
Validation of Measurement Software as an

application of Slicing and Constraint Solving ⋆

Jens Krinke and Gregor Snelting

Technische Universität Braunschweig
Abteilung Softwaretechnologie

Bültenweg 88, D-38106 Braunschweig

Abstract

We show how to combine program slicing and constraint solving in order to
obtain better slice accuracy. The method is used in the VALSOFT slicing system.
One particular application is the validation of computer-controlled measurement
systems. VALSOFT will be used by the Physikalisch-Technische Bundesanstalt for
verification of legally required calibration standards.

The article describes the VALSOFT slicing system. In particular, we describe how
to generate and simplify path conditions based on program slices. A case study shows
that the technique can indeed increase slice precision and reveal manipulations of
the so-called calibration path.

Key words: Program Slicing, Constraint Solving, Measurement System, Software
Validation, Path Condition.

1 Introduction and Background

The Physikalisch-Technische-Bundesanstalt (PTB) is a national institution
which—among other tasks—is responsible for the verification of calibration
standards. Every measurement system which is used in medical, commercial,
and similar transactions (e.g. an electricity meter or a blood alcohol tester)
must stick to legally required standards for accuracy of measurement, robust-
ness and other quality factors. Therefore, the prototype of every measurement

⋆ A preliminary version of parts of this article appeared in the proceedings of the
Third Static Analysis Symposium[22]
† Article published in Information and Software Technology 40 (1998) 661–675.
The original publication is available via doi:10.1016/S0950-5849(98)00090-1

Preprint submitted to Information and Software Technology

system must be certified by PTB. Once the prototype has been thoroughly
examined and validated, the numerous specimen of a specific measurement
system are (less intensively) checked by local authorities.

Today, 95% of all measurement systems checked by PTB are controlled by
software. Even the cheese scale has a built-in microprocessor and a digital
display. Thus the validation of measurement software is part of the certifica-
tion process. In particular, it must be checked that measurement values are
not—accidentally or intentionally—manipulated or garbled. The most sensi-
tive parts of measurement software are those which handle the incoming raw
values and prepare it for display, while other parts like e.g. user interface con-
trol are less important. The data flow path from the sensor input port to
the display output port is called the calibration path and is subject to most
painstaking scrutiny.

At the moment measurement software validation at PTB relies on manual code
inspections, which is a time-consuming and error-prone method. PTB is thus
strongly interested in tool support for software validation. Therefore, PTB in
cooperation with the Technical University of Braunschweig launched a project
which aims at a tool for analysis and semiautomatic validation of measurement
software. The tool, called VALSOFT, analyses C source code and supports the
PTB engineer by visualizing the obtained information. VALSOFT checks in
particular that there are no unwanted influences on the calibration path. If the
calibration path is not safe, VALSOFT can provide a detailed analysis of the
conditions which can lead to a garbling of measurement values. Our ultimate
goal is to automatically generate statements like the following: “If CTRL-X is
pressed on the keyboard, and the left mouse key is pressed as well, then the
measurement value is 8.7% too high”.

As we will see, such precision of the analysis is not really possible, because
the underlying technology sometimes gives false alarms. But for a validation
tool, at least the following correctnes criterion—called principle of conservative
approximation—must hold: whenever the tool says that the calibration path is
not influenced, then this information must be reliable. Occasional false alarms
however are acceptable while analysing safety-critical software. The principle
of conservative approximation strongly influenced the design of VALSOFT.

It is the aim of this paper to describe the underlying technology of the new
tool. Basically, VALSOFT is based on program slicing, a technique which has
recently received much attention as a device for program analysis, understand-
ing, and validation 1 . But slicing can sometimes deliver too imprecise informa-
tion, in particular if the program contains complex data structures. We will
show how slicing can be combined with constraint solving in order to increase

1 In fact, Denning proposed as early as 1977 to use data flow analysis for the
validation of safety critical software [9]

2

PDG

AnalysisFrontend

S
ol

ve
r

Slicer

C
all

G
raph

CSE

CP

GUI &
Visu

ali
ze

r

Fig. 1. VALSOFT kernel architecture

precision. In particular, the method allows to extract precise (and understand-
able) necessary conditions under which a certain dataflow (e.g. from keyboard
to calibration path) can happen. Thus the technique not only improves slicing,
but also allows the generation of error messages as sketched above.

For the rest of this article, we assume that the reader has basic knowledge
about program slicing, as described e.g. in [24] and in other articles in this
volume. We will first describe the general design of the VALSOFT slicer, then
introduce path conditions as a means to improve slice accuray. A final case
study will show how our techniques can reveal manipulations in measurement
system software.

2 The VALSOFT Slicing System

The VALSOFT Slicing System is a set of tools which are used together to
analyze C source code to help the engineer to understand and validate the
code. The main application is the calculation and visualization of slices for
ANSI-C.

We are using a “whole world” approach for our analysis: the frontend (scan-
ner/parser etc.) reads all preprocessed sources, constructs an attributed ab-
stract syntax tree and a symbol table, and “links” all corresponding symbols
of different sources together. The next step is a traversal of the AST which
does a simple, flow insensitive data flow analysis. It calculates the gmod and
gref sets, the call graph, the points-to set and the frame of the PDGs, which
consists of control flow and control dependence edges. A finer, flow sensitive
analysis follows, which traverses the frame and calculates the data dependen-
cies. The resulting PDGs are linked together to the SDG [14] at last.

The created SDG is persistently saved to disk and all other tools are working
with the saved SDG. The set of tools and its architecture is shown in figure 1.

3

Fig. 2. VALSOFT user interface

The system consists of:

• The analyzer, which generates the SDG for a set of C sources.
• The slicer, which can do backward and forward slices and chops.
• The solver, which will be discussed in a following section.
• CP, which does constant propagation over the SDGs and tries to simplify

them (eliminating edges and nodes).
• CSE, which tries to find common subexpressions and to simplify the SDG.
• A call graph simplifier, which eliminates redundant call edges in presence

of function pointers.
• A GUI, which visualizes the PDGs and the corresponding sources and con-

trols the execution of the slicer and the solver.

The GUI is used to navigate in the PDGs and the source. It first visualizes the
call graph of the program, where the user may select any procedure node to
let the GUI visualize the corresponding PDG. Every node is selectable and the
corresponding parts of the source may be visualized in a textual manner. The
user may select a set of nodes as a slicing criterion and let the GUI execute
the slicer. The resulting set of nodes is visualized in the graph based and the
textual presentation. Fig. 2 shows an example. The main window contains the
PDG, where between an unvisible node and node 111 (upper right) a chop
has been calculated. The right window shows the corresponding source with
the chop inverted. The left window shows the call graph.

4

2.1 The fine grained SDG

Our SDG is a specialization of the traditional [14]. Because one of our goals was
to keep the SDG similar to the AST and the sources, transformations like SSA
(static single assignment form) were not applicable and we had to directly deal
with the possibility of multiple side effects in expressions. Therefore we decided
to use a fine grained representation and to keep it similar to the AST and the
traditional SDG. On the level of statements and expressions, the AST nodes
are almost mapped one to one onto SDG nodes. The definitions of variables
and procedures have special nodes. The nodes may be attributed with a class,
an operator and a value. The class specifies the kind of node: statement,
expression, procedure call etc. The operator specifies the kind further, e.g.
binary expression, constant etc. The value carries the exact operator, like “+”
or “–”, constant values or identifier names. Other attributes are the enclosing
procedure and a mapping to the source text.

