
Evaluating Context-Sensitive Slicing and Chopping

Jens Krinke
Universiẗat Passau
Passau, Germany

Abstract

We present an empirical evaluation of three context-
sensitive slicing algorithms and five context-sensitive chop-
ping algorithms, and compare them to context-insensitive
methods. Besides the algorithms by Reps et al. and Agrawal
we investigate six new algorithms based on variations of k-
limited call strings and approximative chopping based on
summary information. It turns out that chopping based on
summary information may have a prohibitive complexity,
and that approximate algorithms are almost as precise and
much faster.

1. Introduction

Slicing is an established technique for reverse engineer-
ing and other analyses like testing or debugging—it is avail-
able in research prototypes and even in commercial prod-
ucts. There are two main approaches to slicing: The original
slicing technique from Weiser [19] is based on traditional
data flow analysis; the other approach is based on Program
Dependence Graphs [13, 6, 7]. Extensive evaluations of dif-
ferent slicing algorithms have not really been done yet—for
control flow graph based algorithms some data reported by
Atkinson and Griswold can be found in [4, 3, 2]. The only
evaluation of program dependence based algorithms that the
author is aware of has been conducted by Agrawal and Guo
[1], who just compare two algorithms, where one has flaws
(as shown in this paper). Slicing identifies statements in a
program which may influence a given statement (the slicing
criterion), but it cannot answer the question why a specific
statement is part of a slice. A more focused approach can
help: Choppingreveals the statements which are involved
in a transitive dependence from one specific statement (the
source criterion) to another specific statement (the target
criterion). An evaluation of chopping algorithms has never
been done, [14] reports only limited experience.

In the following we introduce different slicing (Section
2) and chopping (Section 4) algorithms, which are evaluated
in Section 3 and 5. Conclusions are drawn in Section 6.

1.1. Program Dependence Graphs

The Program Dependence Graph (PDG)[13, 6, 7] is a
directed graph whose vertices represent the statements and
control predicates that occur in a program. It also contains
a uniqueentryvertex. The edges represent thedependences
between the components of the program: Acontrol depen-
denceedge from vertexv1 to v2 represents that the evalua-
tion of the predicate that is represented byv1 is controlling
the execution of the component that is represented byv2. A
data dependenceedge from vertexv1 to v2 represents that
the component represented byv1 assigns to a variable which
may be used at the component represented byv2.

The extension of the PDG forinterprocedural programs
introduces more vertices and edges: For every procedure a
procedure dependence graphis constructed, which is ba-
sically a PDG withformal-in and -out vertices for every
formal parameter of the procedure. A procedure call is
represented by acall vertex andactual-in and -out ver-
tices for each actual parameter. The call vertex is con-
nected to the entry vertex by acall edge, theactual-in
vertices are connected to their matchingformal-in vertices
via parameter-inedges and theactual-outvertices are con-
nected to their matchingformal-outvertices viaparameter-
out edges. Such a graph is calledInterprocedural Pro-
gram Dependence Graph (IPDG). TheSystem Dependence
Graph (SDG)is an IPDG, wheresummary edgesbetween
actual-in and actual-out have been added representing tran-
sitive dependence due to calls [7].

1.2. Context-Insensitive Slicing

Slicing on (intraprocedural) PDGs is just a simple reach-
ability problem: A (backward) slice to a vertex (theslicing
criterion) is the set of vertices from which the criterion ver-
tex is reachable. The algorithm is shown in Figure 1. We
call it context-insensitive slicing (CIS). Later on, we will
also use forward slicing, which is the set of vertices reach-
able from the criterion vertex. If this algorithm is used on
IPDGs or SDGs, the resulting slices are not accurate, as the
calling contextis not preserved: the algorithm may traverse

c©2002 IEEE. Published in the Proceedings International Conference on Software Maintenance, 2002 in Montreal, Canada. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



Let G= (V,E) be the given IPDG
Let s∈V be the given slicing criterion
W = {s}, mark s as visited
while W is not emptydo

remove one element w from W
foreachv→ w∈ E do

if v is not yet markedthen
W = W∪{v}, mark v as visited

returnthe set of all visited vertices

Figure 1. Context-Insensitive Slicing

Let G= (V,E) be the given SDG
Let s∈V be the given slicing criterion
W = {s}, mark s withup
while W is not emptydo

remove one element w from W
Let mw be the mark of w
foreachv→ w∈ E do

Let mv be the mark of v
if mv 6= up then

if v→ w is a parameter-in or call edge
andmw 6= down then

W = W∪{v}, mark v asup
elsif v→ w is a parameter-out edge
andmv 6= down then

W = W∪{v}, mark v asdown
elsif mv 6= mw then

W = W∪{v}, mark v as mw
returnthe set of all visited vertices

Figure 2. Context-Sensitive Slicing in SDGs

a parameter-in edge coming from a call site into a proce-
dure, may traverse some edges there and may traverse a
parameter-out edge going to a different call site. The se-
quence of traversed edges (the path) is a so calledunreal-
izable path. This means it is impossible for an execution
that a called procedure does not return to its call site. We
consider an interprocedural slice to be precise if all vertices
included in the slice are reachable from the criterion by a
realizablepath.

1.3. Slicing with Summary Edges

Accurate slices can be calculated with a modified algo-
rithm on SDGs. The benefit of SDGs is the presence of the
summaryedges that represent transitive dependence due to
calls. The idea of [7, 15] is first to slice from the criterion
only ascending into calling procedures, and then to slice
from all visited vertices only descending into called pro-
cedures. The algorithm we use is shown in Figure 2, which
we callsummary information slicing (SIS).

