
Is Cloned Code older than Non-Cloned Code?

Jens Krinke
University College London

Centre for Research on Evolution, Search and Testing (CREST)
j.krinke@ucl.ac.uk

ABSTRACT
It is still a debated question whether cloned code causes increased
maintenance efforts. If cloned code is more stable than non-cloned
code, i.e. it is changed less often, it will require less maintenance
efforts. The more stable cloned code is, the longer it will not have
been changed, so the stability can be estimated through the code’s
age. This paper presents a study on the average age of cloned code.
For three large open source systems, the age of every line of source
code is computed as the date of the last change in that line. In
addition, every line is categorized whether it belongs to cloned code
as detected by a clone detector. The study shows that on average,
cloned code is older than non-cloned code. Moreover, if a file has
cloned code, the average age of the cloned code of the file is lower
than the average age of the non-cloned code in the same file. The
results support the previous findings that cloned code is more stable
than non-cloned code.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software config-
uration management; D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries

General Terms
Algorithms

Keywords
Clone detection, mining software archives, software evolution

1. INTRODUCTION
The duplication of code is common practice to make software

development faster, to enable “experimental” development with-
out impacting the original code, or to enable independent evolu-
tion [3]. Since these practices involve both duplication and mod-
ification, they are collectively called code cloning and the dupli-
cated code is called a code clone. During the software develop-
ment cycle, code cloning is easy and inexpensive (in both effort

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00.

and money). However, this cloning practice can complicate soft-
ware maintenance and it has been suggested that too much cloned
code is a risk, albeit the practice itself is not generally considered
harmful [11].

An important question for software maintenance is if cloned code
is more stable than non-cloned code during the evolution of a sys-
tem, i.e. if non-cloned code is changed more often than cloned
code. If cloned code is generally less stable than non-cloned code,
it can be assumed that cloned code requires more attention and is
indeed more expensive to maintain. If cloned code is generally
more stable than non-cloned code, its maintenance costs will be
lower.

To answer the above question, there have been some empiri-
cal studies [6, 8, 14, 17, 18] that explicitly looked at the stability
of cloned code vs. non-cloned code. Most of them extracted the
changes to a system from a version repository and mapped the
changes on the clones as reported by a clone detector. The stud-
ies usually measured the amount of changes or the frequency of
changes to answer research questions about the stability of cloned
code. The extraction and mapping of the changes is a considerable
effort.

Another approach to answer research questions on the stability of
cloned code is to look at the age of the cloned and the non-cloned
code—the more stable cloned code is, the longer it will not have
been changed. The age of source code can be estimated by the date
of the last change applied to it. Most current version control sys-
tems can track changes to a file line-by-line to show for each line
the version when the line was last changed. CVS has an “annotate”
command and subversion names the command “blame” because it
shows the version and the author (‘to be blamed’). These com-
mands give crude information about the origins of the code based
on when it was last changed and who made that change. However,
for a study on the age of source code, this crude information is more
than sufficient.

The rest of the paper will present an initial study on three large
open source systems with a long history of evolution. The study
compares the average age (as the date of the last change) of cloned
code to the average age of non-cloned code. For the three Java
systems studied, the following results were found:

• Cloned code is usually older than non-cloned code.

• Cloned code in a file is usually older than the non-cloned
code in the same file.

Both results suggest that cloned code is more stable than non-cloned
code. Although the setup of the study is simple and the age infor-
mation from version control systems is crude, the results appear to
be stronger than previous studies on the stability of cloned code. In
particular, it will show that cloned code is on average 85 days older

c©ACM, 2011. This is the authors’ version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version will be published in the Proceedings 5th International Workshop on Software Clones, 2011 in Waikiki, Hawaii, USA.

than non-cloned code and that for 81% of files with cloned code,
the cloned code is on average older than the non-cloned code in the
same file.

The next section presents the setup of the empirical study. The
study itself and its results is presented in Section 3. After Section 4
discusses related work, the last section will conclude.

2. STUDY SETUP
This section will present the framework in which code clones

and the age of source code are defined. It will also show how the
age can be measured and compared between cloned and non-cloned
code. It will also state the research questions to be answered by the
study.