To handle the specialized nodes we had to specialize the edges too. In most
cases the execution order of expression components is undefined which results
in representation problems. Consider the statement z=x+y for example. It is
undefined if x is evaluated before y or vice versa. It is only defined that both
have been evaluated before the values will be added. This behavior can not be
represented in a normal CFG. However, its representation in the VALSOFT
PDG is that the nodes of x and y are control dependent on the + node.
We call this control dependence immediate (control) dependence, because it is
independent of the value of a predicate.

Another goal was the ability to calculate slices for any node in the SDG.
Therefore the data flow between the expression components had to be repre-
sented in the SDG. In our example, the value of the addition is dependent on
the value of x and y. If we would add simple data dependence edges between
the nodes of + and x and between the nodes of + and y, we would induce
circles between the nodes of +, x and y. One way to solve this would be to
split the node of + into a “before evaluation of subcomponents” node and an
“after evaluation of subcomponents” node. We took a different approach and
introduced another specialized edge: the value dependence edge, which is like a
data dependence edge between expression components. The resolution of the
arising circles has been delegated to the slicer and the other tools.

Another specialized edge was needed to represent the assignments of values to
variables. The reference dependence edges are similar to the value dependence
edges, except that they do not induce circles.

Definition 1 (1) An expression node n is value dependent on an expression
node p, if the value computed at p is needed at node n.

5

f/0
entry
5

a/1
form-in
6

b/1
form-in
7

c/1
form-in
8

compound
12

x/0
form-out
13

y/0
form-out
14

z/0
form-out
15

assign
16

*
binary
17

a/1
reference
18

assign
19

+
binary
20

b/1
reference
21

c/1

reference dependence

value dependence

immediate dependence

data dependence

reference
22

y/0
reference
23

x/0
reference
24

assign
25

+
binary
26

x/0
reference
27

y/0
reference
28

z/0
reference
29

Fig. 3. Example for a fine grained PDG

(2) An assignment node n is reference dependent on an expression node p,
if the value computed at p is stored into a variable at n.

Figure 3 shows an an example PDG of the following code. The figure has been
generated by VALSOFT.

void f (int a, int b, int c)

{

x = a * (y = b + c);

z = x + y;

}

In this example, node 5 is an entry node, the nodes 6, 7 and 8 are formal-in
nodes and the nodes 13, 14 and 15 are formal-out nodes. They all have the same
kind and operator. Node 12 is a compound node, which groups the subgraphs
of the two assignments together. The remaining nodes are all expression nodes
with different operators. For example, node 26 is an expression node with
operator kind “binary” and value “+”. Note that assignments are expressions,
e.g. node 25 is an expression node with an operator “assign” and no value.

A fine grained approach had already been proposed in [18], however, the first
fine grained technique is Ernst’ VDG [10], which is a highly specialized repre-
sentation. Our technique is much more similar to Speidel’s [23]. In this work,
dependence edges are directly inserted into the AST. However, the value flow
between expression components is not represented, and only variable nodes
can be used as slicing criterion.

6

2.2 Slicing the fine grained SDG

Our slicer is a direct adaption of [20] with special handling of the circles
induced by value dependence edges. Our method is based on an implicit split-
ting of nodes which are sources of immediate dependence edges and targets
of value dependence edges. The subexpressions which are represented by the
target nodes of immediate dependence edges are evaluated before the value
is used at the target node of the value dependence edges. Our slicing method
does not traverse value dependence edges if the actual node has been reached
by an immediate dependence edge and vice versa.

For example, let node 6 be the slicing criterion for a forward slice: the algorithm
will first include node 18 and 17 into the slice. The algorithm will not follow
the immediate dependence edge from node 17 to 19, because it has reached
node 17 through a value dependence edge. The complete slice will contain the
nodes 6, 18, 17, 16, 24, 27, 26, 25, 29 and 15. Now, let node 28 be the slicing
criterion for a backward slice: the algorithm will include the nodes 26, 25, 12
and 5 first. It will include node 23 and 19 too. If the algorithm considers the
immediate dependence edge between node 19 and 23 first, it will include nodes
17 and 16 next, but not node 20, 21, 22 etc. these nodes will be included after
the algorithm traverses the reference dependence edge between node 19 and
23, because now there is no restriction on edges which are leaving node 19.
The complete slice consists of the nodes 28, 26, 25, 12, 5, 23, 19, 17, 16, 20,
21, 22, 7 and 8.

2.3 Data Types

Until now, we only have used scalar variables in our examples. The use of
composite data types and pointers introduces new problems, which will be
discussed next. We are not only interested in the analysis of data types, but
in the representation in the fine grained SDG too. Agrawal et al. [1] are using
abstract memory locations and define the following situations for an expression
e1, which is a definition and an expression e2, which is a use:

complete intersection The locations corresponding to e1 are a superset of
the locations corresponding to e2.

maybe intersection It cannot be determined statically whether or not the
locations corresponding to e1 and e2 coincidence.

partial intersection The locations corresponding to e1 are a subset of the
locations corresponding to e2.

Examples for these three situations will be presented in the next three sections,
where we will discuss the three main classes of data types.

7

b/1
declaration
6

assign
8

b/1
reference
9

a/1
reference
10

assign
11

a/1
reference
12

y
select
13

b/1
reference
14

x
select
15

assign
16

b/1
reference
17

a/1
reference
18

Fig. 4. Partial PDG for a use of structures

2.3.1 Structures

The selection of a field of a structure introduces complete or partial intersec-
tion between the selected field and the complete variable. Maybe intersection
is impossible with normal structures, it is introduced only by unions. However,
this have not yet been implemented in the VALSOFT slicing system.

struct s {

int x, y;

} a, b;

a = b;

b.x = a.y;

a = b;

A partial PDG for this function is shown in figure 4. The selection of field y

of variable a is modeled through an expression node with an operator “select”
and a value of y. The use of a.y at node 13 is a subset of the definition of a at
node 10 (complete intersection). The definition of b.x at node 15 is a subset
of the use of b at node 17. Therefore node 17 is data dependent on node 15
and the earlier definition at node 6, the declaration of b (partial intersection).

2.3.2 Arrays

The use of arrays may also introduce complete, maybe and partial intersection.

int i, x;

int a[20];

a[1] = 0;

a[i] = 1;

x = a[1];

In this example, the value of x may be 0 or 1, which is dependent on the
value of i. This maybe intersection would normally insert a data dependence
edge. We used a different approach, which is shown in figure 5. We consider

8

a/1
declaration
7

assign
9

0
intconst
10

1
intconst
11

a/1
reference
12

array
13

assign
14

1
intconst
15

i/1
reference
16

a/1
reference
17

array
18

assign
19

1
intconst
20

a/1
reference
21

array
22

x/1
reference
23

Fig. 5. Partial PDG for a use of arrays

an assignment to an array element a modification of the array. Therefore the
definitions at nodes 13 and 18 are “uses” too and data dependence edges from
7 to 12 and 13 to 17 have been inserted. There is no direct dependence between
node 13 and 21, only a transitive dependence. The advantage of this approach
is the implicit encoding of the evaluation order, which is needed later in the
solver, and the reduced number of edges.

