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Abstract—BigCloneBench is a well-known large-scale dataset
of clones mainly targeted at the evaluation of recall of clone
detection tools. It has been beneficial for research on clone
detection and evaluating the performance of clone detection tools,
for which it has become standard. It has also been used in
machine learning approaches to clone detection or code similarity
detection. However, the way BigCloneBench has been constructed
makes it problematic to use as ground truth for learning code
similarity. This paper highlights the features of BigCloneBench
that affect the ground truth quality and discusses common
misperceptions about the benchmark. For example, extending or
replacing the ground truth without understanding the properties
of BigCloneBench often leads to wrong assumptions which can
lead to invalid results. Also, a manual investigation of a sample of
Weak-Type-3/Type-4 clone pairs revealed 86% of pairs to be false
positives, threatening the results of machine learning approaches
using BigCloneBench. We call for a halt in using BigCloneBench
as the ground truth for learning code similarity.

Index Terms—clone detection, code similarity, machine learn-
ing

I. INTRODUCTION

The performance evaluation of clone detection or code
similarity detection approaches is a common problem that
needs well-constructed benchmarks. There have been a series
of benchmarks [1]–[3] that have been used in the field of
clone detection, however, most of them are of a limited
scale due to the effort required in manually constructing the
benchmarks. BigCloneBench [3]–[6] is a large-scale dataset
of clones mainly targeted at the evaluation of recall of clone
detection tools. Many papers have used BigCloneBench to
evaluate and compare the performance of clone detection tools
and it has become standard in the field of clone detection to
evaluate the recall with BigCloneBench together with a manual
evaluation of a sample to evaluate precision.

Recent approaches to clone detection and code similarity
detection are based on machine learning from large-scale
datasets. It is tempting to use BigCloneBench as the ground
truth for learning code similarity. However, the way Big-
CloneBench has been constructed makes it problematic as the
ground truth for such learning tasks. BigCloneBench has been
created in a semi-automatic way with multiple steps. The semi-
automatic approach leads to a situation in which the majority

The authors would like to thank the BigCloneBench authors, Jeffrey
Svajlenko and Chanchal Roy, for feedback and confirmation.

of the true positives have not been manually validated that they
are indeed clones of each other. Moreover, only a small set of
true negatives has been created and, for most of the possible
pairs in the dataset, the ground truth is unknown.

The small size of the set of true negatives is a problem for
the machine learning approaches because the ground truth is
not representative and the way the true positives and negatives
are constructed makes the ground truth biased. Not taking the
imbalance and bias into account can lead to misleading results.
Moreover, the way the dataset is constructed can lead to the
misperception that any pair that is not in the ground truth of
true positives is a true negative. This misperception can lead to
invalid results and is a common problem in published papers.

The contributions of this paper are:
• A discussion of the features of BigCloneBench that affect

the ground truth quality and a discussion of common
misperceptions about the ground truth.

• A manual investigation of 100 random samples of the
automatically constructed clone pairs.

• A discussion of the usage of BigCloneBench as ground
truth for learning code similarity and how the issues and
misperceptions affect the validity of results.

It is hoped that this paper will help the clone detection
and code similarity communities to prevent producing invalid
results by using BigCloneBench for machine learning.

II. BIGCLONEBENCH

BigCloneBench is available in multiple versions. An initial
version only contained clones derived from 10 functionali-
ties [4]. It was later expanded to include 43 functionalities [5],
[7] in a framework to evaluate clone detection tools. The most
detailed explanation is available in Svajlenko [6].

The discussion in this paper mainly uses the reported num-
bers [6] and will sometimes use numbers extracted from the
released version of BigCloneBench which has been released
individually1 and as a part of the evaluation framework2.

To understand the features of BigCloneBench that affect
the ground truth quality, it is necessary to understand how
BigCloneBench has been constructed. At the core of the

1https://github.com/clonebench/BigCloneBench
2https://github.com/jeffsvajlenko/BigCloneEval
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construction is the validation of methods by human judges:
Instead of asking the judges to validate if two code fragments
are similar, they have been asked to validate if an individual
function implements a target functionality. Clones are identi-
fied as code fragments that share functionality [6]. The authors
of BigCloneBench chose this approach to reduce subjectivity
in judging whether two code fragments are clones of each
other. We present the construction process of BigCloneBench
in a simplified way in the following.