2.1 Code Clones
Code clones are usually described as source code ranges (or frag-

ments) that are identical or very similar. They are grouped into
clone groups (sometime called clone classes) which are sets of
identical or very similar code clones. A code clone c = (s, l, f)
is the source code range starting at line s with the following l lines
of code in file f , thus the last line of the code clone is s+ l− 1. A
clone group G = {c1, . . . , cn} is a set of n code clones c1, . . . , cn,
where each of the code clones is a clone of the others. Most of the
available tools for code clone detection generate a list of such clone
groups. For simplicity, we assume the absence of gapped clones,
i.e. there are no clones that consist of multiple non-contiguous code
fragments.

A source code line l′ in a file f ′ is called to be cloned, if the
line is part of some code clone, i.e. if a code clone c = (s, l, f ′)
exists such that s ≤ l′ < s + l. Otherwise the line is called to be
non-cloned.

2.2 Age Information
Most current version control systems can track changes to a file

line-by-line to show for each line the version when the line was last
changed. CVS has an “annotate” command and subversion names
the command “blame” because it shows the version and the author
(‘to be blamed’). These commands give crude information about
the origins of the code based on when it was last changed and who
made that change.

Usually, the blame command retrieves the version information
for the current version or for a specific version for one file or a list
of files. In the following, the existence of an age function A(f, l),
which retrieves the age (date of the last change) of source code
line l from source file f of the current version of the program is
assumed.

2.3 Measuring and Comparing the Age
For the purpose of the study, a software system S = {f1, . . . , fn}

consists of a set of n source code files fi, 1 ≤ i ≤ n. Two func-
tions exist that return the cloned (C(fi)) and non-cloned (N(fi))
lines of a source code file fi ∈ S.

The average age AC(S) of cloned code of a system S is then the
average of all A(fi, lj) for all fi ∈ S and lj ∈ C(fi). The average
age AN (S) of non-cloned code of a system S is the average of all
A(fi, lj) for all fi ∈ S and lj ∈ N(fi).

Systems evolve differently in their components, so measuring
the overall average age may give too unspecific results. Thus, the
average ages for single files can be computed, too. However, this
only make sense for files that actually contain cloned code. So for
files f with C(f) 6= ∅, the average age AC(f) of cloned code is the
average of all A(f, lj) for all lj ∈ C(f). The average age AN (f)
of non-cloned code is the average of all A(f, lj) for all lj ∈ N(f).

2.4 Research Questions
Based on the above framework, it is now possible to state the two

important research questions and define how they can be answered
by measuring the age of source code lines.

RQ1: Is cloned code usually older or newer than non-cloned code?

For a given system S, the question can be answered by com-
puting and comparing the average ages AC(S) and AN (S).

RQ2: Is the cloned code in a file usually older or newer than the
non-cloned code in the same file?

For a given file f , the question can be answered by comput-
ing and comparing the average ages AC(f) and AN (f).

These two research questions are similar to the research ques-
tions of empirical studies on the stability of cloned code. If the
questions can be answered clearly with that cloned code is usually
older than non-cloned code, then it will strongly support the previ-
ous findings that cloned code is (often) more stable than non-cloned
code.

3. EXPERIMENT
To answer the above research question, an initial study has been

performed on three open source systems with a sufficiently large
evolution history. The setup and the results of the study will be
presented in the following, followed by a short discussion on threats
to validity.

3.1 Study Setup
For the study the version histories of three open source systems

have been retrieved. All three systems have to have a sufficiently
long development history of multiple years. To enable a compari-
son of the results to previous studies on clone evolution, the sys-
tems should have been used in previous empirical studies. The
three selected systems are:

1. ArgoUML1 is a UML modeling tool that includes support for
standard UML diagrams. It is written in Java and its version
archive is available via subversion at http://argouml.
tigris.org/svn/argouml/trunk. This study used
revision 18995.

ArgoUML has been used in many previous studies on the
evolution of code clones [1,12–15]. Besides, other empirical
studies have looked at ArgoUML and it can be considered a
well-studied system.