2.3.3 Pointers

The use of pointers may introduce aliasing. The problem of determining po-
tential aliases is undecidable in general and a conservative approximation is
used. This not discussed further here (see [17,6]). Use and creation of pointers
also have to be represented in the PDGs. We use special expression nodes
for that purpose, the “refer” operator represents the creation of an address
and the “derefer” operator represents the dereferencing of a pointer. The data
dependence edges are inserted according to the points-to set at those points
of the program where pointers are used or defined.

int x, *p;

p = &x;

*p = 0;

x;

A partial PDG of this code is shown in figure 6. At node 18 the value of variable
x is used, which is dependent on node 17, where an alias of it is defined. The
alias has been introduced at node 13.

As we can see, the use of data types often results in situations which can not
be represented exactly in the PDG. The dependence edges can only represent
an effect that may happen. It is not possible to constraint an effect to a special
situation. Therefore we developed a new combiation of slicing with constraint
solving, where we are able to constrain dependences.

9

assign
10

x/1
reference
11

refer
12

p/1
reference
13

assign
14

0
intconst
15

p/1
reference
16

derefer
17

x/1
reference
18

Fig. 6. Partial PDG for a use of pointers

3 Path Conditions and Constraint Solving

In many cases, slices are too big to be useful. The principle of conservative ap-
proximation forces every statement which might influence a certain program
point to be included into a slice. Many of these statements, however, actu-
ally cannot contribute anything useful; this imprecision of slicing has been an
obstacle to succesful applications. The answer of the research community so
far was the development of better and better data flow algorithms, thereby
increasing slicing precision.

In this article we want to propose another approach. Instead of sharpening
underlying data flow analysis, we propose to combine slicing with deductive
techniques. In particular, we will explain how slicing can be improved by
generating and solving path conditions. The aim of our technique is twofold:

• Slices can be made more precise by evaluating additional constraints on
PDG edges; it may even happen that PDG edges disappear (which means
that data or control flow is in fact impossible).

• The precise conditions which enable a data flow along PDG path or chop
can be determined and—after simplification and pretty-printing—used for
diagnostic messages about a program.

3.1 Overview of path conditions

As a motivating example, consider the following code piece:

(1) read(&i,&j);

(2) a[i+3] = x;

(3) if (i>10) {

(4) if (j<20)

(5) y = a[2*j-32]

(6) else

10

(7) y = 17;

}

Since the values of i and j are unknown at analysis time, there might be a
data dependence from statement (2) to (5). A naive algorithm will—based on
the principle of conservative approximation—treat any array reference as a
reference to the whole array, introducing many false dependencies. 2

But obviously, a data flow from (2) to (5) is possible only if i + 3 = 2j − 32;
this condition is called a data flow condition. Furthermore, (5) is executed
only if i > 10∧ j < 20; these conditions are called control flow conditions. But
the data flow and control flow conditions cannot be satisfied simultaneously,
as i + 3 > 13 and 2j − 32 < 8. Thus a dataflow (2)→(5) is impossible.
Furthermore, (7) will be executed only if i > 10 ∧ j ≥ 20, and this control
flow condition might be interesting to somebody analysing the program.

Note that in general, different occurences of variables must be distinguished,
that is, indexed with the PDG node they occur in:

(1) while (x<7) {

(2) x = y+z;

(3) if (x==8)

(4) p();

}

In this example, (4) will only be executed if x1 < 7 and x3 = 8. As we have
a dataflow (2)→(3), x3 is in fact equal to y2 + z2. Due to this dependence
equation, the condition governing (4) becomes x1 < 7 ∧ y2 + z2 = 8.

In general, the basic idea for the generation of path conditions is quite simple
and obvious. Let P = p1, p2, . . . , pn be a path in the PDG from x to y. For any
node in this path, its execution condition E(pi) will be determined. E(pi) is a
necessary condition: if it cannot be satisfied, pi cannot be executed. Typically,
E(pi) contains boolean conditions from IF and WHILE statements “above”
pi. A necessary condition that P can be executed is thus PC(P) = E(p1) ∧
. . .∧E(pn). If there are several paths P1, P2, . . . , Pm from x to y, any of their
respective conditions must be satisfiable: PC(x, y) = PC(P1)∨ . . .∨PC(Pm).
Path conditions may be augmented with additional constraints, similar in
spirit to [11]: PC(x, y) = Cx ∧ (PC(P1) ∨ . . . ∨ PC(Pm)).

Data dependencies introduce further constraints. The data dependence edge
(2)→(3) induces the constraint x2 = x3, since a data dependence edge connects

2 In order to increase precision of array-based dependence analysis, several highly
specialized algorithms have been proposed [19,27]. These techniques can easily be
integrated into VALSOFT.

11

definition and usage of a value. Thus data dependencies partially “undo” the
indexing of variables with node numbers. If the starting point of a dependence
edge is an assignment, one might even replace the variable with the right-hand-
side expression: y2 + z2 = x3.

Note that path conditions and data flow constraints are necessary conditions:
if they cannot be fulfilled, then a data flow along the path is impossible. The
converse is not true, but of course there is a high probability that a solvable
path condition is also sufficient for a data flow. Generating and solving neces-
sary conditions is consistent with the principle of conservative approximation:
if the system says “there is no data flow from x to y”, then this information
must be reliable. Occasional false alarms, however, do not corrupt the safety
of the analysis.

We will show later that for the generation of path conditions, cycles in the
PDG may be ignored. Still, path conditions are very complex, and must first
be minimized before any attempt to solve the constraints can be made. Once
the path conditions are simplified or even solved, the resulting formulae can
be pretty-printed and presented to the user.

3.2 Dependence Equations

As demonstrated in the above example, all program variables occuring in a
flow condition must be labelled with the statement or predicate they occur in.
But due to data dependencies, different occurences of the same variable may
again be equated. In this section, these equations are formally introduced. The
resulting dependence equations are independent of particular slices or execu-
tion paths. They are not necessary conditions for certain control or data flow,
but are auxiliary conditions, which—as indicated above—can be used to sim-
plify other data or control flow conditions. In contrast to the path conditions
defined later, dependence equations always hold during program execution.

Definition 2 Let j be a PDG node, let v be a program variable. The notation
vj denotes the value of v after execution of j. The notation vj denotes the
value of v before execution of j.

Note that j might be executed several times, thus vj , v
j can change during

program execution. If v 6∈ def (j), vj = vj.

Definition 3 Let e1 = i1 → j, ..., ek = ik → j be data dependence edges
reaching node j, which are due to variable v. The resulting dependence equation
is f(vj) ≡ vj = vi1∨. . .∨vj = vik . In particular, k = 1 leads to f(vj) ≡ vi = vj.
For a PDG G, the set of all dependence equations is denoted F (G).

12

Sometimes it might be worthwile to take an even closer look at variable val-
ues, e.g. as resulting from assignments. Therefore, we provide the following
definition.

