Automatically Fixing Dependency Breaking Changes

LUKAS FRUNTKE, University College London, United Kingdom
JENS KRINKE, University College London, United Kingdom

Breaking changes in dependencies are a common challenge in software development, requiring manual
intervention to resolve. This study examines how well Large Language Models (LLMs) automate the repair
of breaking changes caused by dependency updates in Java projects. Although earlier methods have mostly
concentrated on detecting breaking changes or investigating their impact, they have not been able to completely
automate the repair process. We introduce and compare two new approaches: an agentic system that combines
automated tool usage with LLMs, and a recursive zero-shot approach, employing iterative prompt refinement.
Our experimental framework assesses the repair success of both approaches, using the BUMP dataset of
curated breaking changes. We also investigate the impact of variables such as dependency popularity and
prompt configuration on repair outcomes. Our results demonstrate a substantial difference in test suite success
rates, with the agentic approach achieving a repair success rate of up to 23%, while the zero-shot prompting
approach achieved a repair success rate of up to 19%. We show that automated program repair of breaking
dependencies with LLMs is feasible and can be optimised to achieve better repair outcomes.

CCS Concepts: » Software and its engineering — Automatic programming.
Additional Key Words and Phrases: Automated program repair, dependency management

ACM Reference Format:
Lukas Fruntke and Jens Krinke. 2025. Automatically Fixing Dependency Breaking Changes. Proc. ACM Softw.
Eng. 2, FSE, Article FSE096 (July 2025), 23 pages. https://doi.org/10.1145/3729366

1 Introduction

Modern software development relies heavily on libraries and frameworks, packaging common
functionality. Given their nature, these libraries and frameworks are called dependencies. Software
in general, and dependencies specifically, evolve regularly. Therefore, there is a need to update
these dependencies to ensure that the software remains secure, performant, and compatible with
other components. However, updating dependencies is a challenging task, as it can introduce
breaking changes that require manual intervention to resolve. This manual intervention can be time-
consuming and error-prone, resulting in developers neglecting the update of their dependencies,
with research demonstrating this for up to 82% of investigated cases [40]. This neglect could
induce security vulnerabilities and compatibility issues, compromising integrity and functionality
of software projects, potentially ‘poisoning’ the software supply chain.

The automation of such dependency updates has become a topic of ongoing research in both
academia [12, 30] and industry, with common adoption of industrial tools like Dependabot! and
Renovate?. A common limitation of these tools and this research is their inability to mitigate

thttps://docs.github.com/en/code-security/dependabot
Zhttps://www.mend.io/renovate

Authors’ Contact Information: Lukas Fruntke, University College London, Department of Computer Science, London, United
Kingdom, lukas.fruntke.23@ucl.ac.uk; Jens Krinke, University College London, Department of Computer Science, London,
United Kingdom, krinke@acm.org.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2994-970X/2025/7-ARTFSE096

https://doi.org/lo.l 145/3729366

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

HTTPS://ORCID.ORG/0009-0007-7187-8717
HTTPS://ORCID.ORG/0000-0003-1009-2861
https://doi.org/10.1145/3729366
https://docs.github.com/en/code-security/dependabot
https://www.mend.io/renovate
https://orcid.org/0009-0007-7187-8717
https://orcid.org/0000-0003-1009-2861
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729366
https://www.acm.org/publications/policies/artifact-review-and-badging-current

FSE096:2 Lukas Fruntke and Jens Krinke

breaking changes in the Application Programming Interface (API) of dependencies, necessitating
human intervention for such upgrades. The complexity of those breaking changes, coupled with
their pervasiveness throughout the codebase, demands significant effort from developers [40].

