Evaluating Context-Sensitive Slicing and Chopping

Jens Krinke
Universitait Passau
Passau, Germany

Abstract 1.1. Program Dependence Graphs

We present an empirical evaluation of three context- The Program Dependence Graph (PD@E)3, 6, 7] is a
sensitive slicing algorithms and five context-sensitive chop-directed graph whose vertices represent the statements and
ping algorithms, and compare them to context-insensitive control predicates that occur in a program. It also contains
methods. Besides the algorithms by Reps etal. and Agrawah uniqu&ntryvertex_ The edges represent tI'EpendenceS
we investigate SiX new algorithms based on variations of k- between the Components of the programcdhtrcﬂ depen_
limited call strings and approximative chopping based on denceedge from vertex to v» represents that the evalua-
summary information. It turns out that chopping based on tjon of the predicate that is representedvays controlling
summary information may have a prohibitive complexity, the execution of the component that is representegh b
and that approximate algorithms are almost as precise and data dependencedge from vertex; to v, represents that
much faster. the component represented\ayassigns to a variable which

may be used at the component representeg by
The extension of the PDG fanterprocedural programs
1. Introduction introduces more vertices and edges: For every procedure a
procedure dependence grajs constructed, which is ba-

Slicing is an established technique for reverse engineer-SICaIIy a PDG withformal-in and -out vertices for every .
ing and other analyses like testing or debugging—it is avail- formal parameter of the procedure. A procedure call is
able in research prototypes and even in commercial prod_r_epresented by aall vertex andactual-in and -out ver-
ucts. There are two main approaches to slicing: The originaltICes for each actual parameter. The call vertex IS con-
slicing technique from Weiser [19] is based on traditional necFed to the entry vertex by call edge, thgactua}l—ln
data flow analysis; the other approach is based on Prograrﬁ’_ertICeS are cqnnected to their matchfngngl-m vertices
Dependence Graphs [13, 6, 7]. Extensive evaluations of dif-V'a paramete_r-medge_s and thectual-o_utvert_lces are con-
ferent slicing algorithms have not really been done yet—for nected to their matchinprmal-outvertices vigparameter-

control flow graph based algorithms some data reported byoUt edges. Such a grakp])h is calrl]dmterprocedural Pro-
Atkinson and Griswold can be found in [4, 3, 2]. The only gram Dependence Graph (IPDGJhe System Dependence

evaluation of program dependence based algorithms that thgraph (SDG)is an IPDG, wheresummary edgebetween

author is aware of has been conducted by Agrawal and Guoactual-in and actual-out have been added representing tran-

[1], who just compare two algorithms, where one has flaws sitive dependence due to calls [7].

(as shown in this paper). Slicing identifies statements in a

program which may influence a given statement (the slicing 1.2. Context-Insensitive Slicing

criterion), but it cannot answer the question why a specific

statement is part of a slice. A more focused approach can Slicing on (intraprocedural) PDGs is just a simple reach-

help: Choppingreveals the statements which are involved ability problem: A (backward) slice to a vertex (tbkcing

in a transitive dependence from one specific statement (thecriterion) is the set of vertices from which the criterion ver-

source criterion) to another specific statement (the targettex is reachable. The algorithm is shown in Figure 1. We

criterion). An evaluation of chopping algorithms has never call it context-insensitive slicing (CIShater on, we will

been done, [14] reports only limited experience. also use forward slicing, which is the set of vertices reach-
In the following we introduce different slicing (Section able from the criterion vertex. If this algorithm is used on

2) and chopping (Section 4) algorithms, which are evaluatedIPDGs or SDGs, the resulting slices are not accurate, as the

in Section 3 and 5. Conclusions are drawn in Section 6. calling contextis not preserved: the algorithm may traverse

(©2002 IEEE. Published in the Proceedings International Conference on Software Maintenance, 2002 in Montreal, Canada. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Let G= (V,E) be the given IPDG
Let se V be the given slicing criterion
W = {s}, mark s as visited
while W is not emptylo

remove one element w from W

foreachv — w € E do

if v is not yet markethen
W =WU{v}, mark v as visited

returnthe set of all visited vertices

Figure 1. Context-Insensitive Slicing

Let G= (V,E) be the given SDG
Let se V be the given slicing criterion
W = {s}, mark s withup
while W is not emptylo
remove one element w from W
Let my be the mark of w
foreachv — w € E do
Let m, be the mark of v
if my = up then
if v— w is a parameter-in or call edge
andm,, # down then
W =WuU{v}, mark v asup
elsifv— w is a parameter-out edge
andm, # down then
W =WuU{v}, mark vasdown
elsif my # my, then
W =WuU{v}, markvas m
returnthe set of all visited vertices

Figure 2. Context-Sensitive Slicing in SDGs

a parameter-in edge coming from a call site into a proce-
dure, may traverse some edges there and may traverse
parameter-out edge going to a different call site. The se-
guence of traversed edges (the path) is a so calhedal-
izable path This means it is impossible for an execution
that a called procedure does not return to its call site. We
consider an interprocedural slice to be precise if all vertices
included in the slice are reachable from the criterion by a
realizablepath.

1.3. Slicing with Summary Edges

Accurate slices can be calculated with a modified algo-

rithm on SDGs. The benefit of SDGs is the presence of the
summaryedges that represent transitive dependence due to

calls. The idea of [7, 15] is first to slice from the criterion

2. Context-Sensitive Slicing

There are situations where summary edges cannot be
used: In presence of interference in explicit parallel pro-
grams, dependence is no longer transitive [9], a requirement
for summary edges. As interference dependence crosses
procedure boundaries, it cannot be summarized by sum-
mary edges. Under such circumstances the calling context
has to be preserved explicitly during the traversal of the
(threaded) IPDG.