2. Context-Sensitive Slicing

There are situations where summary edges cannot be
used: In presence of interference in explicit parallel pro-
grams, dependence is no longer transitive [9], a requirement
for summary edges. As interference dependence crosses
procedure boundaries, it cannot be summarized by sum-
mary edges. Under such circumstances the calling context
has to be preserved explicitly during the traversal of the
(threaded) IPDG.

A different approach for context-sensitive analysis is
based oncall strings [18] where the calling context is en-
coded explicitly during analysis in a sequence of call sites
simulating the call stack of an abstract machine. In the rest
of this section we will show how to use this approach for
slicing (and later, chopping) in program dependence graphs.
Let each call vertex and its actual-in and -out vertices in the
IPDG G be given a unique indexsi . A sequence of call
sitesc = si1...sin is called acall string. During traversal of
a parameter-out edge from a call sites goingdowninto the
called function, we generate a new, longer call stringc′ = sc.
If we traverse a parameter-in or call edge backup to a call
sites′, this call site mustmatchthe current leading element
of the call string (c = s′c′). Using call strings we can de-
fine a context-sensitive slicing method which is as precise
as context-sensitive slicing based on summary edges—it is
precise with respect to realizable paths [14].

2.1. Explicitly Context-Sensitive Slicing

In Figure 3 we show a general slicing algorithm which
obeys the calling context via call strings. Variants of the
algorithm come from the definition of down, up and match.
The simplest definition is as follows:

down(c,s) → cons(s,c)

up(c) →
{

cdr(c) c 6= ε
ε c = ε

match(c1,c2) → c1 = c2

In presence of recursion this doesn’t work, as neither the
set of call strings nor the call strings themselves are finite.
Agrawal and Guo presented an improved algorithm named
ECS in [1], where the call strings are cycle free. They define
down as follows (up and match are as above):

down(c,s)→
{

cons(s,c) c = s1s2 . . .sk∧∀si : s 6= si

si . . .sk c = s1s2 . . .sk∧s= si

However, using this definition the resulting slices are not
correct, as they might leave out vertices (statements) of
the slice. The incorrectness is based on the following
observation: As soon as a call stringc would form c =

2



Let G= (V,E) be the given IPDG
Let s∈V be the given slicing criterion
W = {(s,ε)}
while W is not emptydo

remove one element(w,c) from W
foreachv→ w∈ E do

if v has not been marked with a context c′

for whichmatch(c,c′) holdsthen
if v→ w is a parameter-in or call edgethen

Let sv be the call site of v
if c = ε∨car(c) = sv then

c′ = up(c)
W = W∪{(v,c′)}, mark v with c′

elsif v→ w is a parameter-out edgethen
Let sw be the call site of w
c′ = down(c,sw)
W = W∪{(v,c′)}, mark v with c′

else
W = W∪{(v,c)}, mark v with c

returnthe set of all visited vertices

Figure 3. Explicitly Context-Sensitive Slicing

sxsy1..synsxsz1...szm, it is replaced byc′ = sxsz1...szm to re-
move the cycle. Now, the algorithm fails to propagate the
effects with call stringc′ (which includes effects with call
string c) back to the call sitesy1, asc′′ = sy1..synsxsz1...szm

is not generated by up(c′). A counter example is given in
Figure 4, where two procedures are shown as an IPDG.
Procedure 1 contains its entry vertex1 and a call siteA,
composed from the call vertexA1, two actual-in vertices
A2 andA3, and an actual-out vertexA4. The second pro-
cedure contains its entry node2, two formal-in vertices
3 and 4, a formal-out vertex6, a vertex if for an if-
statement, and a call siteB, composed from the call ver-
tex B1, two actual-in verticesB2 and B3, and an actual-
out vertexB4. The vertices inside the procedures are con-
nected by control and data dependence edges. Also, pro-
cedure 1 calls procedure 2 at call siteA, and procedure 2
calls itself at call siteB. The actual-in/actual-out vertices
are properly connected to their formal-in/formal-out ver-
tices by parameter-in/parameter-out edges; the call edges
are not shown. Let us do a backward slice fromA4: The
initial worklist is {(A4,ε)}. A4 is reachable fromA1 and
6, and the worklist will contain{(A1,ε),(6,A)}. Next,A1
is visited, which is reachable from1, and this leaves the
worklist as{(6,A)}. Vertex6 is reached (transitively) from
2, 3, B1, B4, if , which are all marked with the call string
A. B4 is reached from6 by recursion. At this point, the
worklist is{(3,A),(6,BA)} and vertex6 has two marks:A
andBA. Vertex3 is reachable fromA2, where the call string
matches (at this point, vertex3 is only marked withA). It
is also reachable fromB2, but the call string doesn’t match.
From vertex6 the call stringBA is now propagated to2, 3,

1

A1

A2 A3 A4

2

3 4 if 6

B1

B2 B3 B4

CD

DD

PI/PO

Figure 4. Counter example for ECS

B1, B4, andif . Because vertex3 is now marked withBA,
we propagateA to B2, which is visited the first time.B2 is
reachable from vertex4 and transitively fromA3. At this
point, onlyB3 has not been visited yet, the vertices1 and
A1–A4 are marked withε; 2, 3, if , 6, B1, B4 are marked
with A andBA, and4 andB2 are only marked withA. Now,
the worklist only contains{(B4,BA)}. Due to the recursive
call, a new call stringBBAwould be generated and propa-
gated to vertex6. However, the cycle removement indown
folds BBA into BA, which has been used previously at ver-
tex 6. The ECS algorithm now terminates (the worklist is
empty) but the generated slice doesn’t contain vertexB3,
which is wrong: a propagation ofBBAwould visitB3.