The emergence of Large Language Models (LLMs) has opened new avenues for addressing
complex software engineering challenges. These models have shown promise in a variety of software
engineering tasks, with the application to the problem of the remediation of breaking changes being
largely unexplored [42, 52]. This research aims to bridge this gap by leveraging LLMs to automate
the process of updating dependencies, with a specific focus on resolving breaking API changes, as a
sub-discipline of Automated Program Repair (APR). We present a novel system designed to facilitate
the automated upgrade of software codebases in response to breaking dependency updates in Java
projects. To evaluate the efficacy of LLMs in this domain, we investigate two distinct techniques:
zero-shot prompting and an agentic approach. Our methodology includes establishing a controlled
experimental setup to examine these approaches, concentrating on their capacity to repair breaking
API updates. This comparison attempts to determine whether the simplicity of zero-shot prompting
can match the performance of the more context-rich agentic method, and to analyse the efficiency
of both techniques. By utilising the pre-existing knowledge of the LLM in zero-shot prompting,
we assess the model’s inherent ability without previous examples or instructions. Conversely, the
agentic approach allows the LLM to independently refine its solutions based on environmental
feedback, potentially enabling more sophisticated repairs. We evaluate repair success based on test
suite passage. We also track test suite errors, indicating a repair that compiled, but did not pass the
test suite for various reasons, potentially indicating near-misses. We also analyse the impact of
factors such as dependency popularity and the complexity of breaking changes on the performance
of our system.

Our findings demonstrate the potential of LLMs in addressing breaking API changes. The zero-
shot prompting approach repairs up to 19% of the cases towards full test suite success, and addition-
ally another 43% towards compilation success. While the agentic approach exhibits superior repair
performance at up to 23% test suite success, it shows a lower compilation success rate of 15.4% in our
evaluation. We demonstrate that the performance of both approaches is heavily model-dependent
and influenced by the complexity of the breaking changes.

By automating the handling of breaking API changes, our work aims to significantly reduce the
manual effort required in dependency updates. With the uptake of the approaches presented in
this paper, updates could become more frequent, improving software security in the industry.

This paper contributes to the field of automated program repair in three key ways:

e We present two novel approaches for automated repair of breaking dependency updates in
Java projects using LLMs.

e We provide a comprehensive comparison of zero-shot prompting and agentic approaches,
offering insights into their relative strengths and limitations.

e We publish an improved version of the BUMP dataset, which we use for evaluation, and all
artefacts from our research.

With this research, we contribute to the growing field of LLM-assisted APR, highlighting the
feasibility and investigating optimisations of using LLMs to repair breaking changes, advancing
automated software maintenance towards fully automated dependency management.

2 Related Work

Since this paper sits at the intersection of research areas including API evolution, dependency
management, APR and LLMs, we provide a comprehensive background to contextualise the research.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:3

2.1 Dependencies and Breaking Changes

According to Belguidoum and Dagnat [4] and Jezek et al. [32], vertical compatibility refers to the
ability to replace one component with another without breaking existing contracts, encompassing
the notion of backward compatibility. Horizontal compatibility includes behavioural constraints
and even licence compatibility (for example, the exclusion of copy-left licences), ensuring that a
component maintains proper interactions with other parts of the system [32]. Within this paper,
we focus on vertical compatibility, as it is the most common form of compatibility in the context
of dependency updates. We will refer to changes to dependencies/libraries/packages that violate
vertical compatibility as breaking changes in this paper. The issue of breaking changes has been
studied extensively within multiple studies, such as the study conducted by Xavier et al. [64],
which investigates 317 real-world Java libraries, 9,000 releases, and 260,000 client applications for
breaking changes. They show that 14.78% of API changes investigated break compatibility with
previous versions and 2.54% of client applications are impacted. Meanwhile, Keshani et al. [38]
found in their investigation that 67% of studied Maven packages violated semantic versioning at
least once, thereby possibly introducing breaking changes in a release without prior warning. In a
different study, Jayasuriya et al. [31] attempted to automatically update library-client pairs and
found that 11.58% of their dataset were breaking changes, of which 41.58% were induced during
a non-major version upgrade. They also show that transitive dependency changes are a leading
cause for breaking changes. Meanwhile, Brito et al. [7] contributed a tool called APIDiff that detects
breaking changes in Java APIs.

In their study, Rahkema and Pfahl [54] analysed the lag time (difference between release of a
new dependency version and uptake in a client using said dependency) for projects leveraging
three distinct package managers and found that on average it varied from 44 to 96 days. Decan et al.
[13] show that for npm since 2015, only about 25% of the releases had a lag lower than 52 days.