A different approach for context-sensitive analysis is
based orcall strings[18] where the calling context is en-
coded explicitly during analysis in a sequence of call sites
simulating the call stack of an abstract machine. In the rest
of this section we will show how to use this approach for
slicing (and later, chopping) in program dependence graphs.
Let each call vertex and its actual-in and -out vertices in the
IPDG G be given a unique inde%. A sequence of call
sitesc = §; ...S,, is called acall string. During traversal of
a parameter-out edge from a call sitgoingdowninto the
called function, we generate a new, longer call stang sc
If we traverse a parameter-in or call edge bapko a call
sited, this call site mustmatchthe current leading element
of the call string ¢ = S¢’). Using call strings we can de-
fine a context-sensitive slicing method which is as precise
as context-sensitive slicing based on summary edges—it is
precise with respect to realizable paths [14].

2.1. Explicitly Context-Sensitive Slicing

In Figure 3 we show a general slicing algorithm which
obeys the calling context via call strings. Variants of the
algorithm come from the definition of down, up and match.
The simplest definition is as follows:

down(c,s) — congs,c)
cdr(c) | c#£¢
up(c) { € c=¢
match(cy,c2) — C1=0C

In presence of recursion this doesn’t work, as neither the
set of call strings nor the call strings themselves are finite.
Agrawal and Guo presented an improved algorithm named
ECS in[1], where the call strings are cycle free. They define
down as follows (up and match are as above):

congs,c)

C=9%...%ANVg :S#S

down(c,S)—>{ C=S19...%AS=§

only ascending into calling procedures, and then to slice However, using this definition the resulting slices are not
from all visited vertices only descending into called pro- correct, as they might leave out vertices (statements) of
cedures. The algorithm we use is shown in Figure 2, which the slice. The incorrectness is based on the following
we callsummary information slicing (SIS) observation: As soon as a call striegwould form ¢ =

Let G= (V,E) be the given IPDG
Let se V be the given slicing criterion
W={(se)}
while W is not emptylo
remove one eleme(,c) from W
foreachv — w € E do
if v has not been marked with a contekt ¢
for whichmatchc,c’) holdsthen
if v— w is a parameter-in or call edgéaen
Let s be the call site of v
if c=¢Vcarnc) =s, then
¢ = up(c)
W =WuU{(v,c)}, mark v with ¢
elsif v— w is a parameter-out edgben
Let sy be the call site of w)
¢ = down(c, s) Figure 4. Counter example for ECS
W =WuU{(v,c)}, mark v with ¢
else
W =WuU{(v,c)}, mark v with c
returnthe set of all visited vertices

B1, B4, andif . Because verte8 is now marked wittBA,
we propagaté\ to B2, which is visited the first timeB2 is
reachable from verte# and transitively fromA3. At this
point, only B3 has not been visited yet, the verticksand
Figure 3. Explicitly Context-Sensitive Slicing Al-A4 are marked witle; 2, 3, if , 6, B1, B4 are marked
with AandBA, and4 andB2 are only marked witt&. Now,
the worklist only containg(B4,BA)}. Due to the recursive
SkSy; - SynSxSzy -+ Sz [t IS rEplaced by’ = 5;5;,...55, to re- call, a new call strin@@BAwould be generated and propa-
move the cycle. Now, the algorithm fails to propagate the gated to vertes. However, the cycle removementdiown
effects with call string:’ (which includes effects with call folds BBAinto BA, which has been used previous|y at ver-
string) back to the call sites,,, asc” = sy,..8,5S .-z tex 6. The ECS algorithm now terminates (the worklist is
is not generated by p). A counter example is given in empty) but the generated slice doesn’t contain veBax

Figure 4, where two procedures are shown as an IPDG.which is wrong: a propagation &BAwould visit B3.
Procedure 1 contains its entry vertéxand a call siteA,

composed from the call verteX1, two actual-in vertices 2.2, Limited Context Slicing
A2 andA3, and an actual-out verteX4. The second pro-

cedure contains its entry node two formal-in vertices One popular approach to circumvent the infinity prob-
3 and 4, a formal-out vertex6, a vertexif for an if- lems is the length limitation of the call stringsa{l string
statement, and a call si& composed from the call ver- suffix approximatiorin [18]). For a giverk, the call string
tex B1, two actual-in vertice82 andB3, and an actual- s not allowed to be longer tharelements. If the call string

out vertexB4. The vertices inside the procedures are con- is alreadyk elements long before concatenation, the oldest
nected by control and data dependence edges. Also, proelement is removed:

cedure 1 calls procedure 2 at call skeand procedure 2 congs,)
calls itself at call siteB. The actual-in/actual-out vertices down(c,s) — { ss ék
are properly connected to their formal-in/formal-out ver- vkl
tices by parameter-in/parameter-out edges; the call edgesVe can use the general algorithm of Figure 3 directly with
are not shown. Let us do a backward slice frédt The these modifications. We call this variakdimited context
initial worklist is {(A4,€)}. A4 is reachable fronAl and slicing (KLCS) This approach becomes quite imprecise (itis
6, and the worklist will contai{(Al,¢),(6,A)}. Next,Al still correct) in presence of recursion: Consider a call string
is visited, which is reachable frorh, and this leaves the of maximal lengthk. If this call string is propagated into a
worklist as{(6,A)}. Vertex6 is reached (transitively) from recursive procedure, it may be propagaketiimes into the
2,3, B1, B4, if , which are all marked with the call string called recursive procedure. The result is a call string that
A. B4 is reached fron6 by recursion. At this point, the only contains call sites in the recursive procedure. This call
worklist is {(3,A), (6,BA)} and vertex6 has two marksA string may then be propagat&dimes back into the call-
andBA. Vertex3 is reachable frorh2, where the call string ing recursive procedure. Now, the resulting call string is

c=s5%...9Nl <k
| =k

matches (at this point, vertekis only marked withA). It empty and all procedures that call the recursive procedure
is also reachable frofd2, but the call string doesn’t match. are marked with the empty call string. The result is a re-
From vertex6 the call stringBAis now propagated t@, 3, duced precision.