Definition 4 Let i be an assignment v=E, and let i → j be a data dependence
from i to j due to v. Let E denote expression E, where all variables a, b, c, . . . ∈
E have been replaced by ai, bi, ci, Then the extended dependence equation
is f(vj) ≡ vj = vi ∧ vi = E. The set of all extended dependence equations is
denoted F (G).

Note that due to cycles in the PDG, equations in F (G) may contain recursive
definitions of program variables.

3.3 Flow Conditions

Control or data flow conditions are attached to certain PDG edges and must
be satisfied in order that the edge be included in a slice. They will later be used
for the construction of statement-governing or path-governing expressions.

Definition 5 (1) Let e = i →x j be a control dependence edge, where i is the
predicate and the edge is marked with value x. The corresponding control
flow condition is c(e) ≡ i = x. 3

(2) Let e = i → j be a data dependence edge, where v is the variable carrying
the dependence. Let B(v) be any condition on v. The corresponding data
flow condition is d(e) ≡ B(v).

(3) The control dependence graph (CDG) is the subgraph of the PDG con-
taining only control dependence edges.

A missing (control or data) flow condition is considered equivalent to true.
For array references, data flow conditions can explicitely be stated. If v is
an array, i is an assignment, v[E1] is the left hand side of the assignment,
and another reference v[E2] occurs in j, the corresponding data flow condition
is d(i → j) ≡ B(v) ≡ E1 = E2. For other language constructs, other data
flow conditions may be introduced—the generation of data flow conditions is
outside the scope of this paper. 4

Control flow conditions are necessary conditions which must be true in order
that a statement can be executed. For example, in

(1) a[u] = x;

3 For control dependencies originating from a GOTO statement, we define c(e) =
true.
4 Remember that section 2.3 introduced special dependencies for arrays.

13

(2) if (a[v]==y)

(3) p();

the control flow condition a2[v2] = y2 must be satisfyable in order that (3)
is ever executed. On the other hand, data flow conditions are not necessary
for the execution of statements, but for a data flow along a certain arc in
a PDG. In the example, the dataflow condition for the array references is
d((1) → (2)) ≡ u1 = v2; it is not necessary for the execution of (2) or (3), but
u1 = v2 must hold in order that a data flow from (1) to (2) takes place.

3.4 Execution Conditions

In order to capture the conditions under which a certain statement may be
executed, the following definitions are introduced. Obviously, a PDG node
i can only be executed if all controlling predicates become successively true
during program execution. If there are several paths from START to i, at least
one must be executed.

Definition 6 Let i be a PDG node. Let P = p1, p2, . . . , pn be a path from
START to i, where p1 = START, pn = i, and p2, . . . , pn−1 are control predi-
cates. The execution condition for P is

E(P) =
n−1
∧

ν=1

c(pν → pν+1)

Now let P1, P2, . . . , Pk be such paths from START to i. The execution condition
for i is

E(i) =
k
∨

µ=1

E(Pµ)

In order that node i is executed, it is necessary to find values for the program
variables (indexed with PDG nodes) such that E(i) evaluates to true. These
values will not show up simultanuously during program execution; on the
contrary, different instances vi, v

i, vj, vj of variable v will obtain the required
values for different program states. But it is a necessary condition that E(i)
is satisfyable, otherwise i cannot be executed. F (G) and F (G) must hold as
well.

In case there are only structured statements, the control dependencies form a
tree, thus for every statement i there is at most one path from START to i,
and the computation of E(i) is easy. In general however, the control depen-
dence edges form a directed graph which may even contain cycles. In this case,

14

the above formula for E(i) is—albeit correct—not suitable for computation.
Even if the control dependence subgraph of the PDG is cycle free, the above
expression for E(i) may contain countless copies of the same control predi-
cates. We therefore develop simpler formulae for E(i), which utilize the PDG
structure.

Definition 7 Let P1 = p1
1 . . . p1

l1
, P2 = p2

1 . . . p2
l2
, . . . , Pn = pn

1 . . . pn
ln

be the
paths from i to j. Then

E(i, j) =
n
∨

µ=1

lµ−1
∧

ν=1

c(pµ
ν → p

µ
ν+1)

The expression E(i, j) generalizes E(j): it gives a necessary condition for the
execution of j under the assumption that i can be executed. Obviously, E(j) =
E(START, j). The definition of E(i, j) can easily be generalized for the case
that—due to cycles in the PDG—there are infinitely many paths from i to j.

In practice, the paths from i to j will have long common subpaths. This can
be used to simplify execution conditions by “factoring out” the subpath. Let
s1 . . . sl be such a common subpath, where there is no other path from s1 to
sl. Then by the distributive law,

E(i, j) = E(i, s1) ∧
l−1
∧

ν=1

c(sν → sν+1) ∧ E(sl, j)

as can easily be verified. This formula avoids redundant copies of the c(e) on
the common subpaths and can easily be generalized to more than one common
subpath. It should be used with common subpaths as long as possible, such
that in the remaining E(x, y), the paths between x and y are hopefully disjoint.

Next, we will demonstrate that control dependence cycles can be ignored. This
property is very important; as a consequence, no fix point iteration or similar
is needed during generation of path conditions.

Lemma 8 [22]. Let P = p1p2 . . . pk−1q pk+1 . . . pn be the one and only path
from i to j (that is, p1 = i, pn = j), where a cycle q0 . . . qm is attached to P

(that is, qo = qm = q). Then the cycle does not contribute to E(i, j) and can
safely be ignored.

Intuitively, the lemma holds because cycles only make execution conditions
weaker: an additional walk through a cycle adds more flow conditions (say B)
to the non-cyclic condition (say A), and via the absorption law (A∨A∧B = A),
cycles can be ignored. The lemma is still true if there are two or more cycles
attached to a path. In case cycles overlap, their control flow conditions can be

15

duplicated due to the idempotency law, and the overlapping cycles replaced by
non-overlapping ones. Hence any cycle situation can be reduced to succesive
applications of the lemma. Furthermore, the lemma can be applied to all paths
from i to j, leading to the

Theorem 9 [22]. For the computation of E(i, j), all cycles can be ignored.

From now on, we assume that the set of control dependence paths between two
nodes is a directed acyclic graph. This can be utilized if all E(i, j) for a specific
program are needed, by generating the execution conditions in topological
order. The following lemma shows that E(i, j) can easily be generated from
the conditions for j’s predecessors:

Lemma 10 [22]. Let j be an indirect successor of i, let p1, . . . , pk be the im-
mediate predecessors of j in the CDG. Then

E(i, j) =
k
∨

ρ=1

E(i, pρ) ∧ c(pρ → j)

In many cases, the CDG (or its relevant part) is a tree. Only programs con-
taining GOTOs or other forms of unstructured flow of control will produce
non-tree CDGs. Otherwise, there is only one CDG path q1, . . . , qk from START
to any node j, and the above formulae collapse to

E(j) =
k−1
∧

ν=1

c(qν → qν+1)

If i is a predecessor of j the CDG tree, then we have the obvious corollary
E(j) ⇒ E(i).

