitive dependence
between the source and target (criterion) node exists. These conditions give
the answer to “why is this statement in the slice?” which Griswold (Griswold,
2001) categorized as a question hard to answer.

This section will first introduce the basic concepts of path conditions, and
then show how the concept of barriers can be used for more precise path
conditions.

4.1. S P C

A simple approach to compute path conditions between two nodesx andy in
a program dependence graph consists of the following steps:

1. Compute all pathspi from x to y in the program dependence graph.



18

1 if (i > 0)

2 a = x;

3 j = b;

4 c = z;

5 if (j < 5)

6 if (i < 8)

7 y = a;

8 print(y);

1 8

2 3

4 5

7

6

Figure 7. Simple fragment with program dependence graph

1 if (i > 0)

2 a = x;

3 j = b;

4

5 if (j < 5)

6 if (i < 8)

7 y = a;

8 print(y);

1 8

2 3

4 5

7

6

Figure 8. Slice of the fragment

2. For every nodex that is part of a pathpi , compute theexecution condition
E(x).

3. Combine the execution conditions to compute the path condition PC(x, y).

These three steps will be discussed next.

4.1.1. Execution Conditions
The execution conditionE(x) gives the conditions under which a nodex may
be executed. This can simply be computed by following the incoming control
dependence edges and collecting the predicates of the ancestor nodes until
the root (START) node is reached. In the example in Figure 7, the execution
condition for statement 7 isE(7) = (j < 5) ∧ (i < 8). More generally, an
execution condition for a nodex is computed by

E(x) =
∧

n
cd
→m|START

cd
→⋆n

cd
→m

cd
→⋆ x

γ(n
cd
→ m)

γ(n
cd
→ m) =































µ(n) if ν(n
cd
→ m) = true

¬µ(n) if ν(n
cd
→ m) = false

µ(n) = ν(n
cd
→ m) otherwise



19

E(1) = true
E(2) = i > 0
E(3) = i > 0
E(5) = true
E(6) = j < 5
E(7) = (j < 5)∧ (i < 8)
E(8) = true

Figure 9. Execution conditions

whereµ(n) returns the (predicate) expression of a noden andν(e) returns the
label of edgee. Control dependence edges leaving predicates of if- and while-
statements are labeled with eithertrue or false, and control dependence edges
leaving expressions of switch statements are labeled with the constant of the
target case.

Example 5.Figure 9 shows the execution conditions for each of the exam-
ple’s statements.

In the presence of unstructured control flow, the control dependence sub-
graph may not be a tree, and there may be more than one single path from
the root to the node of interest. Under such circumstances, the execution
conditions compute as follows:

E(p) =
∧

n
cd
→m|p=START

cd
→⋆n

cd
→m

cd
→⋆ x

γ(n
cd
→ m)

E(x) =
∨

p=START
cd
→⋆ x

E(p)

In the presence of unstructured control flow, the control dependence subgraph
may even be cyclic, which causes the set of possible paths to be infinite.
Snelting (Snelting, 1996) proved that cycles in execution conditions can be
ignored, and thus, execution conditions are only computed over the finite set
of cycle-free paths.

Other actions to handle unstructured control flow are not necessary.

4.1.2. Combining Execution Conditions
The execution conditions are used to form the path conditions. For a pathp
in a program dependence graph, the execution conditions areconjunctively
combined to result in the conditions under which this path may be taken
during execution:



20

PC(p) =
∧

n|p=〈...,n,...〉

E(n) (1)

Usually, more than one path exists between two nodesx andy, and the path
conditions for the single paths are combined disjunctivelyto form the path
condition PC(x, y):

PC(x, y) =
∨

p=x→⋆y

PC(p) (2)

A program dependence graph is typically cyclic which may result in an in-
finite number of paths between two nodes. Again, cycles in paths can be
ignored (Snelting, 1996) and only cycle-free paths are used.

Example 6.The example in Figure 7 contains two paths from statement 1
to 8: p1 = 〈1, 2, 7, 8〉 andp2 = 〈1, 3, 5, 6, 7, 8〉. Their path conditions are:

PC(p1) = true ∧ (i > 0)∧ (j < 5)∧ (i < 8)∧ true
= (i > 0)∧ (j < 5)∧ (i < 8)

PC(p2) = true ∧ (i > 0)∧ true ∧ (j < 5)∧ (j < 5)∧ (i < 8)∧ true
= (i > 0)∧ (j < 5)∧ (i < 8)

Both path conditions can be combined disjunctively and simplified: The path
condition from statement 1 to 8 is then PC(1, 8) = (i > 0)∧ (j < 5)∧ (i < 8).