Let G= (V,E) be the given IPDG 2. If the algorithm ascends into a calling recursive func-
Letsc V be the given slicing criterion tion, it propagates the actual call string if the actual call
W= {(s8)} site is already present in (the first element of) the call

while W is not emptylo . . .
femove one elemefit) from W string or the call string generated bpwnotherwise.

foreachv —we E do This modified algorithm is general enough to also be used
if v has not been marked with a context c in an unlimited version, which is defined by:
for whichmatchc,c’) holdsthen
if v— wis a parameter-in or call edgthen down(c, [s]) — cong[g],¢)
Let s be the call site of v
if c=gVcarc) =s, then We call these variantsinlimited folded context slicing
if s is marked as recursive (UFCS) and k-limited folded context slicing (kFCSThe
andv has not been marked with a contekt ¢ evaluation will show that the unlimited variant is unpracti-

for whichmatchc,c’) holdsthen

) cal due to combinatorial explosion of the set of call strings.
W =WU{(v,c)}, mark v with ¢

¢’ = up(c) . ..
W =WU{(v,¢")}, mark v with ¢ 3. Evaluation I: Slicing
elsifv— w is a parameter-out edgben
Let sy be the call site of w Unlike Agrawal and Guo, who only compared context-
If s is marked as recursive insensitive slicing (CIS) with ECS in [1], we have imple-

and cafc) = sy then

mented all slicing algorithms of the previous sections to
W =WUuU{(v,c)}, mark v with ¢ g a9 P

evaluate them fully. We used our infrastructure to analyze

eIsC(/a: down(c, sw) C programs [10] to im.plemeln.t all slicing (and chopping) gl—

W =WU{(v.c)}, mark v with ¢ gonthms vylth a flow-insensitive bgt context-sensitive alias

else analysis similar to [5]. The details of the analyzed pro-
W =WU{(v,c)}, mark v with ¢ grams are shown in Figure 6. The programs stem from three

returnthe set of all visited vertices different sources: ctags, patch and diff are the GNU pro-
grams. The rest are from the benchmark database of the

. . o PROLANGS Analysis Framework (PAF) [17]. The ‘LOC’
Figure 5. Folded Context-Sensitive Slicing column shows lines-of-code (measured wa -l), the
‘ENTR’ column the amount of procedures (the number of
2.3. Folded Context Slicing entry vertices in the PDG) and the ‘nodes’ column shows

the number of vertices in the IPDG. Like Agrawal and Guo,
As we have seen, a way to make the call strings finite is We selected the formal-in vertices as slicing criteria to make

to remove cycles. Instead of removing them explicitly we the results comparable; the amount of resulting slicing cri-
now present a different approach. First, we builddaking ~ teria (the number of formal-in vertices) is shown in col-
context graph This is a graph where the vertices are the Umn ‘slices’. The limited size of the programs is due to
call sites and the edgés,w) represent calls that lead from the amount of slices that had to be done, which caused a
call sitev into a procedure that contains call site In that ~ quadratic runtime for one complete test of a program.
graph, the strongly connected components are folded into o

one single vertex and the call sites of such a component are3-1. Precision of KLCS and kFCS

replaced by one single call site. During that process all call

sites are marked if they are recursive. The definitions of ~HoOw precise can we be with the new algorithkisCS

down etc. are only adapted, not changed. For example: ~ andkFCS? How do we measure precision? As context-
insensitive slicing (CIS) is the most simple (and imprecise)

c=[si][s]...[s]Al <k algorithm we consider it as 0% precision. Slicing with sum-

I =k mary edges (SIS) is precise in respect to realizable paths
- T . and we consider that as 100% precision. In Figure 7, we

If we use the modified down etc. within the algorithm of .

Figure 3, we obtain the same incorrectness as Agrawal. Fig-present the precision &.CS andkFCS. The CIS column

ure 5 presents a corrected algorithm, modified as follows: gives the average size of a CIS slice gnd the SIS c;olum_n
the average size of a SIS slice. There is already a big vari-

1. If the algorithm descends into a called recursive func- ation: The average CIS slice is between three and 300%
tion, it propagateswo call strings: the call string gen- larger than the average SIS slice. For many programs, we
erated byup and the actual call string (because of the already have a high precision for smhiin bothkLCS and
possible recursion). kFCS. In some cases (shown in bold), the precisiddaIS

cong([g,c)
[sllsa] - [sc-4]

down(c, [g]) — {

LOC ENTR nodes slices edges summary % time
A | gnugo 3305 38 3875 281 10657 2064 16 0.03
B | ansitape 1744 76 6733 1082 18083 12746 41 0.15
C | assembler| 3178 685 13393 2401 97908 114629 54 3/58
D | cdecl 3879 53 5992 697 17322 9089 34 0.08
E | ctags 2933 101 10042 1621 24854 20483 45 024
F | simulator | 4476 283 9143 1019 22138 5022 18 0.p6
G | rolo 5717 170 37839 6540 264922 170108 39 5/53
H | compiler 2402 49 15195 1017 45631 58240 56 0.80
| | football 2261 73 8850 818 30474 17605 37 0.85
J | agrep 3968 90 11922 1403 35713 12343 26 0.09
K | bison 8313 161 25485 3744 84794 29739 26 072
L | patch 7998 166 20484 3099 104266 83597 44 4]39
M | flex 7640 121 38508 5191 235687 144496 38 4/19
N | diff 13188 181 46990 10130 471395 612484 57 28.2