Source Code: BigCloneBench is built from the IJaDataset
2.0, a dataset of 250M LOC in 2.5M Java files from 25K
projects mined from SourceForge and Google Code [6].

Exemplar Functions: The core of BigCloneBench is a
set of 101 exemplar functions which have been composed
as example implementations of 43 selected functionalities
that are expected to appear often. 22 of the 43 selected
functionalities have a single exemplar function. In earlier
papers about BigCloneBench, these exemplar functions were
termed “sample snippets”, however, in this paper, we use the
clearer term “exemplar functions” as it has been introduced in
newer publications on BigCloneBench [3].

An example of a selected functionality is “Copy File” with
the specification “copies a file”. A corresponding exemplar
function is shown in Figure 1. For the “Copy File” function-
ality, six exemplar functions have been created.

Potential Clones: From the exemplar functions and the
specification of the 43 functionalities, a heuristic search has
been performed to find methods that are using the 43 function-
alities. The heuristic search has resulted in 77,933 methods.

For example, Figure 2 shows the search terms to identify
methods that contain the “Copy File” functionality. Note that
the search is not syntactically correct as given. 37,102 methods
matched the search heuristic for the “Copy File” functionality.

Labeling of Potential Clones: A set of judges then
compared the methods to the 43 functionalities and labelled
them as true positives or false positives. Only a small number
of methods (9,533 – 12%) have been labelled by more than
one judge and the final label is the majority vote (887 methods
with an equal number of votes are labelled as undecided).

The search heuristics have been designed so that they
identify as many true positive snippets as possible without
overburdening the judges in their tagging efforts. For the
“Copy File” functionality, the heuristic search has identified
37,102 true positive snippets and a judge has labelled 3,084
of them as true positives and 34,018 as false positives. All
snippets have been labelled by a single judge.

Overall, 15,290 methods have been labelled as true positives
and 61,756 methods have been labelled as false positives.
However, the heuristic search can retrieve the same method for
more than one functionality. For example, snippet 22442270
has been labelled as a false positive for the “Copy File”
functionality and as a true positive for the “Download From
Web” functionality. Snippet 10151252 has been labelled as
a true positive for the “Copy File” functionality because the
snippet copies (uploads) a file to an FTP server and also as a
true positive for the “Connect to FTP Server” functionality.

The released dataset has slightly different numbers and
contains 75,673 retrieved methods. Of the retrieved methods,
73,906 are unique and 1,723 appear for more than one
functionality. Moreover, from the 14,891 methods labelled as
true positives, 14,679 are unique and from the 60,782 methods
labelled as false positives, 60,019 are unique. 209 methods are
true positives for more than one functionality.

Ground Truth: The ground truth3 is constructed from
the exemplar functions and the potential clones. The exemplar
functions are in sets Xf for each of the 43 functionalities (f ).
The methods that are similar to the exemplar functions (true
positives) are in sets Pf for each of the 43 functionalities (f )
and the methods judged as false positives are in sets Nf .

The ground truth is constructed per functionality f , i.e., for
pairs of methods (m,n)f . The ground truth is constructed as
follows: The pairs (m,n)f and (n,m)f are labelled as true
positive if (m ∈ Xf ∪ Pf ) ∧ (n ∈ Xf ∪ Pf ), i.e., if both
methods are exemplar functions or labelled as true positives.
The pairs (m,n)f and (n,m)f are labelled as false positive if
an f exists such that (m ∈ Xf ) ∧ (n ∈ Nf ). Note that false-
positive pairs are only constructed for pairs of an exemplar
function and a method labelled as true negative, i.e., pairs of
two methods labelled as true negative are unlabelled pairs (as
they could still be clones of each other).

For the running example of the “Copy File” functionality,
6 exemplar functions and 3,084 true-positive snippets lead to
4,772,505 pairs labelled as true clone pairs and 6 exemplar
functions and 34,018 false-positive snippets lead to 204,108
pairs labelled as false clone pairs.

The above construction leads to a ground truth of 8,915,130
true clone pairs and 288,367 false clone pairs. None of the true
or false clone pairs has been manually validated.

Automatic Classification: In the last step of the con-
struction, the similarity of the methods in a clone pair is
measured for every true clone pair. Based on the similarity,
the clone pair is classified as Type-1 (T1), Type-2 (T2), Very-
Strongly Type-3 (VST3), Strongly Type-3 (ST3), Moderately
Type-3 (MT3), and Weakly Type-3/Type-4 (WT3/T4). It is
worth noting that 8,498,894 out of 8,915,130 pairs have been
classified as Weakly Type-3/Type-4 (95%).