2.2. Limited Context Slicing

One popular approach to circumvent the infinity prob-
lems is the length limitation of the call strings (call string
suffix approximationin [18]). For a givenk, the call string
is not allowed to be longer thank elements. If the call string
is alreadyk elements long before concatenation, the oldest
element is removed:

down(c,s)→
{

cons(s,c) c = s1s2 . . .sl ∧ l < k
ss1 . . .sk−1 l = k

We can use the general algorithm of Figure 3 directly with
these modifications. We call this variantk-limited context
slicing (kLCS). This approach becomes quite imprecise (it is
still correct) in presence of recursion: Consider a call string
of maximal lengthk. If this call string is propagated into a
recursive procedure, it may be propagatedk times into the
called recursive procedure. The result is a call string that
only contains call sites in the recursive procedure. This call
string may then be propagatedk times back into the call-
ing recursive procedure. Now, the resulting call string is
empty and all procedures that call the recursive procedure
are marked with the empty call string. The result is a re-
duced precision.

3



Let G= (V,E) be the given IPDG
Let s∈V be the given slicing criterion
W = {(s,ε)}
while W is not emptydo

remove one element(w,c) from W
foreachv→ w∈ E do

if v has not been marked with a context c′

for whichmatch(c,c′) holdsthen
if v→ w is a parameter-in or call edgethen

Let sv be the call site of v
if c = ε∨car(c) = sv then

if sv is marked as recursive
andv has not been marked with a context c′

for whichmatch(c,c′) holdsthen
W = W∪{(v,c)}, mark v with c

c′′ = up(c)
W = W∪{(v,c′′)}, mark v with c′′

elsif v→ w is a parameter-out edgethen
Let sw be the call site of w
if sw is marked as recursive
and car(c) = sw then

W = W∪{(v,c)}, mark v with c
else

c′ = down(c,sw)
W = W∪{(v,c′)}, mark v with c′

else
W = W∪{(v,c)}, mark v with c

returnthe set of all visited vertices

Figure 5. Folded Context-Sensitive Slicing

2.3. Folded Context Slicing

As we have seen, a way to make the call strings finite is
to remove cycles. Instead of removing them explicitly we
now present a different approach. First, we build thecalling
context graph. This is a graph where the vertices are the
call sites and the edges(v,w) represent calls that lead from
call sitev into a procedure that contains call sitew. In that
graph, the strongly connected components are folded into
one single vertex and the call sites of such a component are
replaced by one single call site. During that process all call
sites are marked if they are recursive. The definitions of
down etc. are only adapted, not changed. For example:

down(c, [s])→
{

cons([s],c) c = [s1][s2] . . . [sl ]∧ l < k
[s][s1] . . . [sk−1] l = k

If we use the modified down etc. within the algorithm of
Figure 3, we obtain the same incorrectness as Agrawal. Fig-
ure 5 presents a corrected algorithm, modified as follows:

1. If the algorithm descends into a called recursive func-
tion, it propagatestwo call strings: the call string gen-
erated byup and the actual call string (because of the
possible recursion).

2. If the algorithm ascends into a calling recursive func-
tion, it propagates the actual call string if the actual call
site is already present in (the first element of) the call
string or the call string generated bydownotherwise.

This modified algorithm is general enough to also be used
in an unlimited version, which is defined by:

down(c, [s])→ cons([s],c)

We call these variantsunlimited folded context slicing
(UFCS) and k-limited folded context slicing (kFCS). The
evaluation will show that the unlimited variant is unpracti-
cal due to combinatorial explosion of the set of call strings.

3. Evaluation I: Slicing

Unlike Agrawal and Guo, who only compared context-
insensitive slicing (CIS) with ECS in [1], we have imple-
mented all slicing algorithms of the previous sections to
evaluate them fully. We used our infrastructure to analyze
C programs [10] to implement all slicing (and chopping) al-
gorithms with a flow-insensitive but context-sensitive alias
analysis similar to [5]. The details of the analyzed pro-
grams are shown in Figure 6. The programs stem from three
different sources: ctags, patch and diff are the GNU pro-
grams. The rest are from the benchmark database of the
PROLANGS Analysis Framework (PAF) [17]. The ‘LOC’
column shows lines-of-code (measured viawc -l ), the
‘ENTR’ column the amount of procedures (the number of
entry vertices in the PDG) and the ‘nodes’ column shows
the number of vertices in the IPDG. Like Agrawal and Guo,
we selected the formal-in vertices as slicing criteria to make
the results comparable; the amount of resulting slicing cri-
teria (the number of formal-in vertices) is shown in col-
umn ‘slices’. The limited size of the programs is due to
the amount of slices that had to be done, which caused a
quadratic runtime for one complete test of a program.

3.1. Precision of kLCS and kFCS

How precise can we be with the new algorithmskLCS
and kFCS? How do we measure precision? As context-
insensitive slicing (CIS) is the most simple (and imprecise)
algorithm we consider it as 0% precision. Slicing with sum-
mary edges (SIS) is precise in respect to realizable paths
and we consider that as 100% precision. In Figure 7, we
present the precision ofkLCS andkFCS. The CIS column
gives the average size of a CIS slice and the SIS column
the average size of a SIS slice. There is already a big vari-
ation: The average CIS slice is between three and 300%
larger than the average SIS slice. For many programs, we
already have a high precision for smallk in bothkLCS and
kFCS. In some cases (shown in bold), the precision ofkFCS