Figure 6. Details of the test programs

CIS SIS| 1ILCS 2LCS 3LCS 4LCS 5LCS 6LC$ 1IFCS 2FCS 3FCS 4FCS b5FCS 6FCS
1861 1798, 100 100 100 100 100 100 100 100 100 100 100 100
2909 1645 7 74 74 74 74 100 7 74 74 74 74 100
6458 4286 48 48 48 100 100 10d 48 48 48 100 100 10d
1039 880 99 99 100 100 100 10(¢ 99 99 100 100 100 10(
3207 2010, 100 100 100 100 100 100 100 100 100 100 100 100
5455 3212 83 83 100 100 100 10(83 83 100 100 100 10(¢

12819 7766 46 57 84 92 92 92 46 57 84 92 92 92
7474 6731 22 26 26 26 26 26 22 30 32 46 73 73
3081 2593| 100 100 100 100 - - 100 100 100 100 100 100
3521 3183 41 49 59 100 100 104 41 49 59 100 100 100
7215 1859 74 96 96 97 97 97| 74 96 96 98 100 100
9680 7965 92 99 99 100 100 10d 92 99 99 100 100 10(

14558 6172 29 29 29 29 29 29 29 30 30 32 98 100

19641 9179 88 98 98 98 98 — 88 98 99 99 100 -

ZIrXa—IOMMOO >

Figure 7. Precision of kLCS and kFCS (avg. size)

is higher tharkLCS. In only one case (flex, M) the precision complexity of SIS is more than compensated by the smaller
of 1FCS is slightly less than 1LCS (less than 0.1%, shown amount of vertices that are visited.
in italics). We limited the amount of memory and time in A typical problem of call string approaches is the combi-
which all slices have to be calculated: The tests marked withnatorial explosion of the generated call strings. This is also
“~" needed more than 300MB core memory or didn’t finish present irkLCS (see A, B, E, H, I, N) an#FCS (see E, H,
in fewer than eight hours on 1GHz machines with 512MB. N). However, due to the increased precision and the there-
fore smaller amount of visited vertices we also experienced
3.2. Speed of KLCS and kFCS reduced runtimes for highds;, see C, D, K forkLCS and
B, C, D, KforkFCS. In many casdg-CS is slightly slower
In Figure 8 we see the runtimes of the test cases for thethankLCS resulting from the overhead propagating call
different slicing algorithms (in sec.). The given times are strings. In other cases itis much faster thkh@S—it is also
for the complete set of slicing criteria. To get the average less likely to suffer combinatorial explosion. In some situ-
time for a single slice one has to divide by the number given ationskFCS is much slower thakLCS. This is not related
in the ‘slices’ column of Figure 6. We haven't given the to a problem wittkFCS but stems from the higher precision
average time, because most numbers would be sub-seconaf kFCS in these cases (see Figure 7 for comparison).
In the first two columns of Figure 8 we can see that the time A further increased (not shown here) causes many test
needed to do SIS slices is less than the time to do CIS slicesases to suffer combinatorial explosion up to a point where
if the SIS slices have a much higher precision: the quadraticslicing is not any longer possible wikh.CS orkFCS—Ilike

CIs SIS| 1LCS 2LCS 3LCS 4LCS 5LCS 6LCS
1,13 1,23| 3,05 5,99 14,8 54,1 267 135
7,37 556| 17,8 18,8 29,7 73,6 240 84 17,8 18,0 26,1 49,8 82,5 77,
81,5 118 158 206 228 171 177 143 160 207 230 174 178 14

5 1IFCS 2FCS 3FCS 4FCS b5FCS 6F(CS
7
o)
B
1,65 1,76/ 3,70 5,18 8,49 115 10,6 8,30 3,75 5,13 8,48 11,6 10,8 8,1
A
6
8
0

2,65 4,36 8,65 11,0 11,4 12,

~

oYV +T o WooWwWwow oo

11,1 9,83 17,2 24,0 38,3 148 352 574 17,3 24,3 41,6 137 343 57
124 7,88| 27,4 97,4 97,4 121 176 206 27,4 87,5 98,2 121 178 20
480 447 768 1033 1174 1511 2007 2738 749 964 1077 1355 1804 260
21,3 31,0/ 689 200 470 1461 5123 19140 48,0 200 487 2030 5220 854
6,01 7,33| 143 29,0 75,6 621 - -+ 13,9 25,2 29,6 41,1 46,3 45
12,8 11,6/ 30,3 39,1 52,0 39,7 59,5 120 29,9 38,3 49,8 315 31,9 30
835 304| 108 162 323 373 335 284 109 165 334 430 397 374
119 133 227 313 382 402 398 424 229 315 384 404 400 426
287 151 586 918 1289 1672 1899 2259 591 1088 2127 4571 2102 242
1824 1307| 1170 1580 2737 6675 20849 1109 1341 1946 3182 9227 -