2. JBoss2 is a J2EE compliant application server written in Java.
This system has been used in previous studies, too [17, 23].
The subversion archive is available at http://anonsvn.
jboss.org/repos/jbossas/trunk and the revision
110455 has been used in this study.

3. jEdit3 is a programmer’s text editor written in Java. It has
also been used in previous studies [2, 17].

The subversion repository is available at https://jedit.
svn.sourceforge.net/svnroot/jedit/jEdit;
revision 19285 has been used.

1http://argouml.tigris.org/
2http://www.jboss.org/
3http://www.jedit.org/

Source Source Cloned
System Files LOC LOC

ArgoUML 2202 398844 20554 5%
JBoss 6406 853653 63518 7%
jEdit 552 175191 5520 3%

Table 1: Analyzed systems

All three systems are large enough (>100KLOC) and cover dif-
ferent applications and different platforms, although they are all
written in Java. The sources have been analyzed as-is and no mod-
ifications have been applied, although it is known that test code
and generated source code will have an effect on the detected code
clones and that differences in layout will reduce the recall of clone
detectors. Future studies should identify end eliminate test code
and generated code.

The sources of all three systems have been retrieved from their
subversion archives on the same day. For each system the clone
groups G(v) have been identified by the use of the clone detection
tool Simian4 from RedHill Consulting Pty. Ltd., version 2.2.24. It
is a text-based clone detector that detects almost identical clones.
Simian has been instructed to identify clones with the default set-
tings (clones must be at least six lines long).

Table 1 shows some properties of the analyzed systems: The
second column shows the number of Java files, the third column
contains the size of the analyzed source base (in LOC). The next
two columns contain the size of cloned source code (in LOC and
as an percentage of the source code). For example, JBoss is the
largest system with 854 KLOC, from which 7% (66 KLOC) is
cloned code.

3.2 Results
This section presents the results of the study as described in the

previous section. Figure 1 shows two box plots for the (average)
last change date for cloned code on the left and for non-cloned
code on the right. The y-axis gives the age as the last change
date. The top is 25 January 2011 and the bottom is 22 April 2000.
The average last change date for cloned code is lower (earlier) than
for non-cloned code—the difference is 85 days (not shown in Fig-
ure 1). This means that on average, cloned code is older than non-
cloned code. This suggests that cloned code is more stable than
non-cloned code, if stability is measured as the duration without
a change. Interestingly, the box plots show identical (or at least
similar) top and bottom quartiles—only the average and the me-
dian differs. This overall result seems to answer the first research
question with cloned code is usually older than non-cloned code.

A very interesting result is also the average age itself, which is
1719 days—over three years. Previous studies on clone evolution
estimated much lower lifetime of clones. For example, Göde [5]
reported an average lifetime of 483 days and Bettenburg et al. [2]
reported an average lifetime of 6.8 releases (although no time is
given for the distance between releases, it is clear that 6.8 releases
is much lower than 1719 days). This difference can be explained by
the observation from previous studies that many clones only appear
for a short time. With the setup of the presented study it is clear
that the results are dominated by long living clones. Moreover, the
numbers are clearly influenced by the long development history of
around 10 years for the analyzed system. An analysis of systems
with shorter development histories would result in lower ages.

4Available at http://www.redhillconsulting.com.
au/products/simian/index.html

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

x 104

all cloned (131k) all non cloned (1m)

Average

22 April 2000

25 January 2011

Figure 1: Last change date for cloned (left) and non-cloned
code (right).

To focus on the second research question, only the Java source
files that actually contain some cloned code are looked at. From
the 9158 Java source files that have been analyzed, only 2828 files
(31%) contain some cloned code. For 2277 files of the 2828 files
(81%), the average last change date of the cloned code in the file
is lower than the average date for the non-cloned code in the same
file, meaning that cloned code is usually older than the non-cloned
code. The second research question can thus be answered with the
cloned code in a file is usually older than the non-cloned code in
the same file.

In the following, the individual results for the three systems will
be discussed. Figure 2 shows the box plots for the three systems.
For each system, the are two box plots for the cloned and the non-
cloned code.