Often, not just one execution condition is needed, but a conjunction
∧n

ν=1 E(pν)
of them which belong to a PDG path p1, . . . , pn. If the CDG is a tree (or,
more precisely, for any pnu ∈ P there is only one CDG path to START),
a redundancy-free formula for

∧n
ν=1 E(pν) can be obtained, as stated in the

following

Theorem 11 [22]. Let P = {p1, p2, . . . , pn} be CDG nodes. Assume any pj

has only one CDG path to START, and let Kn = {a → b | ∃pi ∈ {p1, . . . , pn} :
a → b is on a path from START to pi}. Then

n
∧

ν=1

E(pν) =
∧

a→b ∈Kn

c(a → b)

16

Hence all one has to do is to collect all edges above P and determine the con-
junction of their control flow conditions. For programs with non-structured
control flow, it might be that E(pν) and E(pµ) have common control condi-
tions c(e). By using the distributive law, these can sometimes be factored out.
But in general, a redundancy-free form of the execution conditions cannot be
obtained. The best one can aim at is a minimal normal form, which still might
contain some c(a → b) twice.

The execution conditions are needed for the computation of path conditions in
the PDG. If many such conditions must be determined and solved for the same
program, it might be wise to precompute all the needed E(j) = E(START, j)
once and attach them to the PDG nodes j. Computation in topological order,
according to the above lemma, will make this precomputation much faster.

3.5 Path Conditions

We will now establish necessary conditions which must be fulfilled in order
that a data flow between two PDG nodes i and j can take place. Of course,
there must be a path from i to j. Furthermore, all nodes on the path must be
executable, that is, their execution conditions must be satisfyable. Finally, any
data flow conditions on arcs along the path must be fulfilled as well. If there
are several paths between i, j, at least one of them must have a satisfyable
path condition.

Definition 12 Let P = p1, p2, . . . , pn be any path in the PDG connecting
nodes i and j. The path condition for P is

PC(P) =
n
∧

ν=1

E(pν) ∧
n−1
∧

ν=1

d(pν → pν+1)

In case there are several paths P1, P2, . . . , Pk from i to j, the path condition is

PC(i, j) =
k
∨

µ=1

PC(Pµ) =
k
∨

µ=1

nµ
∧

ν=1

E(pν) ∧
nµ−1
∧

ν=1

d(pν → pν+1)

Cycles can safely be ignored, due to the same arguments as in the previous
section. But again we face the problem that PC(i, j) will contain lots of redun-
dant copies of identical control flow conditions. Again, we try to factor out
common subpaths (say, subpath s1 . . . sl), before more subtle simplification
takes place:

PC(i, j) = PC(i, s1) ∧
l

∧

ν=1

E(sν) ∧
l−1
∧

ν=1

d(sν → sν+1) ∧ PC(sl, j)

17

In general, the longest common subsequence of two or more overlapping paths
(i.e. sequence of edges) can be determined by a standard algorithm, in order to
maximize factoring out effects. Remember that a redundancy-free formula for
∧n

ν=1 E(pν) has been derived in the last section, in case the control dependence
edges above the E(pν) form a tree.

3.6 Solving the Path Conditions

Path conditions must be simplified, and even if they are in minimal normal
form, they are not necessarily in solved form. Before we can try to solve path
conditions, they have to be preprocessed in order to improve the minimiza-
tion process. Any c(a → b) in a path condition is in fact a boolean expression
from an IF, WHILE or similar statement. On the top level, such an expression
might be composed from boolean AND, NOT, OR etc. operators, while atomic
conditions might contain relational operators, function calls etc. For purposes
of simplification and minimization, all atomic conditions are replaced by fresh
symbolic variables. Common subexpression elimination (which took place ear-
lier during slicing) will improve this process by avoiding multiple symbolic
variables for the same atomic condition. The following example demonstrates
the advantage of top-level decompositon of control flow conditions:

if (A && B)

p();

else if (B)

q();

else

r();

Here, p() is governed by A ∧ B, q() is governed by ¬(A ∧ B) ∧ B. The
latter can later be simplified to ¬A ∧ B, and the condition for r() can be
simplified to ¬A ∨ ¬B. These simplifications would be impossible without
top-level decomposition of control flow conditions.

Simplification and subsequent solving can be done in three steps:

(1) Simplification based on the following rewrite rules:

A ∧ true → A, A ∧ A → A, A ∨ A → A, ¬(A ∧ B) → ¬A ∨ ¬B,

¬(A ∨ B) → ¬A ∧ ¬B, A ∨ (A ∧ B) → A, A ∧ B ∨ A ∧ C → A ∧ (B ∨ C)

Simplification based on rewriting has always polynomial time complex-
ity. Note that factorizing common subpaths as described above can in
principle be omitted and replaced by simplification. But it seems simpler

18

to factor out common paths and execution conditions right from the be-
ginning. The example in section 4 will show that simplification alone can
produce reasonable understandable path conditions.

(2) If the resulting simplified path condition still contains redundant copies of
elementary flow conditions, a computation of minimal disjunctive normal
form may be appropriate. The standard minimization algorithms (e.g.
Quine/McCluskey) all can have exponential time complexity. The Quine-
McCluskey algorithm, for example, first determines the set of prime im-
plicands; afterwards, a branch-and-bound algorithm computes a minimal
cover of prime implicands which already generate the whole path condi-
tion.

(3) As a last step, one might try to solve the minimized path condition by
using a constraint solver or a system for symbolic mathematics. Con-
straint solving is the basic mechanism in constraint logic programming
[16], and CLP(R) was one of the first available systems [15]. Several
powerful constraint solvers are available today. The system CLP(BNR)
can solve constraints on booleans, integers, and reals; it does not aim at
symbolic simplification of constraints, but will try to determine actual
intervals for the possible values of variables [5].

The generated constraints can contain arbitrary target language expressions.
Hence it is unlikely that a general-purpose problem solver will produce sophis-
ticated solutions for our application, namely the validation of measurement
software. But note that the constraint solver works on a minimal DNF rep-
resentation of a necessary condition. Such a condition is satisfyable iff one
of its prime implicands can be satisfied. Therefore, the prime implicands can
be solved independently and in parallel. The prime implicands themselves are
conjunctions of atomic conditions. Therefore, any atomic condition containing
operations outside the scope of the solver (e.g. bit operations) can just be ig-
nored by the solver. As an example, consider (i+3 = 2·j−32)∧(i > 10)∧(j <

42) ∧ A ∧ B ∧ C. Solving linear constraints is easy for today’s systems, and
results in the simplified form (i + 3 = 2 · j − 32) ∧ (10 < i < 49)∧A∧B ∧C.
A, B, C can then be tackled by a different solver (or left untouched).

Generation, simplification and minimization of path conditions are fully im-
plemented in VALSOFT. Some C control statements needed special treatment
not described in the section on execution resp. path conditions. The integra-
tion of the constraint solver, however, is still missing. After several experiments
with small and medium-sized programs, we now believe that general purpose
solvers alone will not achieve very much, and that dedicated techniques which
utilize the special structure of PDGs have to be applied. We already men-
tioned special techniques for array-related conditions [19,27]. Current research
in constraint solving is described in [3].