ZIrXea—IOMMOOT>

Figure 8. Runtimes of kLCS and kFCS (sec.)

already test case | fér> 4. The previously described effect edges. The resulting chop is called@me-level truncated

of higher speed for highdris never compensating the com- chop “truncated” because the vertices of called procedures
binatorial explosion and we cannot share the experience ofare not included. In [14] Reps and Rosay presented more
Agrawal and Guo [1] who successfully used an unlimited variants of precise chopping. A same-lewein-truncated

call string slicing algorithm. Our experience is backed up chop is like the truncated chop but includes the vertices of
by Atkinson and Griswold in [2], who reported the same called procedures. They also presdifferent-leveltrun-

for the control flow graph approach. cated and non-truncated chops (which they aakrpro-

If we compare the runtimes &.CS andkFCS with SIS, cedura), where the vertices of the chopping criterion are
we see that even fde= 1 the runtimes okLCS andkFCS allowed to be in different procedures. Due to space limi-
are much higher than those of SIS. This leads to our per-tations, we are not considering the different-level variants
suasion that as long as summary edges are calculable, onbere. We are focusing omon-truncated same-level chop-
should use SIS for slicing. This stays the same if we con- ping, because it is the most challenging problem to formu-
sider the overhead to calculate the summary edges: the genlate this variant based on call strings: Due to the limitations
eration of summary edges is part of the analysis to generateof length limited call strings, the same-level property can
the PDG, which is expensive even without summary edge get lost during graph traversal.
generation. The overhead is only unaffordable in situations
where only one or two slices have to be done; in those situ-4.1. Context-Insensitive Chopping
ations the use of control flow graph based slicing is proba-
bly better anyway. If summary edges are not available, one |, the intraprocedural or context-insensitive case a chop
must revert ta-limiting algorithm, wherekFCS is prefer- for 5 chopping criterior(s;t) is basically the intersection
able tokLCS. Thek-limiting algorithms are also more im- ¢ 5 packward slice fot with a forward slice fors. An
portant in chopping, because the known context-sensitiveaigorithm would not use intersection, as set operations are

chopping algorithms are expensive. expensive for large sets like slices. Instead, the algorithm
presented in Figure 9 uses a two-phase approach: in the first
4. Chopping phase, the backward slice is done and in the second phase

the forward slice is done, where only vertices which have

We also applied our approach to the problem of chop- been visitgd durir!g the backward in(_:_e phase are considered.
ping. In [8] Jackson and Rollins defined a restricted form of Ve call this algorithntontext-insensitive chopping (CIC)
chopping: a chop for a chopping criterigg t) is the set of
vertices that are part of an influence of the (source) vestex 4.2. Chopping with Summary Edges
onto the (target) verteix This is basically the set of vertices
which are lying on a path fromto t in the PDG. Jackson The precise context-sensitive chopping algorithm, which
and Rollins restricted andt to be in the same procedure uses summary edges, is depicted in Figure 10. It basically
and only traversed control dependence edges, data deperstarts with an intraprocedural chop which is done with the
dence edges and summary edges but not parameter or ca#ligorithm in Figure 9. There is a slight modification to that

Let G= (V,E) be the given IPDG
Let(s,t) € V xV be the given chopping criterion
Wg = {t}, markt as visited in the backward phase
while Wg is not emptydo
remove one element w frongW
foreachv — w e E do
if v is not yet markethen
We =W U{Vv}, mark v as visited in the backward phase
if s has been marked in the backward phase
ands has not yet been marked in the forward phtimn
We = {s}, mark t as visited in the forward phase
while Wk is not emptydo
remove one element w fromgW
foreachw — v e E do
if v has been marked in the backward phtsen
We =We U{v}, mark v as visited in the forward phase
returnthe set of all in the forward phase visited vertices

Figure 9. Context-Insensitive Chopping

algorithm: as it has to do a chop only inside one single pro-

Let G= (V,E) be the given SDG
Let(s,t) € V xV be the given chopping criterion
Let C be the intraprocedural chop fds,t)
W = {v— wlv,we C,v— wis a summary edde
while W is not emptyglo
remove one elementyv w from W
Let V be the to v corresponding formal-in vertex
Let w be the to w corresponding formal-out vertex
if V,w has not been markeitien
mark V,w as visited
Let C be the intraprocedural chop fow/,w’)
c=cuc
W =WuU{v—wvweC' v— wisasummary edde
returnC

Figure 10. Chopping with Summary Edges

Let G= (V,E) be the given SDG
Let(s,t) € V x V be the given chopping criterion
Wg = {t}, mark t as visited in the backward phase
while Wg is not emptydo

remove one element w frongW

cedure, it is not allowed to traverse parameter or call edges foreachv — w € E not a parameter-in or call edgeto

(but it is allowed and required to traverse summary edges).
From the calculated chop all pairs of actual-in/-out vertices

if v is not yet markethen
We =W U {v}, mark v as visited in the backward phase
s has been marked in the backward phase

which are connected by a summary edge are extracted and ,
the initial worklist is filled with the pairs of the correspond- 2"dS has notyet been marked in the forward pheen

. . . L We = {s}, markt as visited in the forward phase

ing formal-in/formal-out vertices. Now for every pair in the while W is not emptydo

worklist a new intraprocedural chop is generated and added . ove one element w frompw

to the starting chop. Again, all summary edges are extracted foreachw — v € E not a parameter-out edgio

and the pairs of the corresponding formal-in/formal-out ver- if v has been marked in the backward phtfeen

tices are added to the worklist if they have not been added WE =WE U{v}, mark v as visited in the forward phase
before. This is repeated as long as there are elements in thesturnthe set of all in the forward phase visited vertices
worklist. The now extended chop is the resulting precise
interprocedural chop. The algorithm generatsame-level
non-truncatecchop: both vertices of the chopping criterion
have to be in the same procedure. We call this algorithm
summary information chopping (SIChhe intraprocedural
version of the algorithm in Figure 9 is a same-letrein-

catedchop.