4



LOC ENTR nodes slices edges summary % time
A gnugo 3305 38 3875 281 10657 2064 16 0.03
B ansitape 1744 76 6733 1082 18083 12746 41 0.15
C assembler 3178 685 13393 2401 97908 114629 54 3.58
D cdecl 3879 53 5992 697 17322 9089 34 0.08
E ctags 2933 101 10042 1621 24854 20483 45 0.24
F simulator 4476 283 9143 1019 22138 5022 18 0.06
G rolo 5717 170 37839 6540 264922 170108 39 5.53
H compiler 2402 49 15195 1017 45631 58240 56 0.80
I football 2261 73 8850 818 30474 17605 37 0.35
J agrep 3968 90 11922 1403 35713 12343 26 0.19
K bison 8313 161 25485 3744 84794 29739 26 0.72
L patch 7998 166 20484 3099 104266 83597 44 4.39
M flex 7640 121 38508 5191 235687 144496 38 4.19
N diff 13188 181 46990 10130 471395 612484 57 28.2

Figure 6. Details of the test programs

CIS SIS 1LCS 2LCS 3LCS 4LCS 5LCS 6LCS 1FCS 2FCS 3FCS 4FCS 5FCS 6FCS
A 1861 1798 100 100 100 100 100 100 100 100 100 100 100 100
B 2909 1645 7 74 74 74 74 100 7 74 74 74 74 100
C 6458 4286 48 48 48 100 100 100 48 48 48 100 100 100
D 1039 880 99 99 100 100 100 100 99 99 100 100 100 100
E 3207 2010 100 100 100 100 100 100 100 100 100 100 100 100
F 5455 3212 83 83 100 100 100 100 83 83 100 100 100 100
G 12819 7766 46 57 84 92 92 92 46 57 84 92 92 92
H 7474 6731 22 26 26 26 26 26 22 30 32 46 73 73
I 3081 2593 100 100 100 100 – – 100 100 100 100 100 100
J 3521 3183 41 49 59 100 100 100 41 49 59 100 100 100
K 7215 1859 74 96 96 97 97 97 74 96 96 98 100 100
L 9680 7965 92 99 99 100 100 100 92 99 99 100 100 100
M 14558 6172 29 29 29 29 29 29 29 30 30 32 98 100
N 19641 9179 88 98 98 98 98 – 88 98 99 99 100 –

Figure 7. Precision of kLCS and kFCS (avg. size)

is higher thankLCS. In only one case (flex, M) the precision
of 1FCS is slightly less than 1LCS (less than 0.1%, shown
in italics). We limited the amount of memory and time in
which all slices have to be calculated: The tests marked with
“–” needed more than 300MB core memory or didn’t finish
in fewer than eight hours on 1GHz machines with 512MB.

3.2. Speed of kLCS and kFCS

In Figure 8 we see the runtimes of the test cases for the
different slicing algorithms (in sec.). The given times are
for the complete set of slicing criteria. To get the average
time for a single slice one has to divide by the number given
in the ‘slices’ column of Figure 6. We haven’t given the
average time, because most numbers would be sub-second.
In the first two columns of Figure 8 we can see that the time
needed to do SIS slices is less than the time to do CIS slices
if the SIS slices have a much higher precision: the quadratic

complexity of SIS is more than compensated by the smaller
amount of vertices that are visited.

A typical problem of call string approaches is the combi-
natorial explosion of the generated call strings. This is also
present inkLCS (see A, B, E, H, I, N) andkFCS (see E, H,
N). However, due to the increased precision and the there-
fore smaller amount of visited vertices we also experienced
reduced runtimes for higherk, see C, D, K forkLCS and
B, C, D, K for kFCS. In many caseskFCS is slightly slower
thankLCS resulting from the overhead propagatingtwocall
strings. In other cases it is much faster thankLCS—it is also
less likely to suffer combinatorial explosion. In some situ-
ationskFCS is much slower thankLCS. This is not related
to a problem withkFCS but stems from the higher precision
of kFCS in these cases (see Figure 7 for comparison).

A further increasedk (not shown here) causes many test
cases to suffer combinatorial explosion up to a point where
slicing is not any longer possible withkLCS orkFCS—like

5



CIS SIS 1LCS 2LCS 3LCS 4LCS 5LCS 6LCS 1FCS 2FCS 3FCS 4FCS 5FCS 6FCS
A 1,13 1,23 3,05 5,99 14,8 54,1 267 1357 2,65 4,36 8,65 11,0 11,4 12,5
B 7,37 5,56 17,8 18,8 29,7 73,6 240 845 17,8 18,0 26,1 49,8 82,5 77,0
C 81,5 118 158 206 228 171 177 143 160 207 230 174 178 144
D 1,65 1,76 3,70 5,18 8,49 11,5 10,6 8,30 3,75 5,13 8,48 11,6 10,8 8,18
E 11,1 9,83 17,2 24,0 38,3 148 352 574 17,3 24,3 41,6 137 343 579
F 12,4 7,88 27,4 97,4 97,4 121 176 206 27,4 87,5 98,2 121 178 208
G 480 447 768 1033 1174 1511 2007 2738 749 964 1077 1355 1804 2600
H 21,3 31,0 68,9 200 470 1461 5123 19140 48,0 200 487 2030 5220 8540
I 6,01 7,33 14,3 29,0 75,6 621 – – 13,9 25,2 29,6 41,1 46,3 45,3
J 12,8 11,6 30,3 39,1 52,0 39,7 59,5 120 29,9 38,3 49,8 31,5 31,9 30,6
K 83,5 30,4 108 162 323 373 335 284 109 165 334 430 397 374
L 119 133 227 313 382 402 398 424 229 315 384 404 400 426
M 287 151 586 918 1289 1672 1899 2259 591 1088 2127 4571 2102 2420
N 1824 1307 1170 1580 2737 6675 20849 – 1109 1341 1946 3182 9227 –

Figure 8. Runtimes of kLCS and kFCS (sec.)

already test case I fork> 4. The previously described effect
of higher speed for higherk is never compensating the com-
binatorial explosion and we cannot share the experience of
Agrawal and Guo [1] who successfully used an unlimited
call string slicing algorithm. Our experience is backed up
by Atkinson and Griswold in [2], who reported the same
for the control flow graph approach.