3.2.1 ArgoUML
The last (youngest) change observed for the ArgoUML system

was on 18 January 2011 and the first (oldest) change was on 4
September 2000. On the two dates, changes to cloned and non-
cloned code exist. It can be seen that the average last change date
of cloned code in ArgoUML is higher (112 days) than for the non-
cloned code, meaning that cloned code is usually younger than non
cloned code. (The actual average dates of 19 November 2006 for
non-cloned code and 11 March 2007 for cloned code are shown in
Figure 2.) This result differs from the more general result above
which means that for the specific system ArgoUML, the first re-
search question has a different answer. On a side note, it is inter-
esting to see that the bottom quartile is the same for cloned and
non-cloned code.

For the second research question, the individual source files of
ArgoUML are analyzed: From the 2202 Java source files that have
been analyzed, 840 contain some cloned code. For 552 files of the
840 files (66%), the average last change date of the cloned code
in the file is lower, meaning that cloned code is usually older than
the non-cloned code. This contradicts the the first finding for Ar-
goUML but supports the general results for the second research
question, although the percentage is lower.

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

x 104

argouml argouml jbossas jbossas jedit jedit

Average

cloned
(30k)

non cloned
(321k)

cloned
(93k)

non cloned
(659k)

cloned
(7k)

non cloned
(148k)

25 January 2011

22 April 2000

19 November 2006

 11 March 2007

25 March 2006

13 October 2006

27 June 2004

10 February 2005

Figure 2: Last change date for cloned and non-cloned code for
the three analyzed systems.

3.2.2 JBoss
The results for JBoss are slightly different to ArgoUML’s results.

The last observed change was on 24 January 2011 and the first ob-
served change on 22 April 2000. The average last changed date
for cloned code is 25 March 2006 and for non-cloned code it is 13
October 2006. Here, the average last changed date for cloned code
is much lower (a difference of 202 days), meaning that cloned code
is usually a lot older than the non-cloned code. Moreover, half of
the non-cloned lines (the first two quartiles) are much younger than
half of the cloned lines. This supports the general result for the first
research question.

From the 6405 Java source files in JBoss that have been ana-
lyzed, 1845 contain some cloned code. For 1624 files of the 1845
files (88%), the average last change date of the cloned code in the
file is lower, meaning that cloned code is usually older than the
non-cloned code. This strongly supports the results for the second
research question.

3.2.3 jEdit
The first observed change date for jEdit is 2 September 2001 and

it is interesting to see that at least a quarter of the cloned source
code lines have not been changed since. The last observed change
date for cloned code is 30 November 2010 and for non-cloned code
it is 25 January 2011. Overall it seems that the average age of the
code in jEdit is higher than in the two other systems, independent
if it is cloned or not. The average last changed date for cloned
code is 27 June 2004 and for non-cloned code it is 10 February
2005. Again, the average last changed date for cloned code is much
lower (228 days), supporting the general result for the first research
question.

It is also interesting to see that at least a quarter (the bottom quar-
tile) of the cloned code in jEdit dates back to the beginning of the
development of jEdit and has never been changed since then. How-
ever, the date is misleading as it is not the day the development
started but the day the project was imported into the subversion
repository (it was in a CVS repository before—jEdit has a much
longer development history which is not available via the subver-
sion repository).

From the 551 Java source files that have been analyzed in jEdit,
143 contain some cloned code. For 101 files of the 143 files (71%),
the average last change date of the cloned code in the file is lower
than the average date for non-cloned code, strongly supporting the
results for the second research question again.

3.3 Threats to Validity
There are some potential threats to validity in the presented study.

First of all, there is no clear definition of a clone. Moreover, a clone
detected by a clone detector may not be a clone in reality (false
positive) or a clone in a system may be missed by a clone detector
(false negative). In addition, the choice of the clone detector may
influence the results. A study with different clone detectors is in
preparation.

The second threat is the low number of systems (three) and the
differences in size. JBoss is much larger than the other systems and
the results for JBoss may dominate. This risk can only be elimi-
nated by analyzing a large set of systems.

The third threat is the way how changes are detected in version
control system. Usually, even a change of layout causes a change
in the repository. Such a change does not influence the stability in
practice. Other studies [6,8,13,14] have thus applied some canonic
format to the sources to improve the results and Krinke [13] has
shown that this has a large impact.