Figure 11. Mixed Context-Sensitivity

4.4. Limited/Folded Context Chopping

Now, We can adapt th&LCS algorithm to chopping
(Figure 12). Again, we use a two-phase approach: First, the
backward slice is done and all vertices are marked with the
encountered call strings. Second, basically a forward slice

Chopping with summary edges is expensive due to theis computed, only considering vertices which have been
high complexity. A simple improvement is to combine marked with a matching call string in the first phase. They
context-sensitive slicing with summary edges with context- also have still to be unmarked with any matching context
insensitive chopping. We are using the same two-phase apfrom the second phase. The definitions of down, up and
proach as in context-insensitive chopping, but with context- match are the same as kbhCS. We call this algorithnk-
sensitive slicing using summary edges instead of context-limited context chopping (KLCChn the same style we can
insensitive slicing. Also, as we are doing same-level chop- adapt thekFCS algorithm to chopping. As this is straight-
ping, we only have to descend into called procedures.forward (and due to space limitations) we are not presenting
This algorithm, calledMixed context-sensitivity chopping the algorithm here (but it has been implemented and will be
(MCCQC), is shown in Figure 11. It is surprisingly precise as evaluated in Section 5). We call this algorithgimited
we will see in Section 5. folded context chopping (KFCC)

4.3. Mixed Context-Sensitivity Chopping

Let G= (V,E) be the given IPDG Let G= (V,E) be the given SDG

Let(s,t) € V xV be the given chopping criterion Let(s,t) € V xV be the given chopping criterion
We = {(t,€)}, mark t with(B, €) Let C be the intraprocedural chop fds,t)
while Wg is not emptydo W = {v— wlv,w e C,v— wis a summary edde
remove one eleme(iy, c) from W5 while W is not emptylo
foreachv — w € E do S=0,T=0
if v has not been marked witB, c') foreach call site in C do
for whichmatch(c,) holdsthen foreachw — v e W, c call site ofw — vdo
if v— w is a parameter-in or call edgéaen Let V be the to v corresponding formal-in vertex
Let s be the call site of v Let W be the to w corresponding formal-out vertex
if c=gVcarc) =s,then if V/,w' has not been marketien
¢ =up(c) mark V,w as visited
We =Ws U{(v,c)}, mark v with(B,c') S=SuV,T=Tuw
elsif v— w is a parameter-out edgben Let C be the intraprocedural chop fqiS, T)
Let sy be the call site of w c=cuc
¢ = down(c,sy) W = {v—wlv,weC',v— wis a summary edde
Ws =W U{(v,c)}, mark v with(B,c) returnC
else
We =Ws U{(v,c)}, mark v with(B, c)
if s has been marked witlB,) then Figure 13. Merging Summary Edges

We = {(s,€)}, mark s with(F, €)
while We is not emptydo

remove one elemefi, c) from We of corresponding formal-out verticé$he algorithm in Fig-
foreachw — v € E do ure 13 is based on the merging of summary edges dependent
if v has been marked wit, c') of their call site and is therefore calledimmary-merged
for whichmatct(c’, ¢) holdsthen chopping (SMC) After calculating the starting chop, we
if v has not been marked witF, ¢’) collect all new summary edges of visited call sites. Then we

for whichmatch(c,c’) holdsthen

if w— Vv is a parameter-out edgben
Let s, be the call site of v
if c=¢Vvcarnc) =s,then

do a new chop for every call site between the set of the cor-
responding formal-in vertices and the set of the correspond-
ing formal-out vertices. The resulting vertices are added to

¢ = up(c) the stgrting chop and we repe_at the procedure with the new
We =Wk U{(v,¢)}, mark v with(F,) resulting summary edges until there are no more new sum-
elsif w — v is a parameter-in or call edgthen mary edges left. This causes low runtimes as we are doing
Let sy be the call site of w a much smaller number of chops.
¢ = down(c,sy)
el:\f =W U{(wC)}, mark v with(F, ¢’ 5. Evaluation II: Chopping
WE =WE U{(v,c)}, mark v with(F, c)
returnthe set of all in the forward phase visited vertices We have implemented all previously presented chopping

algorithms (CIC, SIC, SMC, MCCKLCC andkFCC) to

fully evaluate them. As chopping criteria we have chosen
every tenth of all same-level pairs of formal-in/formal-out
vertices. Again, we measured the time needed to do the
complete set of chops, as the average time to calculate one
chop is sub-second.