Precision and Recall: The ground truth can be used to
measure the recall of clone detection tools. BigCloneBench
has not been intended for and should not be used directly to
measure precision. The reason is that for most method pairs
no ground truth is available and it is unknown whether the
pair is a true positive or a false positive. Instead, precision
needs to be evaluated differently, by manually investigating
a representative sample of the results of the clone detection
or code similarity detection. With the available ground truth
data, only the lower and upper bound for the precision can be
determined which can be used for a precision estimation.

3Technically, the BigCloneBench authors never use the term. However,
as we focus on the use of BigCloneBench in machine learning where
BigCloneBench is often used as the ground truth, we use the term ground
truth for the labelled data in BigCloneBench.



public static void copyFile2(File srcFile, File destFile) throws IOException {
FileUtils.copyFile(srcFile, destFile);

}

Fig. 1. Copy File Exemplar Function (Snippet 23677115 in file CopyFileSamples.java, lines 38–40).

[getChannel] OR [transferFrom]
OR [FileUtils.copyFile] OR [read AND write]
OR [nextLine AND [print OR println OR write]

OR [IOUtils.copy] OR [IOUtils.copyLarge]

Fig. 2. Search terms for the “Copy File” functionality.

III. OBSERVATIONS

The construction of the ground truth leads to a few impor-
tant observations which will be discussed in the following.

A. Relation Between Functionalities

Most importantly, the ground truth does not make any
assumption on methods pairs where the methods appear in sets
for different functionalities. For example, for a method pair
(m,n) with (m ∈ Xi∪Pi)∧(n ∈ Xj∪Pj)∧(i ̸= j) it cannot
be assumed that (m,n) is a true negative. This is highlighted
by the fact that BigCloneBench allows methods to be in the
true positive sets of different functionalities and indeed has
209 of such methods m with (m ∈ Pi)∧ (m ∈ Pj)∧ (i ̸= j).
(1) BigCloneBench does not contain information

about pairs for different functionalities.
Any assumption that (m,n) is a true negative where the

methods are from two different functionalities is not valid.
Consider the two functionalities for “Copy File” and “Copy
Directory”. The functionality of copying a file is part of the
functionality “Copy Directory” which copies a directory and
its contents. At least 77 methods in the set of true positives
for the functionality “Copy Directory” invoke a copyFile
method. Therefore, all methods in the set of true positives
for the functionality “Copy Directory” could be considered
clones of methods for the “Copy File” functionality. Indeed, 19
methods in the set of true positives for the functionality “Copy
Directory” have also been judged to be true positives for the
“Copy File” functionality, and only three methods in the set of
true positives for the functionality “Copy Directory” have been
judged to be false positives for the “Copy File” functionality.
However, it appears that the heuristic for the functionality
“Copy File” has not retrieved most of the methods that have
been retrieved for the functionality “Copy Directory”.
(2) BigCloneBench does contain true but unlabelled

clone pairs for different functionalities.

B. Relation Within Functionalities

Of lesser importance is the observation that the ground truth
is even incomplete within the same functionality. As discussed
above, the ground truth does not make any assumption on
method pairs where both methods have been labelled as false
positives for the given functionality. The reason is that such

methods are not clones for any exemplar function of the given
functionality, but they could be clones of each other.
(3) BigCloneBench does contain unlabelled true and

false clone pairs for the same functionalities.

C. Ground Truth Quality
It has been reported [3], [6] that at least one judge disagreed

with the others for 14.5% of the 9,533 methods that have been
labelled by more than one judge. They extrapolate the average
disagreement to estimate that at least 15% of the clones across
the benchmark are subjective or have validation errors. Manual
validation of clone pairs is also subjective [8].

An example of a wrongly labelled snippet for the
“Copy file” functionality is snippet 19962035 (method
makeWF_BasicJavaWriterFormat_jwf4) in file
184404.java, lines 42–44. The snippet stores a constant
string in a hash table (the text is source code that includes
file operations) and does not copy a file.

There are many three-line methods for the copy file func-
tionality. For some of them, there is only a weak semantic
similarity. Figure 3 shows such a method. Its purpose is to
dump the configuration to the standard output and the snippets
in Figure 1 and Figure 3 would not be considered clones of
each other as they are not textually similar (Types 1–3) or
implementing the same functionality (Type 4).