19

Fig. 7. Solver user interface

4 An example

Figure 8 presents a fictious measurement system program. The example has
been modelled after typical programs analysed by PTB. It reads a weight value
from hardware port p ab and an article number from port p cd. The article
number and the calibrated weight are displayed in an LCD unit. The program
contains a calibration path violation: in case the “paper out” signal is active
and the keyboard input is “+” or “–”, the calibration factor is multiplied by
1.1 and thus 10% too high. It is the aim of this section to demonstrate how
slicing discovers the calibration path violation, and how the formulas defined
in the previous section yield the precise conditions under which this takes
place.

Figure 2 presents the actual VALSOFT user interface for this example pro-
gram. A chop from the definition of p cd to the output value of u kg is dis-
played both in the PDG and in the source code. Note that the VALSOFT
PDG has granularity on the expression level, as can be seen by the highlightes
source code pieces.

For the purposes of presentation, we will analyse a somewhat simplified version
of this example. Figure 9 presents the relevant parts of figure 8. Figure 10
shows the corresponding PDG 5 . Node 1 is the START node (there is no extra

5 This traditional PDG was manually generated and does not contain nodes for

20

/* ** **

** Prototyp eines Messgeraet-Steuerprogramms **

** Stand: 16.02.96 **

** ** */

#include <stdio.h>

/* -- */

char

idx; /* Laufvariable */

e_puf[17]; /* Tastatur-Puffer fuer Artikel-Nr. */

int

u; /* Momentanwert Spannung */

float

u_kg, /* Gewicht */

kal_kg = 2.664E-3; /* Kalibrierfaktor */

/* -- */

/* Hardware: 2 Multifunktionsbausteine, deren Register hier **

** durch zwei unsigned char arrays wiedergegeben werden. **

** An Port p_ab[PA], p_ab[PB] ist ein Analog-Digital-Wandler **

** angeschlossen. An Port p_cd[PA] eine Tastatur, die ASCII- **

** Zeichen liefert (Handshake-Leitungen an p_cd[CTRL2], bits 0 **

** und 1). An Port p_cd[PB] ist ein Drucker angeschlossen **

** (Kontrolleitung fuer "paper out" an p_cd[CTRL2], bit 4). */

unsigned char

p_ab[16], p_cd[16]; /* Port-Register fuer ADU, Tastatur, */

/* Drucker, ... */

#define PB 0 /* Register des 6522 */

#define PA 1

#define PA2 15

#define DDRB 2

#define DDRA 3

#define TIM1_L 4

#define TIM1_H 5

#define T1L_L 6

#define T1L_H 7

#define TIM2_L 8

#define TIM2_H 9

#define SSR 10

#define CTRL1 11

#define CTRL2 12

#define I_FLAGS 13

#define I_ENABL 14

/*---*/

main() {

u = 0;

u_kg = 0.0;

while(TRUE) { /* Schleife Normalbetrieb --> */

if ((p_ab[CTRL2] & 0x10)==0) { /* ADU fertig --> */

u = ((p_ab[PB] & 0x0f) << 8) + (unsigned int)p_ab[PA];

/* 12-bit Momentanwert */

u_kg = u * kal_kg;

/* Kalibrierung, Fliesskomma- **

** Wandlung */

} /* ... ADU fertig */

/* . */

if ((p_cd[CTRL2] & 0x01) != 0) { /* Taste gedrueckt --> */

for (idx=0;idx<7;idx++) { /* max. 7 Zeichen einlesen --> */

if (p_cd[PA] == 0x0d) break; /* ENTER-Taste gedrueckt */

e_puf[idx] = p_cd[PA]; /* Zeichen holen (ASCII) */

p_cd[CTRL2] |= 0x02; /* ACK-Impuls */

p_cd[CTRL2] &= ~0x02;

if ((p_cd[CTRL2] & 0x10) != 0) {/* Eingebaute Manipula- */

/* tionsmoeglichkeit !!! */

/* Nur wenn gleichzeitig */

/* "paper out" */

switch(e_puf[idx]) {

case ’+’:

kal_kg *= 1.1;

idx--;

break;

case ’-’:

kal_kg *= 0.9;

idx--;

break;

default: break;

} /* ... switch */

} /* ... "paper out" */

} /* ...for(;idx;), BREAK bei ENTER-Taste */

e_puf[idx] = ’\0’; /* String-Abschluss */

} /* ... Taste gedrueckt */

/* . */

/* Ausgabe 1. Zeile LCD-Display */

/* 0123456789012345 */

/* [Artikel: NNNNNNN] */

printf("Artikel: %07.7s",e_puf);

/* Ausgabe 2. Zeile LCD-Display */

/* 0123456789012345 */

/* [-00.00 kg] */

printf(" %6.2f kg ",u_kg);

} /* ... Schleife Normalbetrieb */

} /* ... main */

/*---*/

Fig. 8. Simple measurement system software

START node, as the program contains only one top level statement). The
PDG also contains the input and output ports, as well as a port for the initial
value of kal kg. Thick edges are control dependence edges. Note that there
is no data dependence edge from node (idx==0) to (12), as elementary data
flow analysis will detect that the loop will be executed at least once.

The backward slice from statement 14 (BS(14), which is the printout of the
weight value) not only contains the calibration statement (statement 3) and
the data port for the weight value, but also statements 10 and 11 (modification
of the calibration factor) and—via statement 7—also the keyboard input port.

expressions, as described in section 2. The full PDG for this example, as generated
by VALSOFT, contains 113 nodes and is already too complex to be useful for manual
inspection (see figure 2).

21

(1) while(TRUE) {

(2) if ((p_ab[CTRL2] & 0x10)==0) {

(3) u = ((p_ab[PB] & 0x0f) << 8) + p_ab[PA];

(4) u_kg = u * kal_kg;

}

(5) if ((p_cd[CTRL2] & 0x01) != 0) {

(6) for (idx=0;idx<7;idx++) {

(7) e_puf[idx] = p_cd[PA];

(8) if ((p_cd[CTRL2] & 0x10) != 0) {

(9) switch(e_puf[idx]) {

(10) case ’+’: kal_kg *= 1.1; break;

(11) case ’-’: kal_kg *= 0.9; break;

}

}

}

(12) e_puf[idx] = ’\0’;

}

(13) printf("Artikel: %07.7s\n",e_puf);

(14) printf(" %6.2f kg ",u_kg);

}

Fig. 9. Excerpt from measurement software

1

2 5

idx=0 6

3 4 7 8

10 11

idx++

LCD

p_ab p_cd

kal_kg

 13 14

12

9

Fig. 10. PDG for Fig. 9

Thus there is a possible influence of the keyboard to the weight value, as p cd ∈
BS(14). This is certainly very suspicious and requires further investigation.

The chop CH(p cd, 14) between keyboard and weight value display consists

22

of several paths:

(p cd) → (5) → (6) → (8) → (9) → (11) → (4) → (14)

(p cd) → (5) → (6) → (8) → (9) → (10) → (4) → (14)

(p cd) → (5) → (idx = 0) → (6) → (8) → (9) → (11) → (4) → (14)

(p cd) → (5) → (idx = 0) → (6) → (8) → (9) → (10) → (4) → (14)

. . .