If we compare the runtimes ofkLCS andkFCS with SIS,
we see that even fork = 1 the runtimes ofkLCS andkFCS
are much higher than those of SIS. This leads to our per-
suasion that as long as summary edges are calculable, one
should use SIS for slicing. This stays the same if we con-
sider the overhead to calculate the summary edges: the gen-
eration of summary edges is part of the analysis to generate
the PDG, which is expensive even without summary edge
generation. The overhead is only unaffordable in situations
where only one or two slices have to be done; in those situ-
ations the use of control flow graph based slicing is proba-
bly better anyway. If summary edges are not available, one
must revert tok-limiting algorithm, wherekFCS is prefer-
able tokLCS. Thek-limiting algorithms are also more im-
portant in chopping, because the known context-sensitive
chopping algorithms are expensive.

4. Chopping

We also applied our approach to the problem of chop-
ping. In [8] Jackson and Rollins defined a restricted form of
chopping: a chop for a chopping criterion(s, t) is the set of
vertices that are part of an influence of the (source) vertexs
onto the (target) vertext. This is basically the set of vertices
which are lying on a path froms to t in the PDG. Jackson
and Rollins restricteds and t to be in the same procedure
and only traversed control dependence edges, data depen-
dence edges and summary edges but not parameter or call

edges. The resulting chop is called asame-level truncated
chop, “truncated” because the vertices of called procedures
are not included. In [14] Reps and Rosay presented more
variants of precise chopping. A same-levelnon-truncated
chop is like the truncated chop but includes the vertices of
called procedures. They also presentdifferent-leveltrun-
cated and non-truncated chops (which they callinterpro-
cedural), where the vertices of the chopping criterion are
allowed to be in different procedures. Due to space limi-
tations, we are not considering the different-level variants
here. We are focusing onnon-truncated same-level chop-
ping, because it is the most challenging problem to formu-
late this variant based on call strings: Due to the limitations
of length limited call strings, the same-level property can
get lost during graph traversal.

4.1. Context-Insensitive Chopping

In the intraprocedural or context-insensitive case a chop
for a chopping criterion(s, t) is basically the intersection
of a backward slice fort with a forward slice fors. An
algorithm would not use intersection, as set operations are
expensive for large sets like slices. Instead, the algorithm
presented in Figure 9 uses a two-phase approach: in the first
phase, the backward slice is done and in the second phase
the forward slice is done, where only vertices which have
been visited during the backward slice phase are considered.
We call this algorithmcontext-insensitive chopping (CIC).

4.2. Chopping with Summary Edges

The precise context-sensitive chopping algorithm, which
uses summary edges, is depicted in Figure 10. It basically
starts with an intraprocedural chop which is done with the
algorithm in Figure 9. There is a slight modification to that

6



Let G= (V,E) be the given IPDG
Let (s, t) ∈V×V be the given chopping criterion
WB = {t}, mark t as visited in the backward phase
while WB is not emptydo

remove one element w from WB
foreachv→ w∈ E do

if v is not yet markedthen
WB = WB∪{v}, mark v as visited in the backward phase

if s has been marked in the backward phase
ands has not yet been marked in the forward phasethen

WF = {s}, mark t as visited in the forward phase
while WF is not emptydo

remove one element w from WF
foreachw→ v∈ E do

if v has been marked in the backward phasethen
WF = WF ∪{v}, mark v as visited in the forward phase

returnthe set of all in the forward phase visited vertices

Figure 9. Context-Insensitive Chopping

algorithm: as it has to do a chop only inside one single pro-
cedure, it is not allowed to traverse parameter or call edges
(but it is allowed and required to traverse summary edges).
From the calculated chop all pairs of actual-in/-out vertices
which are connected by a summary edge are extracted and
the initial worklist is filled with the pairs of the correspond-
ing formal-in/formal-out vertices. Now for every pair in the
worklist a new intraprocedural chop is generated and added
to the starting chop. Again, all summary edges are extracted
and the pairs of the corresponding formal-in/formal-out ver-
tices are added to the worklist if they have not been added
before. This is repeated as long as there are elements in the
worklist. The now extended chop is the resulting precise
interprocedural chop. The algorithm generates asame-level
non-truncatedchop: both vertices of the chopping criterion
have to be in the same procedure. We call this algorithm
summary information chopping (SIC). The intraprocedural
version of the algorithm in Figure 9 is a same-leveltrun-
catedchop.

4.3. Mixed Context-Sensitivity Chopping

Chopping with summary edges is expensive due to the
high complexity. A simple improvement is to combine
context-sensitive slicing with summary edges with context-
insensitive chopping. We are using the same two-phase ap-
proach as in context-insensitive chopping, but with context-
sensitive slicing using summary edges instead of context-
insensitive slicing. Also, as we are doing same-level chop-
ping, we only have to descend into called procedures.
This algorithm, calledMixed context-sensitivity chopping
(MCC), is shown in Figure 11. It is surprisingly precise as
we will see in Section 5.