Example 7.We now compute a path condition for the example in Figure 2.
There, we have computed a chop between all statements containing variable
p_cd (lines 9, 21, 23, 24 and 31), and the target criterion, namelythe use
of u_kg in line 33. To reveal the necessary conditions for the influence, we
compute the path condition between line 9 and line 33:

PC(9, 33) = (p_ab[CTRL2] & 0x10 = 0)

∧ (p_cd[CTRL2] & 0x01 , 0)

∧ (p_cd[CTRL2] & 0x10 , 0)

∧ (idx < 7)

∧ ((e_puf[idx] = ‘+’) ∨ (e_puf[idx] = ‘-’))

With some domain knowledge, this path conditions can be interpreted as “If
the keyboard input is+ or -, and (not necessarily at the same time) the ‘paper
out’ signal is active, there is data flow from the keyboard to the displayed
weight value”. A human would have a hard time to extract such statements!

This section has only explained the required basics of path conditions;
more detailed presentations, including interprocedural and multi-threaded path
conditions, are given by (Krinke and Snelting, 1998; Robschink and Snelting,



21

2002; Snelting et al., 2003; Krinke, 2003). The presented approach has been
implemented and evaluated. Using sophisticated optimizations, it is possi-
ble to compute path conditions efficiently even in the interprocedural case
(Robschink and Snelting, 2002; Snelting et al., 2003).

4.2. P C  B

We will now extend the computation of path conditions in a waythat barriers
are obeyed. The barrierB now specifies all nodes that are guaranteed to not
be part of an influence betweenx andy in a path condition PC#(x, y, B). First,
we revisit equations 1 and 2, which are extended to obey the barrier B. For
simplicity, the notationp{ B denotes that no node of pathp is contained in
the barrierB, p = 〈n1, . . . , nl〉 ∧ ∀1 < i ≤ l : ni < B:

PC#(x, y, B) =
∨

p=x→⋆y∧ p{B

PC#(p, B)

PC#(p, B) =
∧

n| p=〈...,n,...〉∧ p{B

E#(n, B)

This definition just restricts the path conditions to paths not passing through
the barrier. Second, the execution conditions must be adapted:

E#(x, B) =
∨

p=START
cd
→⋆ x∧ p{B

E#(p, B)

E#(p, B) =
∧

n
cd
→m| p=START

cd
→⋆n

cd
→m

cd
→⋆ x∧ p{B

γ(n
cd
→ m)

Again, the introduced restriction is the omission of paths passing through
the barrier. This restriction ensures that whenever a controlling predicate is
part of the barrier, no controlled statement will be part of the path condition.

Example 8.We now turn back to the example in Figure 7, where we now
specify a barrierB = {6}, which states that the predicate of line 6 has no influ-
ence. The barrier allows only one path from statement 1 to 8:p1 = 〈1, 2, 7, 8〉,
because the other pathp2 = 〈1, 3, 5, 6, 7, 8〉 passes through the barrier:

PC#(x, y, B) = PC#(p1, B)
= E#(1, B) ∧ E#(2, B) ∧ E#(7, B) ∧ E#(8, B)

The execution conditionE(7, B) now results infalse, because there is only
one path fromSTART to 7, but this path contains line 6 which is an element
of the barrier. Thus, the complete path condition is PC#(1, 8, {6}) = false.
This is in contrast to the barrier sliceS#(8, {6}) = {1, 2, 7, 8} which contains
statement 1, stating a barrier-free influence of statement 1on statement 8.



22

5. Related Work

Chopping as presented here has been introduced by Jackson and Rollins
(Jackson and Rollins, 1994), extended by Reps and Rosay (Reps and Rosay,
1995), and implemented in CodeSurfer (Anderson and Teitelbaum, 2001).
An evaluation of various slicing and chopping algorithms has been done in
(Krinke, 2002).

A decomposition slice(Gallagher and Lyle, 1991; Gallagher, 1996; Gal-
lagher and O’Brien, 1997) is basically a slice for a variableat all statements
writing that variable. The decomposition slice is used to form a graph using
the partial ordering induced by proper subset inclusion of the decomposition
slices for all variables.

Beck and Eichmann (Beck and Eichmann, 1993) use slicing to isolate
statements of a module that influence an exported behavior. Their work uses
interface dependence graphsandinterface slicing.

Steindl (Steindl, 1998; Steindl, 1999) has developed a slicer for Oberon
where the user can choose certain dependences to be removed from the de-
pendence graph.

Set operations on slices produce various variants: Chopping uses inter-
section of a backward and a forward slice. The intersection of two forward
or two backward slices is called abackbone slice. Dicing (Lyle and Weiser,
1987) is the subtraction of two slices. However, set operations on slices need
special attention because the union of two slices may not produce a valid slice
(De Lucia et al., 2003).