He et al. [24] conducted a comprehensive study on Dependabot, a popular dependency manage-
ment bot, using repository mining and a developer survey. The study found that Dependabot helps
reduce lag, with projects decreasing their lag from 48.99 to 25.38 days within 90 days of adoption.
While over 70% of Dependabot pull requests are merged, many developers prefer to perform manual
updates after receiving notifications. In addition of course, Dependabot does not address breaking
changes and at most notifies when the test suite breaks.

In the study by Dietrich et al. [14], an analysis was conducted on 109 programs with 212 program
dependencies. They found as much as 75% of all version upgrades could become incompatible. In
a separate study, Jezek et al. [32] examined 455 pairs of adjacent versions representing ‘atomic’
upgrades. Their analysis revealed that 375 version pairs exhibited vertical incompatibilities, while
only 74 pairs were compatible, representing an incompatibility quota of 80% and a ratio of 5:1
incompatible to compatible upgrades.

APIFix [22] and MELT [55] use examples to learn relationships between adaptations of different
library versions and how to generate transformation rules to automatically adapt other clients to a
new version of a library.

Two different benchmarks/datasets are available for breaking changes and API compatibility.
Durieux et al. [16] present a benchmark of pairs of 395 libraries and their 2874 respective clients,
where each pair compiles and passes the respective test suite fully. Reyes et al. [57], however,
present a reproducible benchmark of breaking changes mined from the broader Java Ecosystem,
containing 571 breaking dependency updates from 153 projects. This benchmark has mostly been
curated by mining Dependabot Pull Requests from GitHub. With their dataset, they not only present
the causes of breakages and possible originations on the API-level, but they also make docker
images accessible that allow the indicated failures to be replicated as checkpoints. A similar dataset

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:4 Lukas Fruntke and Jens Krinke

named Compsuite was presented by Xu et al. [66]. It contains 123 Java client-library pairs, where a
library upgrade induces a breakage in the client and are surfaced by hand-constructed tests.

2.2 Automated Program Repair (APR)

Nielebock [50] introduced the concept of API-specifc APR, which includes the APIs that software
dependencies expose. The paper goes on to show that API usage patterns are needed for APR
to succeed. These patterns are learned through the corpora of LLM training data, with varying
success, as a study by Zhong and Wang [69] found in a zero shot scenario that up to 62% of the
code generated by LLMs was not correctly using APIs.

The type of Automated Program Repair we apply in this work falls under the behavioural
repair category, as described by Monperrus [49]. It is particularly applicable to statically typed
languages, where the compiler and/or test suite serve as the oracle to verify API compatibility
with dependencies. Hejderup and Gousios [25] assess the effectiveness of test suites for identifying
breaking changes arising from dependency updates of Java projects, contributing the success criteria
of this paper. By examining 521 projects, they evaluate the test suite coverage and effectiveness.
They show in their study that the median coverage of dependencies in their dataset by a client’s
test suite is at 58%. This was achieved, however, by artificially seeding faults, possibly not mirroring
real-world conditions. It still raises an adequacy question of test suites as suitable oracles for APR
for dependencies.

2.3 Large Language Models for APR

The application of LLMs within the field of APR is a field of current research, with a recent
literature review finding 127 publications related to the field, where 37% of the publications focused
on Java as a programming language specifically [68], with some notable publications including
[15, 34, 36, 44, 48, 63]. In said literature review, 48% of the publications focused on the zero-shot
methodology. Especially noteworthy is Joshi et al. [37], where the authors introduce a tool for APR
called Ring, which they also prompt with the initial compilation error, inducing a repair.

Allowing the LLM to refine its solutions using the feedback from test suites or compilers, termed
‘self-debugging’, has been introduced by Chen et al. [11]. Leveraging agentic tools for the same
purpose was investigated by Huang et al. [28]

In Xia and Zhang [65], the authors introduce an APR tool that incorporates back-tracking and
evaluation feedback from the test suite to improve the quality of the generated patches. Hidvégi
et al. [26] introduced CIGAR, a LLM based APR tool, which focuses on minimising token cost while
maintaining effectiveness. The authors show in their study that CIGAR outperforms state-of-the-art
APR tools by fixing more bugs while reducing token cost by 73%.

Agrawal et al. [2] investigate Language Servers and the Language Server Protocol to guide the
decoding of LLMs, discarding infeasible options without compilation. In addition, they open-source
their framework for interfacing with Language Servers like Eclipse’s JDT for Java.