Let G= (V,E) be the given SDG
Let (s, t) ∈V×V be the given chopping criterion
Let C be the intraprocedural chop for(s, t)
W = {v→ w|v,w∈C,v→ w is a summary edge}
while W is not emptydo

remove one element v→ w from W
Let v′ be the to v corresponding formal-in vertex
Let w′ be the to w corresponding formal-out vertex
if v′,w′ has not been markedthen

mark v′,w′ as visited
Let C′ be the intraprocedural chop for(v′,w′)
C = C∪C′

W = W∪{v→ w|v,w∈C′,v→ w is a summary edge}
returnC

Figure 10. Chopping with Summary Edges

Let G= (V,E) be the given SDG
Let (s, t) ∈V×V be the given chopping criterion
WB = {t}, mark t as visited in the backward phase
while WB is not emptydo

remove one element w from WB
foreachv→ w∈ E not a parameter-in or call edgesdo

if v is not yet markedthen
WB = WB∪{v}, mark v as visited in the backward phase

if s has been marked in the backward phase
ands has not yet been marked in the forward phasethen

WF = {s}, mark t as visited in the forward phase
while WF is not emptydo

remove one element w from WF
foreachw→ v∈ E not a parameter-out edgedo

if v has been marked in the backward phasethen
WF = WF ∪{v}, mark v as visited in the forward phase

returnthe set of all in the forward phase visited vertices

Figure 11. Mixed Context-Sensitivity

4.4. Limited/Folded Context Chopping

Now, We can adapt thekLCS algorithm to chopping
(Figure 12). Again, we use a two-phase approach: First, the
backward slice is done and all vertices are marked with the
encountered call strings. Second, basically a forward slice
is computed, only considering vertices which have been
marked with a matching call string in the first phase. They
also have still to be unmarked with any matching context
from the second phase. The definitions of down, up and
match are the same as inkLCS. We call this algorithmk-
limited context chopping (kLCC). In the same style we can
adapt thekFCS algorithm to chopping. As this is straight-
forward (and due to space limitations) we are not presenting
the algorithm here (but it has been implemented and will be
evaluated in Section 5). We call this algorithmk-limited
folded context chopping (kFCC).

7



Let G= (V,E) be the given IPDG
Let (s, t) ∈V×V be the given chopping criterion
WB = {(t,ε)}, mark t with(B,ε)
while WB is not emptydo

remove one element(w,c) from WB
foreachv→ w∈ E do

if v has not been marked with(B,c′)
for whichmatch(c,c′) holdsthen
if v→ w is a parameter-in or call edgethen

Let sv be the call site of v
if c = ε∨car(c) = sv then

c′ = up(c)
WB = WB∪{(v,c′)}, mark v with(B,c′)

elsif v→ w is a parameter-out edgethen
Let sw be the call site of w
c′ = down(c,sw)
WB = WB∪{(v,c′)}, mark v with(B,c′)

else
WB = WB∪{(v,c)}, mark v with(B,c)

if s has been marked with(B,ε) then
WF = {(s,ε)}, mark s with(F,ε)
while WF is not emptydo

remove one element(w,c) from WF
foreachw→ v∈ E do

if v has been marked with(B,c′)
for whichmatch(c′,c) holdsthen
if v has not been marked with(F,c′)

for whichmatch(c,c′) holdsthen
if w→ v is a parameter-out edgethen

Let sv be the call site of v
if c = ε∨car(c) = sv then

c′ = up(c)
WF = WF ∪{(v,c′)}, mark v with(F,c′)

elsif w→ v is a parameter-in or call edgethen
Let sw be the call site of w
c′ = down(c,sw)
WF = WF ∪{(v,c′)}, mark v with(F,c′)

else
WF = WF ∪{(v,c)}, mark v with(F,c)

returnthe set of all in the forward phase visited vertices

Figure 12. Explicitly Context-Sensitive

4.5. An improved precise algorithm

Now, we present an improved precise chopping algo-
rithm which has a much higher speed. The SIC algorithm of
Section 4.2 calculates a new chop for every pair of formal-in
and formal-out vertices that have a summary edge between
the corresponding actual-in and -out vertices included in the
chop. Our observation is as follows: if two summary edges
of one call site are included in the chop, we do not have to
do a chop for the corresponding pairs of formal-in/formal-
out vertices separately. Instead, we can do a single chop be-
tween the set of corresponding formal-in vertices and the set

Let G= (V,E) be the given SDG
Let (s, t) ∈V×V be the given chopping criterion
Let C be the intraprocedural chop for(s, t)
W = {v→ w|v,w∈C,v→ w is a summary edge}
while W is not emptydo

S= /0,T = /0
foreach call sitec in C do

foreachw→ v∈W, c call site ofw→ v do
Let v′ be the to v corresponding formal-in vertex
Let w′ be the to w corresponding formal-out vertex
if v′,w′ has not been markedthen

mark v′,w′ as visited
S= S∪v′, T = T ∪w′

Let C′ be the intraprocedural chop for(S,T)
C = C∪C′

W = {v→ w|v,w∈C′,v→ w is a summary edge}
returnC

Figure 13. Merging Summary Edges

of corresponding formal-out vertices.1The algorithm in Fig-
ure 13 is based on the merging of summary edges dependent
of their call site and is therefore calledsummary-merged
chopping (SMC). After calculating the starting chop, we
collect all new summary edges of visited call sites. Then we
do a new chop for every call site between the set of the cor-
responding formal-in vertices and the set of the correspond-
ing formal-out vertices. The resulting vertices are added to
the starting chop and we repeat the procedure with the new
resulting summary edges until there are no more new sum-
mary edges left. This causes low runtimes as we are doing
a much smaller number of chops.

5. Evaluation II: Chopping

We have implemented all previously presented chopping
algorithms (CIC, SIC, SMC, MCC,kLCC andkFCC) to
fully evaluate them. As chopping criteria we have chosen
every tenth of all same-level pairs of formal-in/formal-out
vertices. Again, we measured the time needed to do the
complete set of chops, as the average time to calculate one
chop is sub-second.