In this list, all cycles involving idx++ have been ignored, which is allowed
according to the previous section.

The path condition is determined according to PC(p cd, 14) =
∨

µ

∧

ν E(pν).
6

There is only one subpath common to all paths, namely (4) → (14). We there-
fore factor out PC(4, 14) ≡ E(4) ∧ E(14). Furthermore, E(p cd) = E(5) =
E(14) = true. 7 Now it turns out that the CDG of the program is a tree.
Hence an E(pν) contributes nothing if pν is an inner node. This leads to a
dramatic reduction of the path condition:

PC(p cd, 14) =
(

E(11) ∨ E(10) ∨ (E(7) ∧ E(11)) ∨ (E(7) ∧ E(10))

∨(E(idx = 0) ∧ E(11)) ∨ (E(idx = 0) ∧ E(10))

∨(E(idx = 0) ∧ E(7) ∧ E(11)) ∨ (E(idx = 0) ∧ E(7) ∧ E(10))

∨(E(idx = 0) ∧ E(11)) ∨ (E(idx = 0) ∧ E(10))

∨(E(idx = 0) ∧ E(7) ∧ E(11)) ∨ (E(idx = 0) ∧ E(7) ∧ E(10))

∨E(11) ∨ E(10) ∨ (E(7) ∧ E(11)) ∨ (E(7) ∧ E(10))
)

∧E(4)

Simplification via idempotency and absorption laws leads to a collaps of this
condition:

PC(p cd, 14) = (E(10) ∨ E(11)) ∧ E(4)

According to the CDG,

E(10) ≡ c((5) → (6)) ∧ c((6) → (8)) ∧ c((8) → (9)) ∧ c((9) → (10))

6 There is only one data flow condition: d((7) → (9)) ≡ idx = idx, which is trivial
and hence deleted. Thus the data flow conditions contribute nothing in this simple
example.
7 The control flow conditions outgoing from (1) are all TRUE and hence deleted.

23

E(11) ≡ c((5) → (6)) ∧ c((6) → (8)) ∧ c((8) → (9)) ∧ c((9) → (11))

which leads—after factorization—to the path condition

PC(p cd, 14)= (c((9) → (10) ∨ c((9) → (11)) ∧ c((5) → (6)) ∧ c((6) → (8))

∧c((8) → (9)) ∧ c((2) → (4))

The control flow conditions are:

c((2) → (3)) ≡ c((2) → (4)) ≡ p ab2[CTRL2]&0x10 = 0

c((5) → (6)) ≡ c((5) → (12)) ≡ p cd5[CTRL2]&0x01 6= 0

c((6) → (7)) ≡ c((6) → (8)) ≡ idx6 < 7

c((8) → (9)) ≡ p cd8[CTRL2]&0x10 6= 0

c((9) → (10)) ≡ e puf9[idx9] = “+”

c((9) → (11)) ≡ e puf9[idx9] = “–”

which leads to the explicit path condition

PC(p cd, 14) = (e puf9[idx9] = “+” ∨ e puf9[idx9] = “–”)

∧p cd5[CTRL2]&0x01 6= 0 ∧ idx6 < 7

∧p cd8[CTRL2]&0x10 6= 0 ∧ p ab2[CTRL2]&0x10 = 0

The dependence equations are F (G) ≡ u2 = u3 ∧ u kg4 = u kg14 ∧ (kal kg4 =
kal kg10∨kal kg4 = kal kg11∨kal kg4 = kal kg0)∧e puf7 = e puf9∧e puf12 =
e puf13 ∧ (idx7 = idxidx=0 ∨ idx7 = idxidx=0) ∧ (idx9 = idxidx=0 ∨ idx9 =
idxidx++) ∧ idx12 = idxidx++ ∧ (idx6 = idxidx++ ∨ idx6 = idxidx=0). Hence
idx7 = idx9, and F (G) contains e puf7[idx7] = p cd7[PA]. Applying F (G) to
the path condition, and removing the conditions which do not invole input
ports yields

PC(p cd, 14)= (p cd7[PA] = “+” ∨ p cd7[PA] = “–”)

∧p cd5[CTRL2]&0x01 6= 0 ∧ p cd8[CTRL2]&0x10 6= 0

∧p ab2[CTRL2]&0x10 = 0

Further constraint solving does not make sense, thus the last equation is pre-
sented to the user. Informally, it reads as follows: “If the keyboard input is +

24

Path Conditions:

[83] NOT (p_cd/3[1] == 43) AND

[50] ((p_cd/3[0] & 1) != 0) AND

[62] (idx/18 < 7) AND

[75] ((p_cd/3[0] & 16) != 0) AND

[94] (p_cd/3[1] == 45) AND

[23] ((p_ab/2[0] & 16) == 0)

OR

[50] ((p_cd/3[0] & 1) != 0) AND

[62] (idx/18 < 7) AND

[75] ((p_cd/3[0] & 16) != 0) AND

[83] (p_cd/3[1] == 43) AND

[23] ((p_ab/2[0] & 16) == 0)

Dependence Equations:

[84] [60] (idx/22 == 0)

[84] [105] (idx/22 == (idx/29 + 1))

[71] [60] (idx/20 == 0)

[71] [105] (idx/20 == (idx/29 + 1))

[111] [60] (idx/31 == 0)

[111] [105] (idx/31 == (idx/29 + 1))

[95] [60] (idx/25 == 0)

[95] [105] (idx/25 == (idx/29 + 1))

[63] [60] (idx/18 == 0)

[63] [105] (idx/18 == (idx/29 + 1))

Fig. 11. Path conditions for chop between keyboard input and LCD display

or –, and (not necessarily at the same time) the ‘paper out’ signal is active,
there is data flow from the keyboard to the displayed weight value”. A human
would have a hard time to extract such statements from large programs!

Figure 7 shows the solver user interface for this example. A path condition for
a specific slice or chop is computed by simply selecting the endpoints of the
chop/slice in the PDG and activating the solver. In figure 7, the path condi-
tion for the chop between keyboard input and LCD output is displayed. As
this condition is computed on the fine-grained VALSOFT SDG, it is slightly
more complicated than the condition derived from the manual analysis above,
see figure 11. The path condition is displayed in disjunctive normal form; in
addition, all dependence equations are displayed. Variables are indexed with
PDG node numbers, as required. For any atomic condition in a prime impli-
cand, a PDG node in square brackets gives the node number of the statement
which generated the condition 8 .

The first prime implicand in the path condition could be simplified further if
the solver knew that p cd3[1] = 45 implies p cd3[1] 6= 43; this redundancy will
disapperar after the full constraint solver has been integrated. As for the rest,
the conditions are equivalent those presented in the text above, except that
bit strings are transformed to their integer representation, and some additonal
(trivial) constraints on idx are visible.

5 Experiences and Future work

Work on VALSOFT started in 1995. After two years, we have a fairly com-
plete implementation of slicer and solver, comprising about 30000 lines of

8 The display of the path conditions and dependence equations still is preliminary;
it could easily be improved e.g. by providing hyperlinks from the PDG node numbers
back to the PDG resp. source code.

25

C++ code. Experiments demonstrate that the system is also fairly efficient.
The following table gives some performance data. The first program is the
simple example from section 4, the last program is a real measurement system
comprising more than 2000 lines of C code.