Moreover, we identified at least 330 snippets in the “Copy
File” functionality that do not contain the word ‘file’. This is
an indication that the snippets are not copying files but instead,
for example, use IOUtils.copy to copy data between
streams that are not files.
(4) BigCloneBench’s labelled snippet ground truth

quality is limited.
Another important observation is that the ground truth for

method pairs (m,n) within the same Pf assumes that the two
methods are indeed clones of each other or are similar to each
other. No manual evaluation of this assumption has been done
and therefore the quality of the ground truth for such pairs
is unknown. Thus, at least some of the pairs (m,n) within
the same Pf should not be considered true positives. This
mostly affects the Weakly Type-3/Type-4 clone pairs since
they account for 95% of all clone pairs in the ground truth.

Consider the functionality “Copy File” again which has
six exemplar functions, most of them are very small with
the smallest having only three lines of code5 and the largest
having 19 lines of code. The description of the functionality
is simply “Copies a file”. The smallest exemplar function for
this functionality is shown in Figure 1.

4The method is too large to be shown here.
5Most of the code clone detectors usually detect clones in code snippets

which are larger or equal to 6 lines.



private void dumpConfig() throws Exception {
IOUtils.copy(new FileInputStream(m_snmpConfigFile), System.out);

}

Fig. 3. Method labelled as copy file functionality (Snippet 2571845 in file 1362837.java, lines 51–53).

The largest method6 judged to be a true positive for the copy
file functionality is 762 lines long. This method does indeed
contain functionality to copy a file, however, this is only a
small part of the functionality. One can argue that the 762
LOC method and the 3 LOC method are somewhat related
as both contain the functionality to copy a file. However,
like the 762 LOC method, many methods in the set of true
positives will not only have the functionality of copying a
file but will also contain other functionalities. One should
therefore not assume that methods judged to be true positives
are necessarily clones of each other. This shows an issue in
the manual tagging of the potential clones. Based on the way
the dataset is constructed, an exemplar function is supposed
to contain code that performs one specific functionality. By
considering large potential clones, which can contain many
functionalities, as true clones, the creation of true clone pairs
is no longer valid in all cases.

(5) BigCloneBench’s true clone pairs ground truth is
flawed.

It is not clear to what extent the true clone pairs have been
wrongly labelled as no manual checking of clone pairs has
been done. Therefore we manually checked a random sample
of 100 true clone pairs for the “Copy File” functionality
classified as WT3/T4 clones. We checked whether the pair
is indeed a true clone pair (according to the classification
as Type-3/Type-4 clone [9], [10]) or not. We also checked
whether the methods in the pair have been labelled correctly
if we apply a stricter criterion: Does the method implement
“Copies a file” as its main or only purpose? For example,
methods that (A) encode, convert or rewrite, (B) read or write
to a stream that is not a file, or (C) are (unit) tests are not
considered to fulfil the requirement. The sample has been
independently verified by both authors.

From the 100 samples7, only 6 have been labelled as true
positives by both authors, and 8 have been labelled differently
by both authors, and 86 have been labelled as false positives
by both authors. The number of false positives is surprisingly
high and demonstrates a likely strong impact of the flawed
ground truth construction of the ground truth quality. Although
the sample is not representative and for a single functionality,
the extremely high number of false positives indicates that
the ground truth for WT3/T4 clone pairs is flawed. This
is important for any evaluation of clone detectors in the
WT3/T4 category, where the results can no longer be trusted.
Even when we assume that only the WT3/T4 category of the

6Snippet 23094550, which is method render in file 402201.java, lines
138–899.

7The samples and the results of the manual validation are available at https:
//github.com/jkrinke/BigCloneBench-Sample-Validation.

“Copy File” functionality is affected, 52% of the ground truth
(4,651,096 out of 8,915,130 snippets) should be discarded.

From the 192 methods in the 100 samples (8 appear twice),
only 57 have been labelled as true positives by both authors,
120 of them have been labelled as false positives by both
authors, and 15 of them have been labelled differently by both
authors. Again, the number of false positives is surprisingly
high which casts doubts on the ground truth quality created
from the manual labelling of snippets.