1Sketch of Proof: LetS be the set of all summary edges of one sin-
gle call site which are all included in the starting chop. Let(i1,o1) ∈ S
and(i2,o2) ∈ Sbe a randomly chosen pair of summary edges. Let(i′1,o

′
1)

and (i′2,o
′
2) be the corresponding pairs of formal-in/formal-out vertices.

Let C1 be the chop for(i′1,o
′
1) andC2 for (i′2,o

′
2). Let C be the chop for

({i′1, i
′
2},{o′1,o

′
2}). A problem can only be caused by a vertex that is in-

cluded inC but not inC1∪C2. For anyc ∈C, c /∈C1, c /∈C2 one of the
pathsi′1 →∗ c→∗ o′2 or i′2 →∗ c→∗ o′1 must exist. Therefore, a summary
edge(i1,o2) or (i2,o1) must exist. These edges now must be included in
the starting chop (and thus also inS) as i1, i2,o1,o2 are all in the starting
chop. Because of these summary edges we have to include the chopC3
for (i′1,o

′
2) or C4 for (i′2,o

′
1) into the resulting chop and thereforec will be

added to the resulting chop anyways.

8



chops CIC SIC SMC MCC 1LCC 2LCC 3LCC 4LCC 5LCC 6LCC 1FCC 2FCC 3FCC 4FCC 5FCC 6FCC
A 196 1050 262 262 96 6 6 6 6 6 6 6 6 6 6 6 6
B 2802 1373 259 259 97 9 48 50 52 52 68 9 48 50 52 52 68
C 16098 5177 – 794 99 26 26 26 57 57 57 26 26 26 57 57 57
D 2709 228 83 83 96 28 28 28 28 28 28 28 28 28 28 28 28
E 5303 1000 233 233 98 83 83 83 83 83 83 83 83 83 83 83 83
F 848 3562 700 700 97 63 64 75 75 75 75 63 64 75 75 75 75
G 33994 5573 – 818 99 37 42 48 56 56 56 37 42 48 56 56 56
H 2676 5399 1984 1984 99 5 7 7 7 – – 5 7 8 12 – –
I 1528 1450 767 767 94 43 43 43 – – – 43 43 43 44 44 44
J 4892 551 169 169 95 34 36 38 73 73 73 34 36 38 73 73 73
K 21839 3298 41 41 99 88 99 99 99 99 99 88 99 99 99 99 99
L 15672 6370 – 1855 98 42 46 46 46 46 46 42 46 46 46 46 46
M 42442 5265 – 522 99 29 30 30 30 30 – 29 30 30 – 91 93

Figure 14. Precision of MCC, kLCC and kFCC (%)

Precision. To measure the precision of the different algo-
rithms, we follow the same approach as in Section 3.3: We
consider CIC to have 0% precision and SIC (or SMC) to
have 100% precision. The results are shown in Figure 14:
The first column contains the amount of chopping criteria (=
amount of chops done) and the next three columns give the
average size of CIC, SIC and SMC chops. The first thing
we see is that there are four cases where it was impossible
to complete SIC in the given time boundaries.

The simple MCC algorithm is surprisingly precise: nor-
mally it has around 96% precision and is always more pre-
cise than 6LCC or 6FCC. This shows that the main source of
imprecision in chopping is the loss of the same-level prop-
erty, which is kept by MCC. The other experiences are in
a kind of contrast to the experiences with the slicing al-
gorithms: All other algorithms than SIC, SMC and MCC
are much less precise and with increasedk the precision of
kLCC andkFCC is only increasing slowly.

Speed. The most important observation while comparing
the runtimes of SIC and SMC is that SMC is alwaysmuch
faster. As an extreme, in test case I SMC only needs 1% of
the runtime of SIC. The MCC algorithm is not only surpris-
ingly precise but also fast. For the larger test cases it may
be much faster than any of the other algorithms.

The comparison ofkLCC with kFCC in terms of runtime
reveals the same results as forkLCS andkFCS: In many
caseskFCC is much faster thankLCC and is less likely
to suffer combinatorial explosion. Also, increasedk may
sometimes result in lower runtime.

In Section 3.4 we saw that SIS is normally not slower
than CIS. This is not the case with chopping: In only three
test cases CIC is slower than SIC, and in five test cases CIC
is even faster than SMC. This is due to the much higher
complexity of chopping with summary edges in comparison
to slicing with summary edges. If we compare the speed

of kLCC andkFCC against SIC and SMC, we experience
again different results as in slicing: nine test cases are faster
in chopping with 1LCC or 1FCC than SIC and one is even
faster than SMC.

The results for chopping are not as clear as in slicing, but
they lead to the same recommendation: due to the high pre-
cision SMC is preferable to all other chopping algorithms.
Sometimes the call string approaches are faster, but they
have a poor precision.

6. Conclusions and Future Work

We have evaluated four different algorithms (two well
known and two new) for slicing and six different algorithms
(two well known and four new) for chopping. Our experi-
ences can be summarized as follows:

• The two new specialized chopping algorithms SMC
and MCC are better than previously known chopping
algorithms (CIC, SIC). SMC is preferable to SIC, as it
is much faster. The MCC algorithm is surprisingly fast
and precise, in some cases an alternative to SMC.

• Both k-limited approaches may suffer from the possi-
ble combinatorial explosions of call strings.

• Higher precision has definitely a high influence on
speed: it may cause lower runtimes due to a smaller set
of visited vertices. But the higher precision is gained
from an increasedk-limit, the higher amount of gener-
ated call strings may also cause a much higher runtime.