Moreover, it is known that automatically generated code or test-
ing code will increase the number of detected code clones. A future
study should eliminate such code beforehand.

The experiment is also influenced by the type of the analyzed
systems. To be able to draw more general conclusions, more sys-
tems of different application types and written in different program-
ming languages should be analyzed and this is planned for future
work.

The study is based on the assumption that less changes to cloned
code indicate that cloned code does not increase the maintenance
cost. However, it might be the case that developers fear to change
cloned code and try to circumvent changes to cloned code by chang-
ing non-cloned code. This would actually cause the non-cloned
code to be less stable than the cloned code.

A threat to validity that will be addressed by a follow-up study
is that inconsistent changes to cloned code will cause the clones
to split into gapped clones where the variation between the clones
is actually in the gap. The changes in the gap may cause the gap
code to be younger than the surrounding cloned code, however the
gap is considered to be non-cloned code. The follow-up study will
therefore identify gap code in addition to cloned and non-cloned
code, e.g. by using a clone detector that is able to detect gapped
clones [9].

4. RELATED WORK
There are a few empirical studies that analyze the effect of changes

on the code clones of a system. The first set of studies discussed
in the following analyze clone genealogies, the evolution of code
clones during the evolution of a system.

Kim et al. [12] investigated the evolution of code clones and
provided a classification for evolving code clones. Their work al-
ready showed that during the evolution of the code clones, consis-
tent changes are fewer than anticipated. However, the study only
analyzed the evolution of two very small systems, DNSJava and
CAROL, both written in Java, and both are a similar type of appli-
cation.

Aversano et al. [1] followed up with a similar empirical study
and a slightly refined framework. Similar to Kim et al., they ana-
lyze so called co-changes that are changes committed by the same

author, with the same notes, and within 200 seconds. They used
a Java-only clone detector that compares subtrees in the abstract
syntax tree. The analyzed systems were DNSJava and ArgoUML.
Although Aversano et al. state “that the majority of clone classes
is always maintained consistently”, the numbers they present con-
tradict this statement: For ArgoUML (which is much larger than
DNSJava), they found that only 45% of the clone groups underwent
consistent changes. This study has been extended later by Thum-
malapenta et al. [23] where they analyzed four systems, ArgoUML,
JBoss, OpenSSH, and PostgreSQL. In that study, they tracked the
evolution of clones and analyzed the evolution patterns of them.
They only found in two systems that the majority of the clones
evolved consistently. They also looked at (and found) late propaga-
tion of changes, i.e. the situation where a change has been missed to
apply to all clones of a clone group and which is therefore applied
to the missed clones of the group later.

Another study on clone genealogies from Saha et al. [21] on 17
open source systems written in C, Java, C++, and C# showed that
the majority of the clone groups of clone genealogies either prop-
agate without any syntactic changes or change consistently in the
subsequent releases. Moreover, they found that only 11% to 38%
of the clone genealogies changed consistently. However, they ex-
plain the low rate of consistent changes with the finding that volatile
clones disappear very fast.

Göde [5] presented a model for clone evolution where he tracked
the evolution of individual clones throughout the history of a pro-
gram. He found that whether consistent or inconsistent changes to
clone classes were more frequent depended on the analyzed system.
He analyzed nine systems (C, C++, Java) during the evolution of
200 versions. Moreover, he discovered a high ratio of late propaga-
tion. Göde and Koschke [7] analyzed a large system (Bauhaus) and
found that clones tend to be changed inconsistently and that most
inconsistent changes stem from independent evolution because of
variant algorithms and types.

All of the above studies focussed on the genealogies or lifetime
of code clones created from all or a subset of the systems’ versions
while the presented study only takes a single snapshot of a system
and generates the necessary information by ‘blaming’. Moreover, it
is interesting to see that the lifetime of cloned fragments as reported
by the above related studies is much shorter than the average age of
a clone as computed in the presented study. For example, Göde [5]
reports an average clone lifetime of over a year (483 days) while
the presented study shown an average last change date of cloned
code of 1719 days (over four years)!