D. Bias and Balance

As the 43 functionalities have hugely varying numbers
of true and false positives, the ground truth is biased and
imbalanced. For example, the majority of labelled methods
in the released dataset are for the functionality “Copy File”,
42,664 out of 75,672. Moreover, 5,935 out of 14,891 methods
labelled as true positives are for the functionality “Copy File”
(40%) leading to the situation that 4,664,949 out of 8,915,130
pairs considered to be true clone pairs are for the functionality
“Copy File” (54%). Over 90% of all true clone pairs are just
for eight functionalities and 22 out of the 43 functionalities
taken together only amount to less than 1% of all true clone
pairs. The imbalance is even worse for the false positive clone
pairs where 70% are pairs for the functionality “Copy File”.
Over 98% are pairs just for eight functionalities. 32 out of the
43 functionalities taken together only amount to less than 1%
of all false clone pairs.
(6) BigCloneBench is imbalanced and biased.

E. Impact

The six observations threaten the validity of evaluations
done with the BigCloneBench benchmark or the BigCloneEval
framework. They threaten the validity to different degrees. The
incomplete ground truth (observations 1–3) and the bias and
imbalance (observation 6) of the ground truth only have a
limited impact on the evaluation of clone detectors. However,
the bias and imbalance will have a strong impact on machine
learning approaches for code similarity that learn from Big-
CloneBench’s ground truth. In addition, as we will discuss
in the following, some approaches have not considered that
BigCloneBench does not contain information about pairs for
different functionalities and wrongly assumed that pairs for
different functionalities are not clones of each other.

As discussed above, the ground truth quality for labelled
snippets is limited as at least 15% are estimated to be sub-
jective or have validation errors. Moreover, we have discussed
that the ground truth for true clone pairs is flawed leading to a
strong impact on the validity of the ground truth for WT3/T4
clone pairs, threatening the validity of results for evaluations in
the WT3/T4 category and approaches learning code similarity.



IV. SHORT LITERATURE STUDY

To evaluate the impact of the observed BigCloneBench
benchmark issues, we have performed a short literature study
in which we checked published work for the following issues:

1) Has BigCloneBench been used for evaluation?
2) Is BigCloneBench used as ground truth for machine

learning?
3) Has the ground truth been changed or extended?
4) Has BigCloneBench’s ground truth been validated?
The first question is answered by extracting the papers that

have actually used BigCloneBench for evaluation. The second
question extracts papers that have used BigCloneBench as a
dataset for machine learning. We only consider papers that
use the true and false positive sets for machine learning and
ignore papers that use the source code of BigCloneBench,
but not the ground truth. For example, papers that learn
code representations from the source code of BigCloneBench
are not considered for this question [11]–[13]. The third
question identifies whether the paper has changed the ground
truth so that the oracle includes clone pairs from different
functionalities. The last question checks whether the paper has
validated the ground truth.

The third question is the most important one as it identifies
papers that have used the ground truth in a way that is not
consistent with the true positives and false positives provided
by BigCloneBench. As discussed above, such ground truth use
is very likely flawed.

Only a small set of published work has been investigated.
We used IEEE Xplore to search8 for papers that mention
“BigCloneBench”. This resulted in 75 papers. Of the 75
papers, 48 papers use BigCloneBench for evaluation purposes,
and the other 27 papers present or discuss BigCloneBench (or
just mention it as related work), but do not do any evaluation.
Twenty papers use BigCloneBench as a dataset for machine
learning where the machine learning uses the information of
whether two fragments are cloned or not. However, at least five
of the papers change or replace the ground truth. For example,
by assuming that fragments of two different functionalities are
not clones, or by assuming that all pairs that have not been
labelled as true clones are not clones. Three of the five papers
use a dataset [14] derived from BigCloneBench which has
replaced the ground truth.

None of the papers discusses how BigCloneBench’s ground
truth construction affects the validity of the evaluations or the
machine learning and we found no paper that validated the
ground truth of clone pairs. More importantly, none of the
papers that use machine learning uses a manually validated
dataset in addition to BigCloneBench to evaluate the perfor-
mance of the presented clone detection approaches.

Because the identified issues can have a large impact on the
results’ validity of machine learning using BigCloneBench, the
next section will discuss the impact in more detail with a few
examples.

8The search was done 28 June 2022.