Figure 12. Explicitly Context-Sensitive

4.5. An improved precise algorithm

. . . 1sketch of Proof: LeS be the set of all summary edges of one sin-
Now, we present an |mproved precise chopplng algo' gle call site which are all included in the starting chop. ligtoi) € S
rithm which has a much hlgher Speed. The SIC algorithm of and(iz,02) € Sbe a randomly chosen pair of summary edges.(liet})
Section 4.2 calculates a new chop for every pair of formal-in and (i3, 0;) be the corresponding pairs of formal-in/formal-out vertices.
and formal-out vertices that have a summary edge betweer}-et C1 be the chop foriy,0,) andC for (i5,0;). LetC be the chop for
. {i1,i5},{0},0,}). A problem can only be caused by a vertex that is in-
the corresponding actual-in and -out vertices included in the ¢, qed inc but not inC, UC,. For anyc e C, ¢ ¢ Cr, ¢ & Cy one of the
chop. Our observation is as follows: if two summary edges pathsi) —* ¢ —* 0, ori, —* ¢ —* o} must exist. Therefore, a summary
of one call site are included in the chop, we do not have to edge(i1,02) or (i2,01) must exist. These edges now must be included in
do a ChOp for the corresponding pairs of formal-in/formal- the starting chop (and thus also$hasii, iz, 01,0, are all in the starting
. . chop. Because of these summary edges we have to include theCghop
out vertices separately. Instead, we can do a single chop bero (! o/) or c, for (i}, 0/) into the resulting chop and therefczavill be

tween the set of corresponding formal-in vertices and the setadded to the resulting chop anyways.

chops| CIC SIC SMC| MCC | 1LCC 2LCC 3LCC 4LCC 5LCC 6LCQ 1FCC 2FCC 3FCC 4FCC 5FCC 6FQC

A 196 | 1050 262 262 96 6 6 6 6 6 6 6 6 6 6 6 6
B | 2802|1373 259 259 97 9 48 50 52 52 68 9 48 50 52 52 68
C | 16098| 5177 - 794 99 26 26 26 57 57 57 26 26 26 57 57 57
D| 2709 228 83 83 96 28 28 28 28 28 28 28 28 28 28 28 28
E | 5303|1000 233 233 98 83 83 83 83 83 83 83 83 83 83 83 83
F 848| 3562 700 700 97 63 64 75 75 75 79 63 64 75 75 75 73
G | 33994| 5573 - 818 99 37 42 48 56 56 56 37 42 48 56 56 56
H | 2676|5399 1984 1984 99 5 7 7 7 - - 5 7 8 12 - -
I 1528| 1450 767 767 94 43 43 43 - - — 43 43 43 44 44 44
J | 4892 551 169 169 95 34 36 38 73 73 73 34 36 38 73 73 73
K |21839| 3298 41 41 99 88 99 99 99 99 99 88 99 99 99 99 99
L | 15672| 6370 — 1855 98 42 46 46 46 46 44 42 46 46 46 46 44
M | 42442| 5265 - 522] 99 29 30 30 30 30 — 29 30 30 - 9 93

Figure 14. Precision of MCC, KLCC and kFCC (%)

Precision. To measure the precision of the different algo- of kLCC andkFCC against SIC and SMC, we experience
rithms, we follow the same approach as in Section 3.3: We again different results as in slicing: nine test cases are faster
consider CIC to have 0% precision and SIC (or SMC) to in chopping with 1LCC or 1FCC than SIC and one is even
have 100% precision. The results are shown in Figure 14:faster than SMC.
The first column contains the amount of chopping criteria(= The results for chopping are not as clear as in slicing, but
amount of chops done) and the next three columns give thethey lead to the same recommendation: due to the high pre-
average size of CIC, SIC and SMC chops. The first thing cision SMC is preferable to all other chopping algorithms.
we see is that there are four cases where it was impossibléSometimes the call string approaches are faster, but they
to complete SIC in the given time boundaries. have a poor precision.

The simple MCC algorithm is surprisingly precise: nor-

mally it has around 96% precision and is always more pre- 6. Conclusions and Future Work
cise than 6LCC or 6FCC. This shows that the main source of

imprecision in chopping is the loss of the same-level prop- We have evaluated four different algorithms (two well

erty, which is kept by MCC. The other experiences are in known and two new) for slicing and six different algorithms

a kind of contrast to the experiences with the slicing al- (two well known and four new) for chopping. Our experi-
gorithms: All other algorithms than SIC, SMC and MCC ences can be summarized as follows: '

are much less precise and with increakelde precision of

KLCC andkFCC is only increasing slowly. e The two new specialized chopping algorithms SMC
and MCC are better than previously known chopping
algorithms (CIC, SIC). SMC is preferable to SIC, as it
is much faster. The MCC algorithm is surprisingly fast
and precise, in some cases an alternative to SMC.

Speed. The most important observation while comparing
the runtimes of SIC and SMC is that SMC is alwawsch
faster. As an extreme, in test case | SMC only needs 1% of
the runtime of SIC. The MCC algorithm is not Only SUrpriS' e Both k-limited approaches may suffer from the possi_

ingly precise but also fast. For the larger test cases it may ble combinatorial explosions of call strings.
be much faster than any of the other algorithms.

The comparison dfLCC with kFCC in terms of runtime e Higher precision has definitely a high influence on
reveals the same results as frCS andkFCS: In many speed: it may cause lower runtimes due to a smaller set
caseskFCC is much faster thakLCC and is less likely of visited vertices. But the higher precision is gained
to suffer combinatorial explosion. Also, increadedhay from an increasekH-limit, the higher amount of gener-
sometimes result in lower runtime. ated call strings may also cause a much higher runtime.

In Section 3.4 we saw that SIS is normally not slower
than CIS. This is not the case with chopping: In only three
test cases CIC is slower than SIC, and in five test cases CIC
is even faster than SMC. This is due to the much higher e If summary edges cannot be uskBCS anckFCC are
complexity of chopping with summary edges in comparison the algorithms of choice, because they do not suffer
to slicing with summary edges. If we compare the speed from combinatorial explosions due to recursion. In

e The use of summary information is the best solution
(aslong as it is possible). It is both precise and fast.