Orso et al (Orso et al., 2001) present a slicing algorithm which augments
edges with types and restricts reachability onto a set of types, creating slices
restricted to these types. Their algorithm needs to computethe summary
edges specific to each slice (similar to algorithm 1). However, it only works
for programs without recursion.

Path conditions have been introduced by (Snelting, 1996) asa way to vali-
date measurement software. The main problem to compute pathconditions is
scalability and efficiency. Therefore, a divide-and-conquer strategy is applied:
Paths and path conditions are decomposed before computation as shown in
(Snelting, 1996; Krinke and Snelting, 1998) and (Robschinkand Snelting,
2002; Snelting et al., 2003), which also contain case studies and evaluations.

Path conditions are somewhat similar toconditioned slicing(De Lucia
et al., 1996; Canfora et al., 1998; Danicic et al., 2000; Fox et al., 2004).
In conditioned slicing, a program isconditioned in a first step: Based on
constraints over the input variables in first order logic formula, the program
is partially evaluated via symbolic execution. After conditioning, slices are
computed in the transformed and in this way smaller program.However,
the computation of path conditions is not based on symbolic execution or
partial evaluation, and does not handle control flow explicitly (only implic-



23

itly through the dependences). Both techniques use theoremprovers or con-
straint solvers to simplify the generated predicates; we use Redlog (Sturm and
Weispfenning, 1998). Though similar in spirit, both techniques have different
goals: Conditioned slicing is used to compute smaller and more precise slices
while path conditions explainwhysomething is in a slice.

6. Conclusions

The presented variants of barrier slicing and chopping provide a filtering
approach to reduce the size of slices and chops. The examplesshowed the
helpfulness of this approach: Barriers can be used to focus slices and chops
on interesting parts, to validate assumptions about slicesand chops, and to
improve the expressiveness of chop visualization.

Path conditions give necessary conditions under which a transitive depen-
dence between source and target (criterion) nodes exists. These conditions
give the answer to “Why is this statement in the slice?”. If barrier or core
chops are used instead of traditional chops during path condition generation,
only the important parts will be represented in the path condition, making it
smaller and thus, more comprehensible. The adaption of pathconditions to
obey barriers make their use more flexible; instead of a pure static approach,
path conditions with barriers can use data from dynamic executions of the
analyzed programs. The use of barriers can make the generation of path
conditions more precise.

Acknowledgements

Thomas Zimmermann implemented earlier versions of the presented algo-
rithms. Silvia Breu implemented the visualization tool.

References

Anderson, P. and T. Teitelbaum: 2001, ‘Software InspectionUsing CodeSurfer’. In:Workshop
on Inspection in Software Engineering (CAV 2001).

Bates, S. and S. Horwitz: 1993, ‘Incremental Program Testing Using Program Dependence
Graphs’. In:Conference Record of the Twentieth ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 384–396.

Beck, J. and D. Eichmann: 1993, ‘Program and interface slicing for reverse engineering’. In:
IEEE/ACM15th Conference on Software Engineering (ICSE’93). pp. 509–518.

Bieman, J. M. and L. M. Ott: 1994, ‘Measuring Functional Cohesion’. IEEE Transactions on
Software Engineering20(8), 644–657.



24

Binkley, D.: 1992, ‘Using Semantic Differencing to Reduce the Cost of Regression Testing’.
In: Proceedings of the International Conference on Software Maintenance. pp. 41–50.

Binkley, D.: 1998, ‘The application of program slicing to regression testing’.Information and
Software Technology40(11–12), 583–594.

Canfora, G., A. Cimitile, and A. De Lucia: 1998, ‘Conditioned Program Slicing’.Information
and Software Technology40(11–12), 595–607.

Danicic, S., C. Fox, M. Harman, and R. Hierons: 2000, ‘ConSIT: A conditioned program
slicer’. In: International Conference on Software Maintenance. pp. 216–226.

De Lucia, A., A. R. Fasolino, and M. Munro: 1996, ‘Understanding Function Behaviors
through Program Slicing’. In: 4th IEEE Workshop on Program Comprehension. pp. 9–18.

De Lucia, A., M. Harman, R. Hierons, and J. Krinke: 2003, ‘Unions of Slices are not Slices’.
In: 7th European Conference on Software Maintenance and Reengineering.

Ferrante, J., K. J. Ottenstein, and J. D. Warren: 1987, ‘The Program Dependence Graph and
Its Use in Optimization’. ACM Transactions on Programming Languages and Systems
9(3), 319–349.

Fox, C., S. Danicic, M. Harman, and R. Hierons: 2004, ‘ConSIT: a fully automated
conditioned program slicer’.Software, Practice and Experience34(1), 15–46.

Gallagher, K. and L. O’Brien: 1997, ‘Reducing Visualization Complexity Using Decomposi-
tion Slices’. In:Software Visualization Workshop. pp. 113–118.