Chen et al. [11] show that a feedback loop utilising compilation can improve LLM performance
in multi-shot code generation scenarios by up to 12%.

In the study by Horvath et al. [27], the authors show how LLM performance on APR tasks is
directly dependent on the structure of the input (i.e., structuring code input as command sequences,
Abstract Syntax Tree (AST) or text), which was however an optimisation task highly dependent on
the LLM and dataset used. This study directly inspired the RQ3 in this paper, which also aims to
find optimal representations for the task and dataset at hand.

In recent literature there are ample examples of agentic approaches to APR that are used to
improve the performance of LLMs in the field of APR [10, 47, 61]. A survey into agentic approaches

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:5

conducted by Jin et al. [35] investigates applicability to Software Engineering problems, includ-
ing APR. Meanwhile, Bouzenia et al. [6] demonstrate an LLM-based agent that performs APR
autonomously, based on a custom JSON patch format, but with more tooling available to the agent
than in our study and an iteration budget of 35 retries. Their tool, RepairAgent, outperforms the
state of the art on the Defects4]Jv2 benchmark.

2.4 Fixing Dependency Breaking Changes

Dann et al. [12] introduced UPCY, a graph-based approach to provide safer dependency update
suggestions, minimising incompatibilities when updating libraries. Upon evaluation, the tool could
find update paths with 70.1% of these updates having zero incompatibilities. Reyes et al. [56]
introduce Breaking-Good, a tool that generates explanations for breaking dependency updates by
analysing build logs and dependency trees. Similar to this paper, it relies on the BUMP dataset and
was evaluated on 243 breaking updates, whereby it accurately explains and categories 70% of cases.

Jhamat et al. [33] introduce a tool called DepRefactor, which they claim can automatically refactor
codebases to adapt to breaking changes in dependencies in C# projects. They do not conduct an
evaluation of the tool’s performance and do not substantiate their claim that the tool contains ‘AT’

The master’s thesis by Bono [5] explored breaking change repairs via LLMs using the BUMP
dataset. Their work concentrated on build failures, examining a filtered subset of 35 entries with
four LLMs (Gemini, GPT-4, Llama, Mixtral). While both studies investigate few-shot prompting,
Bono’s approach targets specific failure types with tailored prompts, achieving repairs in 10 out
of 35 projects. In contrast, our work examines a larger dataset slice, a broader spectrum of LLMs
including several Claude variants, and introduces an agentic approach. We additionally analyse
dependency popularity and function calling proficiency as repair performance factors, providing
comprehensive insights into model capabilities and their contributing elements.

3 Approach

Within this section, we propose two approaches for automatically fixing breaking changes in de-
pendency updates by leveraging LLMs. This section discusses the key components of our approach,
focusing on the challenges of LLM interaction, the rationale behind our chosen methods, and the
specific implementations for both zero-shot prompting and the agentic approach.

3.1 Architecture Overview

For later evaluation, we implement two different approaches to LLM interaction: zero-shot prompt-
ing and an agentic approach. These will be further discussed in subsection 3.2 and subsection 3.3.
Within this section, we aim to outline the general architecture of both approaches, which is subtly
varied in both implementations.

As we primarily designed the approaches to address breaking changes in Maven Java projects,
we utilise diffs as an intermediary language for code modifications. The core workflow involves
running these diffs against a containerised environment with an associated repository at a specific
commiit in it, against which we execute mvn clean test, triggering both compilation and test
suite execution. The commit our approach is running against, and associated meta- and input data,
can either be provided ad-hoc or in a batch fashion, for example in the form of a pre-compiled
dataset. Both approaches share common phases: Input Processing and LLM Interaction, Validation
& Feedback, and Output Generation.