• The use of summary information is the best solution
(as long as it is possible). It is both precise and fast.

• If summary edges cannot be used,kFCS andkFCC are
the algorithms of choice, because they do not suffer
from combinatorial explosions due to recursion. In

9



CIC SIC SMC MCC 1LCC 2LCC 3LCC 4LCC 5LCC 6LCC 1FCC 2FCC 3FCC 4FCC 5FCC 6FCC
A 1,35 2,54 0,35 0,47 4,07 7,88 20,5 78,3 384 1964 3,67 5,63 11,3 14,4 15,4 15,8
B 32,4 242 11,8 10,7 88,2 108 185 371 1069 2663 87,8 106 171 296 511 379
C 1145 – 4691 451 2293 3389 4670 3113 2613 21012295 3381 4697 3106 2612 2107
D 9,60 31,1 3,44 5,60 20,0 29,6 45,5 68,9 65,0 49,5 20,0 29,7 45,1 68,6 64,9 49,5
E 59,7 511 18,0 30,4 85,0 125 223 787 2061 3581 85,2 125 234 746 2087 3640
F 20,3 14,6 3,45 5,58 40,9 154 159 226 451 530 41,1 155 160 227 454 532
G 3985 – 4172 1171 6647 8721 11884 16844 21892 284376486 8260 11081 15173 20264 28753
H 112 9098 153 75,4 420 993 2884 9253 – – 309 1131 3623 17486 – –
I 18,1 2003 21,1 13,3 51,3 177 1778 – – – 46,2 91,7 122 176 232 214
J 60,8 44,1 9,63 25,2 140 185 268 323 1218 7921 138 179 237 151 159 154
K 1038 247 29,6 183 1127 1460 3137 3846 3167 24721134 1476 3191 4104 3459 2858
L 1202 – 2358 609 2302 3134 3967 4285 4119 40822301 3134 3974 4288 4114 4099
M 4037 – 2045 957 8452 13062 19314 25121 29800 –8465 14981 28793 – 22959 24958

Figure 15. Runtimes of kLCC and kFCC (sec.)

some cases, FCS or FCC is also more precise, how-
ever, this may lead to higher runtimes.

• Context-insensitive algorithms cause a loss of preci-
sion, which is much higher in chopping than in slicing.

• The context-insensitive algorithms CIS and CIC can be
regarded as 0LCS/0FCS and 0LCC/0FCC.

Based on our results, it would be interesting to fully evaluate
other problems of program analysis: First, what influence
have prerequisites like pointer analysis onto precision and
speed of the different slicing/chopping algorithms? (Some
results for SIS are presented in [11, 12].) Second, how are
applications that use slicing or chopping influenced by the
different algorithms? Based on our technique to generate
and solve path conditions [16], which makes intensive use
of chopping, we will work on both questions in the future.

References

[1] G. Agrawal and L. Guo. Evaluating explicitly context-
sensitive program slicing. InWorkshop on Program Analysis
for Software Tools and Engineering, 2001.

[2] D. C. Atkinson and W. G. Griswold. The design of whole
program analysis tools. InProc. Intl. Conference on Soft-
ware Engineering, 1996.

[3] D. C. Atkinson and W. G. Griswold. Implementation tech-
niques for efficient data-flow analysis of large programs. In
Proc. Intl. Conference on Software Maintenance, 2001.

[4] L. Bent, D. Atkinson, and W. Griswold. A comparative
study of two whole-program slicers for C. Technical Report
CS2000-0643, Univer. of California at San Diego, 2000.

[5] M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-
insensitive interprocedural alias analysis in the presence of
pointers. InLecture Notes in Computer Science, 892. 1995.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans.
Prog. Lang. Syst., 9(3), 1987.

[7] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs.ACM Trans. Prog. Lang.
Syst., 12(1), 1990.

[8] D. Jackson and E. Rollins. A new model of program depen-
dences for reverse engineering. InProc. Symposium on the
Foundations of Software Engineering, 1994.

[9] J. Krinke. Static slicing of threaded programs. InProc.
ACM SIGPLAN/SIGFSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE’98), 1998.

[10] J. Krinke and G. Snelting. Validation of measurement soft-
ware as an application of slicing and constraint solving.In-
formation and Software Technology, 40(11-12), 1998.

[11] D. Liang and M. J. Harrold. Efficient points-to analysis for
whole-program analysis. InESEC / SIGSOFT FSE, 1999.

[12] A. Orso, S. Sinha, and M. Harrold. Effects of pointers on
data dependences. InProc. 9th Intl. Workshop on Program
Comprehension, 2001.

[13] K. J. Ottenstein and L. M. Ottenstein. The program depen-
dence graph in a software development environment. In
Proc. Software Engineering Symposium on Practical Soft-
ware Development Environments, 1984.

[14] T. Reps and G. Rosay. Precise Interprocedural Chopping. In
Proc. Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, 1995.

[15] T. W. Reps, S. B. Horwitz, M. Sagiv, and G. Rosay. Speed-
ing up slicing. InProc. Second Symposium on the Founda-
tions of Software Engineering, 1994.

[16] T. Robschink and G. Snelting. Efficient path conditions in
dependence graphs. InProc. Intl. Conference on Software
Engineering, 2002.

[17] B. G. Ryder, W. Landi, B. Philip, A. Stocks, S. Zhang,
and R. Altucher. A schema for interprocedural modifica-
tion side-effect analysis with pointer aliasing.ACM Trans.
Prog. Lang. Syst., 2001.

[18] M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. InProgram Flow Analysis: Theory and
Applications. Prentice-Hall, 1981.

[19] M. Weiser. Program slicing.IEEE Trans. Softw. Eng., 10(4),
1984.

10