V. MACHINE LEARNING WITH BIGCLONEBENCH

In recent years there has been a push on using machine
learning to predict if two methods are clones or similar [11]–
[32]. The success of machine learning approaches is dependent
on having a sufficiently large ground truth to learn from,
which, in addition, is balanced and representative. It is im-
possible to manually create such a ground truth and therefore
other datasets have been used instead. Examples for such
datasets are POJ/OJClone [33] or past submissions to the
Google Code Jam9. In such datasets, participants create small
programs to solve a given task. It is usually assumed that the
solutions of a given task are similar to each other and that the
solutions to different tasks are different. This assumption has
not been manually verified but it is known that the quality of
such a ground truth is affected by the way programmers are
approaching the task. For example, participants in the Google
Code Jam often use a set of utility functions that they use (and
submit) in their solutions for every task.

A. Relation Between Functionalities

A similar assumption is also used for the BigCloneBench
dataset by different approaches to machine learning of code
similarity. In three of the eight papers discussed in the previous
section, instead of only using the provided ground truth, the
approaches construct their own ground truth and dataset by
only considering the exemplar functions and the potential
clones labelled as true positives and considering all methods
for different functionalities as false positives.

For example, Wang et al. [19] follows this approach. Their
approach uses an augmented AST-based representation and
graph neural networks to measure the similarity of code pairs.
The experiments are done with the Google Code Jam dataset
and an earlier version of the BigCloneBench dataset. From
the BigCloneBench dataset, only 9,134 methods are used. The
paper reports that their ground truth contains 336,498 true
positives and 2,080,088 false positives although the original
ground truth has 6,164,953 true positives and only 258,574
false positives [4].

Wei and Li [14] use an AST-based LSTM network to
learn the similarity of methods in which simultaneously the
representation and a hash function are optimised such that
hash codes for clone pairs are close to each other, and those for
none-clone pairs are far away. It is not clear if the experiments
only use the provided ground truth for learning or if they
construct their own ground truth and dataset. However, they
use the same subset of 9,134 methods as the BigCloneBench
dataset which has been used in Wang’s study [19]. Moreover,
the paper presents precision results for the BigCloneBench
dataset without discussion of a manual investigation.

We have approached the authors of both papers for clarifica-
tion on how the ground truth has been constructed. However,
we received no response. Both papers use a small subset
of 9,134 fragments of the more than 50,000 fragments after
discarding fragments without any tagged true and false clone

9https://codingcompetitions.withgoogle.com/codejam



pairs. However, the subset could not be reproduced and it is
unclear how it has been achieved.

Another paper [18] uses the same subset and provides
it10. The repository does not contain an explanation of how
the subset was created, however, it allowed us to investigate
the snippets and true clone pairs and the false clone pairs
used in the machine learning. The investigation revealed that
the created dataset expanded the ground truth provided by
BigCloneBench without considering the issues we observed.
We could confirm the presence of wrongly generated false
clone pairs caused by assuming (A) two methods labelled as
false positive for the same functionality are not clones of each
other, and (B) two methods labelled as true positive for two
different functionalities are not clones of each other.

Consider the snippet 22442270 again, which is a true
positive for the “Download From Web” functionality and a
false positive for the “Copy File” functionality. This snippet
appears often as part of false clone pairs in the expanded
ground truth. It appears in false clone pairs together with
other snippets from the “Download From Web” functionality
labelled as false positives (assumption A) and together with
snippets from all other functionalities, both labelled as true
(assumption B) and false positives (false positives that appear
are true positives for other functionalities).

Also consider the snippet 10151252 again, which is a true
positive for the “Copy File” functionality and also a true
positive for the “Connect to FTP Server” functionality. It
appears in false clone pairs together with snippets from all
other functionalities, both labelled as true and false positives.
It also appears in false clone pairs together with snippets that
have not been labelled as positive for any functionality, only
as a negative for a functionality (most often the “Download
From Web” functionality11).

The above discussion shows that machine learning ap-
proaches using BigCloneBench are at risk when attempting to
create complete ground truths, in particular when attempting to
label method pairs with methods from different functionalities.
Moreover, papers using the dataset we investigated are likely
threatened in their validity [18], [20], [34].

B. Relation Within Functionalities

The potential presence of unlabelled clone pairs, i.e., pairs
that have not been labelled as true or false clone pairs but
could be true clone pairs, is a problem for the machine
learning approaches. However, we could not identify any paper
that restricts training and testing to pairs within the same
functionality. CCLearner [16] only used the provided ground
truth of the “Copy File” functionality for training, but used the
provided ground truth of all functionalities for testing. Because
of the presence of unlabelled pairs, the precision was evaluated
by a manual check of a statistically significant sample size of
the results produced by CCLearner.