Input Processing: The input for the LLM, which had to be pre-processed, is passed to the LLM
in a structured format. This contains suspicious (suspiciousness here being included in Maven
Errors and/or API Change metadata) code files, dependency change information for the commit

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:6 Lukas Fruntke and Jens Krinke

Input Experiment
Tools

Input Experiment

Evaluation Metadata

Metadata LLM Read file

Y
API Changes
l Patches lMetadata l Trace I l Patches I Metadata I Trace I

Output Output

API Changes

.
2
5 __ =
E oLuL(QAU. j)leprpIy _________) Code . —_Read specific file lines || | &
& o LLM 14) =angd g serd Dependency || Triaisa List directory é
Dependency 3 Pipeline 3) Compilation Change Info Input Validate diffs 5
Change Info g Critiquel|14) Test Suite Initial Maven g
- S Reset folder 3
Initial Maven S Error
Error s -{ Execute Testsuite
S
T

(a) Zero-Shot Approach (b) Agentic Approach

Fig. 1. Architectural comparison of the Zero-Shot and the Agent-based approach.

(i.e., which dependency was upgraded), the initial Maven errors (test suite error and/or compilation
error), and structured API changes of the dependency that was updated.

LLM Interaction: Finding an appropriate editing format for LLMs to communicate code changes
is challenging due to their tendency to produce partial or altered code fragments [62]. To mitigate
risks of hallucinations [1, 29] or irrelevant edits, we use unified diffs as an intermediate language,
following observations by Gauthier [23]. This approach is supported by ongoing research on using
diffs for code review tasks [18]. Based on work by Gauthier [23], we developed an improved diff
parser with optimistic error correction.

Validation & Feedback: A multi-stage process that includes diff parsing, compilation, and test
suite execution. This can be either in the form of a static pipeline or as a subagent, depending on
the approach. Feedback is given to the LLM based on the validation results for refinement.

Output Generation: Produces the final patches and metadata.

3.2 Zero-Shot Prompting

Following the definition of Brown et al. [8], we define zero-shot prompting as a natural language
description of a task specifically without any examples, which is the key-differentiator to few-shot
prompting. In our definition, while back-tracking with a subsequent refinement of the prompt
induces a sense of conversationalness, we still count it as zero-shot prompting, as only refining
guidance is given, not examples.

Our experimental architecture for the zero-shot approach relies heavily on backtracking, im-
plemented using DSPy [39] for inference. We enhanced this with the Assertions functionality for
backtracking in DSPy [60], allowing us to build a flexible inference pipeline. In this context, back-
tracking refers to the process of prompting the LLM with its last solution and the reason it failed,
eliciting a refinement, as the pipeline execution is backtracked. Our implementation generates an
initial solution attempt using the LLM, which is then evaluated against a set of assertions — prede-
fined conditions that must be met for the solution to be considered valid. Upon assertion failure,
the system backtracks by regenerating a new solution, taking into account the failed assertion. To
avoid infinite back-tracking there is a maximum limit to attempts.

The baseline configuration for the zero-shot prompting approach, as shown in Figure 1a, includes
a disabled Language Server integration, 30 backtracking iterations, the full code file, the custom
dependency update representation, the minified error and the API Changes as reported by Japicmp
and RevAPL Both tools are widely used open-source tools for Java API compatibility analysis
[51,56,57] — detecting breaking changes across library versions by analysing bytecode modifications.
These include critical API alterations like method/field additions/removals, signature updates, and

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:7

constructor changes. In the dataset, Reyes et al. [57] leverage both tools to systematically map API
changes to downstream compilation errors, isolating the root causes (suspicious files) that trigger
failures.

3.3 Agentic Approach

An agent, as defined by Franklin and Graesser [19], differs from a typical program in its ability
to interact with its environment and other agents over time, maintaining a sense of statefulness.
It autonomously selects and executes actions, responding to subsequent changes. Applying this
concept to LLMs requires the ability to interact with the environment. As shown by Schick et al. [58],
this capability is learnable and was integrated in many LLMs. We implement a tool-using agent via
LangGraph [41]. Our agent integrates a Large Language Model (LLM) as its core decision-making
component. The agent operates through LangGraph’s event loop as shown in Figure 2. From the
initial start state, the LLM is invoked with an initial prompt instructing it to create a patch. It then
can choose to invoke maven as our test oracle to validate the solution (via the test node), or it can
invoke a specific tool (via the tools node). The feedback for the (failed) test or the result from the
invoked tool is then used by the LLM to decide on the next step. If the validation step is successful
(the test is passed), the agent completes with success and the agent is ended. If the agent cannot
find a successful solution within 30 executions of a node, the agent is aborted (by LangGraph).