CIC SIC SMC| MCC | 1LCC 2LCC 3LCC 4LCC 5LCC 6LCQ 1FCC 2FCC 3FCC 4FCC 5FCC 6FCC
A| 135 254 038 047 407 7,88 205 783 384 1964 3,67 5,63 11,3 144 154 158
B| 324 242 11,8 10,7\ 88,2 108 185 371 1069 2663 87,8 106 171 296 511 379
C | 1145 — 4691 451| 2293 3389 4670 3113 2613 21012295 3381 4697 3106 2612 2107
D| 960 31,1 3,44 560| 200 29,6 455 689 650 495200 29,7 451 686 64,9 495
E| 59,7 511 18,0 30,4| 850 125 223 787 2061 3581 852 125 234 746 2087 3640
F| 20,3 146 3,45 558| 409 154 159 226 451 530 41,1 155 160 227 454 532
G | 3985 — 4172 1171| 6647 8721 11884 16844 21892 284376486 8260 11081 15173 20264 28753
H | 112 9098 153 75,4| 420 993 2884 9253 - + 309 1131 3623 17486 - -
| | 18,1 2003 21,1 13,3| 51,3 177 1778 - - + 46,2 91,7 122 176 232 214
J| 60,8 44,1 9,63 252 140 185 268 323 1218 7921 138 179 237 151 159 154
K | 1038 247 29, 183| 1127 1460 3137 3846 3167 24721134 1476 3191 4104 3459 28%8
L | 1202 — 2358 609| 2302 3134 3967 4285 4119 40822301 3134 3974 4288 4114 4099
M | 4037 — 2045 957| 8452 13062 19314 25121 29800 —8465 14981 28793 — 22959 24958

Figure 15. Runtimes of KLCC and kFCC (sec.)

¢ Context-insensitive algorithms cause a loss of preci-

sion, which is much higher in chopping than in slicing.

e The context-insensitive algorithms CIS and CIC can be

Based on ourresults, it would be interesting to fully evaluate 14

regarded as OLCS/OFCS and OLCC/OFCC.

other problems of program analysis: First, what influence
have prerequisites like pointer analysis onto precision and
speed of the different slicing/chopping algorithms? (Some [11] D. Liang and M. J. Harrold. Efficient points-to analysis for

results for SIS are presented in [11, 12].) Second, how are

some cases, FCS or FCC is also more precise, how- [7] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedural
ever, this may lead to higher runtimes.

slicing using dependence graph&CM Trans. Prog. Lang.
Syst, 12(1), 1990.

D. Jackson and E. Rollins. A new model of program depen-
dences for reverse engineering. Rroc. Symposium on the
Foundations of Software Engineerintp94.

[9] J. Krinke. Static slicing of threaded programs. Fmnoc.

ACM SIGPLAN/SIGFSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE'98998.

] J. Krinke and G. Snelting. Validation of measurement soft-

ware as an application of slicing and constraint solvilmg.
formation and Software Technolag$0(11-12), 1998.

whole-program analysis. IBSEC / SIGSOFT FSHE999.

applications that use slicing or chopping influenced by the [12] A. Orso, S. Sinha, and M. Harrold. Effects of pointers on
different algorithms? Based on our technique to generate
and solve path conditions [16], which makes intensive use
of chopping, we will work on both questions in the future.

References

(1]

(2]

(3]

(4]

(5]

G. Agrawal and L. Guo. Evaluating explicitly context-
sensitive program slicing. M/orkshop on Program Analysis
for Software Tools and Engineering001.

D. C. Atkinson and W. G. Griswold. The design of whole
program analysis tools. IRroc. Intl. Conference on Soft-
ware Engineering1996.

D. C. Atkinson and W. G. Griswold. Implementation tech-
nigues for efficient data-flow analysis of large programs. In
Proc. Intl. Conference on Software Maintenan2e01.

L. Bent, D. Atkinson, and W. Griswold. A comparative
study of two whole-program slicers for C. Technical Report
CS2000-0643, Univer. of California at San Diego, 2000.

M. Burke, P. Carini, J.-D. Choi, and M. Hind. Flow-
insensitive interprocedural alias analysis in the presence of
pointers. InLecture Notes in Computer Science, 89295.

data dependences. Rroc. 9th Intl. Workshop on Program
Comprehensior2001.

K. J. Ottenstein and L. M. Ottenstein. The program depen-
dence graph in a software development environment. In
Proc. Software Engineering Symposium on Practical Soft-
ware Development Environmeni®984.

T. Reps and G. Rosay. Precise Interprocedural Chopping. In
Proc. Third ACM SIGSOFT Symposium on the Foundations
of Software Engineerind 995.

[15] T. W. Reps, S. B. Horwitz, M. Sagiv, and G. Rosay. Speed-

ing up slicing. InProc. Second Symposium on the Founda-
tions of Software Engineerind994.

[16] T. Robschink and G. Snelting. Efficient path conditions in

dependence graphs. Rroc. Intl. Conference on Software
Engineering 2002.

B. G. Ryder, W. Landi, B. Philip, A. Stocks, S. Zhang,
and R. Altucher. A schema for interprocedural modifica-
tion side-effect analysis with pointer aliasingCM Trans.
Prog. Lang. Syst2001.

M. Sharir and A. Pnueli. Two approaches to interprocedural
data flow analysis. IfProgram Flow Analysis: Theory and
Applications Prentice-Hall, 1981.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program [19] M. Weiser. Program slicingEEE Trans. Softw. Eng10(4),

dependence graph and its use in optimizatid@M Trans.
Prog. Lang. Syst9(3), 1987.

10

1984.