10https://github.com/yh1105/datasetforTBCCD (the dataset contains 9,133
fragments, not 9,134)

11Some of them have clearly been labelled incorrectly in the original
BigCloneBench ground truth.

C. Ground Truth Quality

As we discussed, BigCloneBench’s ground truth for
WT3/T4 cannot be trusted. As most machine learning ap-
proaches focus on Type-4 clones, their results are strongly
impacted by the low quality of the ground truth, both in
training their models and in testing their models. Not only
is the validity of the results threatened for machine learning
approaches using the ground truth, but also for approaches
that are compared to previous approaches based on the results
achieved with BigCloneBench. For example, a study by Yu
et al. [20] shows that the semantic clones (MT3, WT3/T4)
in BigCloneBench usually contain the same identifier names.
Their experiment using a Linear-Model to detect semantic
clone pairs in BigCloneBench only based on identifier names
provides a comparable result to the state-of-the-art ML-based
techniques such as ASTNN [17], TBCCD [18], and FA [19].
They also report that the performance of the three tools, trained
on the original BigCloneBench, on a revised BigCloneBench
dataset after abstracting the identifier names drops significantly
(F1-score decreases 16%–27%). If the WT3/T4 ground truth
could be trusted, their results would show a threat to external
validity that the high-performing models based on the Big-
CloneBench training and evaluation may not perform well in
practice where semantic clones do not contain similar identifier
names. However, as their results are based on flawed ground
truth, it is not clear if their results would be the same for a
corrected ground truth.

D. Bias and Balance

As 95% of all true clone pairs in the ground truth belong
to the WT3/T4 category, this category deserves some special
discussion. Detecting Type-4 clones is very challenging and it
is no surprise that classic clone detectors have a low recall in
this category (some papers don’t even discuss the category
in their evaluations). On the other hand, machine learning
approaches for clone detection have specifically targeted that
category to identify semantically similar code. Some papers
have even only used the WT3/T4 clone pairs for their machine
learning. Most machine learning papers report good recall rates
for the detection of WT3/T4 clones. However, as we have
observed and discussed, the quality of the ground truth in the
WT3/T4 category is low and it is not clear what the validity
of the results is. Even ignoring the quality of the ground truth,
the bias and imbalance of the ground truth is a problem. If the
machine learning would mainly learn if both fragments of a
pair implement some copy file functionality, it could achieve a
good recall of at least 55% (as 4,651,096 out of 8,498,894 true
WT3/T4 clone pairs are for the “Copy File” functionality).

VI. CONCLUSIONS

We have discussed how BigCloneBench’s ground truth
construction affects the validity of evaluations using Big-
CloneBench. We have observed that the ground truth is not
just imbalanced and biased, but that the true clone pair ground
truth is flawed as it contains clone pairs that a human judge
would not consider to be cloned. Our manual investigation of



a random sample of 100 WT3/T4 clone pairs showed 86%
of constructed clone pairs to be false positives (only 6%
were true positives). Despite the sample being too small to
be representative and was only done for one functionality,
the very large number of 86% false positives suggests that
the ground truth for WT3/T4 clone pairs cannot be trusted.
However, as the main aim of BigCloneBench is to evaluate
clone detectors for Type-1, Type-2, or Type-3 clones, the
flawed ground truth for WT3/T4 clones is probably not a
significant problem that would invalidate the results of the
evaluation.

The discussed issues are a larger threat to machine learning
approaches where the ground truth is used to learn whether
a pair of code fragments are clones or not. Because machine
learning approaches focus on WT3/T4 clone pairs, the results
of machine learning approaches using BigCloneBench are
threatened in their validity and cannot be trusted.

Moreover, we observed that some machine learning ap-
proaches address a large number of unlabelled code pairs
by changing or replacing the ground truth by making wrong
assumptions about fragments for different functionalities. By
doing so, the approaches create a large number of code pairs
wrongly labelled as not being cloned.

We hope to raise awareness of the flaws in the ground truth
and how BigCloneBench’s ground truth construction affects
the validity of evaluations. The benchmark is still useful for
its original purpose, i.e., evaluating code clone detection, when
taking its limitations into account. Nonetheless, we call for a
stop to using BigCloneBench for machine learning because the
ground truth quality is too low to produce trustworthy results.
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