LOC AST nodes SDG nodes SDG Time Solver Time

31 271 113 0.7s 1s

830 6408 3881 12s 1s - 10s

2107 32720 6091 19s 5s - 3min

Once the SDG is constructed, slicing times are neglectable and thus not shown.
Solver times do not include constraint solving, but includes generation and
minimization of path conditions. Solver time depends strongly on the selected
path or chop. Fortunately, only a small number of solver runs is necessary
for an analysis of a measurement system: the manufacturer has to state in
advance which parts of the software belong to the calibration path and which
parts do not. Hence only chops which cross the calibration path boundary
need their path conditions computed.

There is, however, a list of things still to do:

• at the moment, only a flow-insensitive pointer alias analysis is implemented.
• analysis of GOTOs and unstructured switch statements still has to be inte-

grated.
• variants in a union type are not discriminated at the moment.
• performance both in time and space must be improved.
• PDGs are too big to be presented to the end user; an interface based on

source text seems more appropriate.

Adding these items is just a question of manpower, as algorithms for every
topic are available. There are also several topics for future research:

• Slicing has been generalized for object-oriented languages [25]; path condi-
tions should be extended as well.

• Precise path conditions for standard data types (lists, trees, ...) would im-
prove analysis in case abstract data types are used (e.g. through libraries
such as STL).

• a collection of constraint solving techniques suitable for VALSOFT must be
carefully selected and integrated.

• measurement systems often use parallel or pseudo-parallel code. Slicing and
path conditions for such code have to be developed.

• abstract model checking [8] can perhaps be used to test efficiently whether
a negated path condition is universally valid—if not, the original path con-
dition is satisfyable.

26

6 Conclusion

We have shown how to extend program slicing with constraint solving. For any
slice or chop, path conditions can be generated, which are necessary conditions
for data flow along a slice or chop. We have seen how path conditions are
constructed, simplified and perhaps solved by a constraint solver. This leads to
more precise information than traditional slicing. The method is implemented
in the VALSOFT system and will be applied in safety analysis of measurement
software, where any influences on the calibration path must be detected and
analysed. Although several algorithmic details have been omitted in this paper,
an example demonstrated the feasibility of the approach. We expect our tool
to be useful not just for measurement software, but for other safety-critical
software as well.

Acknowledgement

The work described in this paper was funded by the Bundesministerium für
Bildung und Forschung, FKZ 01 IS 513 C9. T. Robschink implemented the
path conditions. U. Grottker provided the example program. K. Bloehm im-
plemented the VALSOFT Frontend.

References

[1] H. Agrawal, R. DeMillo, E. Spafford: Dynamic slicing in the presence of
unconstrained pointers. Proc. 4th Symposium on Testing, Analysis, and
Verification. ACM 1991, pp. 60–73.

[2] H. Agrawal: On slicing programs with jump statements. Proc. SIGPLAN ’94
Conference on Programming Language Design and Implementation, pp. 302–
312.

[3] F. Benhamou, A. Colmerauer (Ed.): Constraint Logic Programming: Selected
Research. MIT Press 1993.

[4] T. Ball and S. Horwitz. Slicing programs with arbitrary control flow. Proc.
First Intl. Workshop on Automated and Algorithmic Debugging, LNCS 749, pp.
206–222, Springer, 1993.

[5] F. Benhamou, W. Older: Applying Interval Arithmetic to Real, Integer and
Bolean Constraints. To appear in Journal of Logic Programming (1995).

[6] J. Choi, M. Burke, P. Carini: Efficient flow-sensitive interprocedural computation
of pointer-induced aliases and side effects. Proc. 20th Principles of Programming
Languages, ACM 1993, pp. 232–245.

27

[7] J. Choi, J. Ferrante: Static slicing in the presence of GOTO statements. ACM
TOPLAS 16(1994), pp. 1087–1113.

[8] E. Clarke, O. Grumberg, D. Long: Model checking and abstraction. ACM
TOPLAS 16,5 (September 1994), pp. 1512–1542.

[9] D. Denning, P. Denning: Certification of programs for secure information flow.
Communications of the ACM 20(7), pp. 504–513, Juli 1977.

[10] M. D. Ernst. Practical fine-grained static slicing of optimized code. Technical
Report MSR-TR-94-14, Microsoft Research, Redmond, WA, July 1994.

[11] J. Field, G. Ramalingam, F. Tip: Parametric program slicing. Proc. 21th
Symposium on Principles of Programming Languages, ACM 1995, S. 379–392.

[12] S. Horwitz, P. Pfeiffer, T. Reps: Dependence analysis for pointer variables. Proc.
SIGPLAN Programming Language Design and Implementation, ACM 1989, pp.
28–40.

[13] S. Horwitz, T. Reps: The use of program dependence graphs in software
engineering. Proc. 14th Int. Conference on Software Engineering, IEEE 1992,
pp. 392–411.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM TOPLAS 12(1):26–60, January 1990.

[15] J. Jaffar, S. Michaylow, P. Stuckey, R. Yap: The CLP(R) language and system.
ACM TOPLAS 14(3), pp. 339–395 (Juli 1992).

[16] J. Jaffar, M. Maher: Constraint logic programming: a survey. To appear in
Journal of Logic Programming (1995).

[17] W. Landi, B. Ryder: A safe approximation algorithm for interprocedural pointer
aliasing. Proc. SIGPLAN Programming Language Design and Implementation,
ACM 1992, pp. 93–103.

[18] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a
software development environment. ACM SIGPLAN Notices 19(5), pages 177–
184, 1984.

[19] W. Pugh, D. Wonnacott: Static analysis of upper and lower bounds on
dependences and parallelism. ACM TOPLAS 16, 4 (July 1994), pp. 1248–1278.

[20] T. Reps, S. Horwitz, M. Sagiv, G. Rosay: Speeding up Slicing. Proc. 2nd
SIGSOFT Foundations of Software Engineering, ACM 1994, pp. 11–20.

[21] G. Smolka, M. Henz, J. Würz: Object-Oriented Concurrent Constraint
Programming in Oz. DFKI Research Report 93–16.

[22] Snelting, G.: Combining Slicing and Constraint Solving for Validation of
Measurement Software. Proc. Static Analysis Symposium 1996, LNCS 1145, pp.
332–348.

28

[23] Christoph Steindl. Intermodular slicing of object-oriented programs. In
International Conference on Compiler Construction (CC’98), 1998. (to appear).

[24] F. Tip: A survey of program slicing techniques. Journal of Programming
Languages 3 (1995), pp. 121–189.

[25] F. Tip, J. Choi, J. Field, G. Ramalingam: Slicing Class Hierarchies in C++.
Proc. 11th Conference on Object-Oriented Programming Systems, Languages,
and Applications. SIGPLAN Notices 31(10), pp. 179–197.

[26] M. Weiser: Program Slicing. IEEE Transactions on Software Engineering, 10(4),
pp. 352–357, Juli 1984.

[27] M. Wolfe, C. Tseng: The power test for data dependency. IEEE Transactions
on Parallel and Distributed Systems 3,5 (September 1992), pp. 591–601.

29