Krinke [13] studied the evolution of code clones in respect to
consistent and inconsistent changes of five open source systems.
Instead of analyzing clone genealogies, he mapped the changes
directly on the detected clones for 200 versions where the ver-
sions are one week apart. He found that clone groups are consis-
tently changed in roughly half of the time. With a similar study,
Krinke [14] studied the number and amount of changes applied
to cloned and non-cloned code during the evolution of five sys-
tems and found that non-cloned code is more often changed than
cloned code and therefore cloned is more stable than non-cloned-
code. Göde and Harder [6] replicated this study and confirmed
the findings. Hotta et al. [8] studied the number of changes ap-
plied to cloned and non-cloned code, measuring modification fre-
quency. They analyzed 15 systems using four clone detection tools
and found that cloned code tend to be modified less frequently than
non-cloned code.

Lozano and Wermelinger [17] analyzed the evolution of five sys-
tems in terms of their cloning. They found that lines of cloned code
change less than those not cloned, but cloned code that changes is

highly concentrated in certain methods. Earlier, Lozano et al. [18]
found that the majority of methods indeed changed more, and more
frequently, when they contain cloned code. Lozano [19] concluded
that cloned methods have a poorer changeability than methods not
cloned and that cloned fragments cause an increase of changeabil-
ity decay on cloned methods.

The above studies all rely on mapping the changes to clones in
source code by some automated process. Some of the studies even
map clones between subsequent versions on each other to track
clones. These mappings are sensitive to the used techniques, in par-
ticular the mapping of clones between versions usually use clone
detection which is know to have low precision and recall. The
presented technique to use last change information from version
repositories does not suffer the same problems.

Geiger et al. [4] studied the relation of code clones and change
couplings (files which are committed at the same time, by the same
author, and with the same modification description), but could not
find a (strong) relation.

Bettenburg et al. [2] studied the effect on inconsistent changes
to code clones on software quality. The analyzed two open source
systems and observed that only 1% to 3% of inconsistent changes
introduce software defects. Selim et al. [22] also analyzed the
impact of cloned code on software defects. They found that the
defect-proneness of cloned methods is specific to the system un-
der study. A study of Juergens et al. [10] analyzed commercial and
open source systems and found that inconsistent changes to clones
are very frequent and that a significant number of faults are induced
by such changes.

The relation of code clones to the reliability and maintainability
of a system has been examined by Monden et al. [20].

The last change date information from version control systems
has been used by Krinke et al. [15, 16] to compare the history of
clone pairs and distinguish the original from the copied code. Their
approach is able to do the distinction for the majority of clone pairs
even between different projects (they analyzed the subprojects of
the GNOME Desktop Suite).

5. CONCLUSIONS AND FUTURE WORK
This work studied the question if cloned code is usually older

than non-cloned code. The study analyzed three open source soft-
ware systems und two research questions. The study has shown:

• Cloned code is usually older than non-cloned code. On aver-
age, cloned code is 85 days older for the observed systems.

• Cloned code in a file is usually older than the non-cloned
code in the same file. For the observed systems, this holds
for 81% of the files.

The above results confirm previous results that cloned code is
more stable than non-cloned code. Therefore, it cannot be generally
assumed that the maintenance of cloned code is more expensive
than the maintenance of non-cloned code.

The above study can only be seen as an initial study as it only an-
alyzed three systems, all programmed in Java with a similar length
of development history. However, even the initial results are strong
and it is expected that a larger follow-up study with many more and
diverse systems will confirm the results.

Because the study setup is much simpler than previous studies
as it exploits available last change date information from version
control systems, the setup can be easily repeated without the need
to extract and map the actual changes from the version control sys-
tems.

Currently, the study is expanded with the analysis of more and
larger systems. It is also planned to use other clone detection tools
than Simian to achieve more general results. Moreover, code in
clone gaps will be analyzed to estimate the influence of variation in
clones.

6. ACKNOWLEDGEMENTS
This work is funded in part by Hewlett Packard and the FOSSol-

ogy Project. Jian Ren produced the box plots.

7. REFERENCES
[1] L. Aversano, L. Cerulo, and M. D. Penta. How clones are

maintained: An empirical study. In 11th European
Conference on Software Maintenance and Reengineering
(CSMR), 2007.