tools

result

Fig. 2. LangGraph Execution Graph of the Agent System

The agent has access to several tools, as shown in Figure 1b. These include read_file (reads a
file from a given path), read_file_lines (reads specific lines from a file), get_directory_tree_for_path
(returns the directory structure), validate_diffs (checks if a diff can be applied), reset_repo (resets the
project repository), and compile_maven_stateful (compiles the project with applied diffs, persisting
changes unless reset, and executes the test suite). The compile_maven_stateful tool is separated in
its own test node as it decides on ending the iteration (on pass) or continuing (on fail). The tools
return the results or descriptive error messages to aid the LLM in its decision-making process.

To explain how the agent system works, we provide an example run for a successful repair of
a failed dependency update for net.sf. jasperreports: jasperreports from version 6.18.1 to
6.19.1 involved 6 iterations: The LLM is initially given a prompt consisting of the fixed system
prompt in Figure 3 and the additional information about the dependency breakage shown in Figure 4,
consisting of the maven error messages and the Japicmp/RevAPI results. The LLM first invokes
the read_file tool to retrieve the content of ReportBuilder. java, the file causing a compilation
error. It then generates a patch and invokes the validate_diffs tool to check the generated patch,
which is successful. The LLM then invokes the compile_maven_stateful tool to compile the project
with the applied patch and execute the test suite. However, the compilation still fails. With the
feedback from the failed build, the LLM creates a new patch and tests it again. This time the test
fails because the patch cannot be applied. The LLM then invokes read_file again and generates a
new patch. The next invocation of compile_maven_stateful is successful (all tests are passed), and
the agent ends successfully.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:8 Lukas Fruntke and Jens Krinke

Act as an expert Java software developer.

The program has issues after a version upgrade of a dependency.

Try using minimal changes to the code to fix the issues. Do not explain your actions or ask
questions, just provide diffs that always adhere to the rules. When you think you are done, reply
with the diff that fixes the issues, after that a final verification step will happen and the
conversation will be ended if it was successful. If not you get the error back.

File editing rules:
Return edits similar to unified diffs that “diff -U@~ would produce.
The diff has to be in a markdown code block, like this: ~~~diff ~~ .

Make sure you include the first 2 lines with the file paths.
Don't include timestamps with the file paths.

Start each hunk of changes with a @@ ... @@ line. Don't include line numbers like ~“diff -U@~ does.
The user's patch tool doesn't need them.

The user's patch tool needs CORRECT patches that apply cleanly against the current contents of the
file! Think carefully and make sure you include and mark all lines that need to be removed or
changed as “-" lines. Make sure you mark all new or modified lines with “+. Don't leave out any
lines or the diff patch won't apply correctly. Don't add in new comments or change existing
comments. Make sure the diff is minimal and only includes the changes needed to fix the issue plus
at least one context line so the tool can apply the diff correctly. Indentation matters in the
diffs!

Start a new hunk for each section of the file that needs changes. Don't include unnecessary context,
but include at least one line of it. If no context is included, the tool will try to apply the
changes at the end of the line.

Only output hunks that specify changes with "+ or "~ lines. Skip any hunks that are entirely
unchanging =~ ~ lines. Output hunks in whatever order makes the most sense. Hunks don't need to be
in any particular order.

When editing a function, method, loop, etc use a hunk to replace the *entire* code block. Delete
the entire existing version with “-" lines and then add a new, updated version with “+° lines.

This will help you generate correct code and correct diffs.

To make a new file, show a diff from “--- /dev/null” to ~+++ path/to/new/file.ext”.

Fig. 3. The prompt template for the agent system.

4 Evaluation

We designed a controlled experimental setup that allows us to evaluate the effectiveness of both
zero-shot prompting and the agentic approach. We aim to address the following research questions,
comparing both approaches and LLMs across multiple dimensions:

RQ1: Is an agentic approach more effective than zero-shot prompting? This question in-
vestigates and compares the efficacy of the two approaches, zero-shot and agentic, in addressing
breaking API changes, discovering insights into their relative strengths and limitations.