Gallagher, K. B.: 1996, ‘Visual Impact Analysis’. In:Proceedings of the International
Conference on Software Maintenance. pp. 52–58.

Gallagher, K. B. and J. R. Lyle: 1991, ‘Using Program Slicingin Software Maintenance’.
IEEE Transactions on Software Engineering17(8), 751–761.

Griswold, W. G.: 2001, ‘Making Slicing Practical: The FinalMile’. Invited Talk, PASTE’01.
Gupta, R., M. J. Harrold, and M. L. Soffa: 1992, ‘An approach to regression testing using

slicing’. In: Proceedings of the IEEE Conference on Software Maintenance. pp. 299–308.
Harman, M. and S. Danicic: 1995, ‘Using Program Slicing to Simplify Testing’. Software

Testing, Verification and Reliability5(3), 143–162.
Horwitz, S. B., T. W. Reps, and D. Binkley: 1990, ‘Interprocedural Slicing Using Dependence

Graphs’.ACM Transactions on Programming Languages and Systems12(1), 26–60.
Jackson, D. and E. J. Rollins: 1994, ‘A New Model of Program Dependences for Reverse

Engineering’. In:Proceedings of the second ACM SIGSOFT Symposium on Foundations
of Software Engineering. pp. 2–10.

Krinke, J.: 2002, ‘Evaluating Context-Sensitive Slicing and Chopping’. In:Proc. International
Conference on Software Maintenance. pp. 22–31.

Krinke, J.: 2003, ‘Advanced Slicing of Sequential and Concurrent Programs’. Ph.D. thesis,
Universität Passau.

Krinke, J.: 2004, ‘Visualization of Program Dependence andSlices’. In:Proc. International
Conference on Software Maintenance. pp. 168–177.

Krinke, J. and G. Snelting: 1998, ‘Validation of Measurement Software as an Application of
Slicing and Constraint Solving’.Information and Software Technology40(11-12), 661–
675.

Lyle, J. R. and M. Weiser: 1987, ‘Automatic Program Bug Location by Program Slicing’. In:
2 International Conference on Computers and Applications. pp. 877–882.

Orso, A., T. Apiwattanapong, and M. J. Harrold: 2003, ‘Leveraging Field Data for Impact
Analysis and Regression Testing’. In:Proceedings of the 11th European Software Engi-
neering Conference and 11th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE 2003).

Orso, A., S. Sinha, and M. J. Harrold: 2001, ‘Incremental Slicing Based on Data-Dependences
Types’. In:International Conference on Software Maintenance.



25

Ott, L. M. and J. M. Bieman: 1998, ‘Program Slices as an Abstraction for Cohesion
Measurement’.Information and Software Technology40(11-12), 691–700.

Ott, L. M. and J. J. Thuss: 1989, ‘The Relationship between Slices and Module Cohesion’. In:
Proceedings of the11th ACM conference on Software Engineering. pp. 198–204.

Reps, T., S. Horwitz, M. Sagiv, and G. Rosay: 1994, ‘Speedingup Slicing’. In: Proceedings
of the ACM SIGSOFT ’94 Symposium on the Foundations of Software Engineering. pp.
11–20.

Reps, T. and G. Rosay: 1995, ‘Precise Interprocedural Chopping’. In: Proceedings of the 3rd
ACM Symposium on the Foundations of Software Engineering. pp. 41–52.

Robschink, T. and G. Snelting: 2002, ‘Efficient Path Conditions in Dependence Graphs’. In:
Proceedings of the 24th International Conference of Software Engineering (ICSE). pp.
478–488.

Snelting, G.: 1996, ‘Combining Slicing and Constraint Solving for Validation of Measurement
Software’. In:Static Analysis Symposium, Vol. 1145 ofLNCS. pp. 332–348, Springer.

Snelting, G., T. Robschink, and J. Krinke: 2003, ‘Efficient Path Conditions in Dependence
Graphs for Software Safety Analysis’. Submitted for publication.

Steindl, C.: 1998, ‘Intermodular Slicing of Object-Oriented Programs’. In:International
Conference on Compiler Construction, Vol. 1383 ofLNCS. pp. 264–278, Springer.

Steindl, C.: 1999, ‘Benefits of a Data Flow-Aware Programming Environment’. In:Workshop
on Program Analysis for Software Tools and Engineering (PASTE’99).

Sturm, T. and V. Weispfenning: 1998, ‘Computational Geometry Problems in REDLOG’. In:
Automated Deduction in Geometry. pp. 58–86.

Weiser, M.: 1979, ‘Program slices: formal, psychological,and practical investigations of an
automatic program abstraction method’. Ph.D. thesis, University of Michigan, Ann Arbor.

Weiser, M.: 1984, ‘Program Slicing’.IEEE Transactions on Software Engineering10(4),
352–357.