[2] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou,
and A. E. Hassan. An empirical study on inconsistent
changes to code clones at release level. In Reverse
Engineering, Working Conference on, pages 85–94, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[3] J. Cordy. Comprehending reality – practical barriers to
industrial adoption of software maintenance automation. In
11th IEEE International Workshop on Program
Comprehension, pages 196–205, 2003.

[4] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of
code clones and change couplings. In 9th International
Conference of Funtamental Approaches to Software
Engineering (FASE), number 3922 in LNCS, pages 411–425.
Springer, Mar. 2006.

[5] N. Göde. Evolution of type-1 clones. In Ninth IEEE
International Working Conference on Source Code Analysis
and Manipulation, pages 77–86. IEEE Computer Society,
2009.

[6] N. Göde and J. Harder. Clone stability. In Proceedings of the
15th European Conference on Software Maintenance and
Reengineering, 2011.

[7] N. Göde and R. Koschke. Studying clone evolution using
incremental clone detection. Journal of Software
Maintenance and Evolution: Research and Practice, 2010.

[8] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate
code more frequently modified than non-duplicate code in
software evolution?: an empirical study on open source
software. In Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International Workshop on
Principles of Software Evolution (IWPSE), IWPSE-EVOL
’10, pages 73–82, New York, NY, USA, 2010. ACM.

[9] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita.
KClone: a proposed approach to fast precise code clone
detection. In Third International Workshop on Detection of
Software Clones (IWSC), 2009.

[10] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In Proceedings of the 31st
International Conference on Software Engineering, ICSE
’09, pages 485–495, Washington, DC, USA, 2009. IEEE
Computer Society.

[11] C. Kapser and M. W. Godfrey. “Cloning considered harmful”
considered harmful. In 13th Working Conference on Reverse
Engineering (WCRE), pages 19–28, 2006.

[12] M. Kim, V. Sazawal, and D. Notkin. An empirical study of
code clone genealogies. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering (ESEC/FSE), pages 187–196, 2005.

[13] J. Krinke. A study of consistent and inconsistent changes to
code clones. In 14th Working Conference on Reverse
Engineering (WCRE), Oct. 2007.

[14] J. Krinke. Is cloned code more stable than non-cloned code?
In Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 57–66. IEEE
Computer Society, September 2008.

[15] J. Krinke, N. Gold, Y. Jia, and D. Binkley. Cloning and
copying between gnome projects. In 7th IEEE Working
Conference on Mining Software Repositories, may 2010.

[16] J. Krinke, N. Gold, Y. Jia, and D. Binkley. Distinguishing
copies from originals in software clones. In International
Workshop on Software Clones, May 2010.

[17] A. Lozano and M. Wermelinger. Tracking clones’ imprint. In
Proceedings of the 4th International Workshop on Software
Clones, IWSC ’10, pages 65–72, New York, NY, USA, 2010.
ACM.

[18] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating
the harmfulness of cloning: A change based experiment. In
Proceedings of the Fourth International Workshop on Mining
Software Repositories, MSR ’07, pages 18–, Washington,
DC, USA, 2007. IEEE Computer Society.

[19] A. Lozano Rodriguez. Assessing the effect of source code
characteristics on changeability. PhD thesis, The Open
University, 2009.

[20] A. Monden, D. Nakae, T. Kamiya, S. ichi Sato, and K. ichi
Matsumoto. Software quality analysis by code clones in
industrial legacy software. In Eighth IEEE International
Symposium on Software Metrics (METRICS’02), 2002.

[21] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and
K. A. Schneider. Evaluating code clone genealogies at
release level: An empirical study. In Source Code Analysis
and Manipulation, IEEE International Workshop on, pages
87–96, Los Alamitos, CA, USA, 2010. IEEE Computer
Society.

[22] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E.
Hassan, and Y. Zou. Studying the impact of clones on
software defects. In Reverse Engineering, Working
Conference on, pages 13–21, Los Alamitos, CA, USA, 2010.
IEEE Computer Society.

[23] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta.
An empirical study on the maintenance of source code
clones. Empirical Software Engineering, March 2009.