We expect the agentic approach to outperform the zero-shot approach, as it can refine its solutions
based on environmental feedback. Therefore we aim to analyse factors that may influence the
performance of the agentic system in RQ2. Given the nature of the zero-shot approach, we suspect
a sensitivity to the input structure and format, which we aim to explore in RQ3.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:9

Updated Dependency Details: net.sf.jasperreports:jasperreports 6.18.1 -> 6.19.1

Initial Error: [ERROR] Failed to execute goal

< org.apache.maven.plugins:maven-compiler-plugin:3.10.0:compile (default-compile) on project

— biapi: Compilation failure

[ERROR] src/main/java/xdev/tableexport/export/ReportBuilder.java:[369,81] incompatible types: int
< cannot be converted to java.lang.Float

[ERROR] -> [Help 1]

Japicmp/RevAPI API Changes, which describe changes in the APIs used by this project:
{"japicmpResult":
{"getLineBox": ["METHOD_REMOVED"], "getPen": ["METHOD_REMOVED"],
"getLineWidth": ["METHOD_REMOVED"], "setLineWidth": ["METHOD_REMOVED"]},
"elementLines":
{"getLineBox": "[ERROR] /biapi/src/main/java/xdev/tableexport/export/ReportBuilder.java:[369,81]
< incompatible types: int cannot be converted to java.lang.Float",
"getPen": "[ERROR] /biapi/src/main/java/xdev/tableexport/export/ReportBuilder. java:[369,81]
< incompatible types: int cannot be converted to java.lang.Float",
"getLineWidth": "[ERROR]
— /biapi/src/main/java/xdev/tableexport/export/ReportBuilder. java:[369,81] incompatible types:
< int cannot be converted to java.lang.Float",
"setLineWidth": "[ERROR]
— /biapi/src/main/java/xdev/tableexport/export/ReportBuilder. java:[369,81] incompatible types:
< int cannot be converted to java.lang.Float"},
"revapiResult":
{"getLineBox": ["java.method.removed"], "getPen": ["java.method.removed"],
"getLineWidth": ["java.method.removed"], "setLineWidth": ["java.method.removed"]},
"allPotentialBreakingElements":
["getPen()", "setLineWidth()", "getLineBox()", "getLineWidth()"1],
"elementPatterns":
{"getLineBox": "incompatible types: cannot be converted to",
"getPen": "incompatible types: cannot be converted to",
"getLineWidth": "incompatible types: cannot be converted to",
"setLineWidth": "incompatible types: cannot be converted to"}, "project": "biapi"}

Fig. 4. Information attached to the prompt template.

RQ2: How does the performance of the agentic system vary across different language
models, and which external factors influence it? This question examines the performance
variations among different language models within the agentic system and explores external factors,
such as dependency popularity, that may impact the system’s effectiveness.
RQ3: Which input variation yields the best results for the zero-shot system? This question
aims to identify optimal input structures that maximise the zero-shot approach’s performance in
resolving breaking API changes.

In the following subsections we discuss the design and setup of the evaluation framework based
on a structured dataset.

4.1 Dataset

This paper mainly explores Java and necessitates a benchmark specifically designed for Java. We
use the BUMP benchmark specified by Reyes et al. [57], which offers reproducible Maven failures
resulting from dependency updates within Dependabot pull requests. Each entry in the dataset
represents a single commit per repository.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:10 Lukas Fruntke and Jens Krinke

However, the BUMP dataset had limitations for our research. It lacked a proper categorisation of
the entries per failure type (compilation, JDK issues, maven plugin failures, ...). Additionally, the
absence of license information for mined repositories raised ethical concerns, and some entries
contained flaky test suites, potentially leading to false negatives. Flaky tests can yield inconsistent
results for the same code under identical conditions, complicating fix evaluations.

To address these issues, we created a forked version of the dataset with added categorisation and
license information, providing a more robust foundation for our research.

We began with 571 successfully replicated entries from the original BUMP dataset. Of these,
243 entries were compilation failures and 328 were other error types (e.g., Maven Enforcer issues
requiring pom. xml modifications rather than code repairs). To refine our dataset, we filtered the
243 compilation failures by (i) removing 78 entries caused by JDK version mismatches (specifically,
class file has wrong version errors) and (ii) discarding 25 entries whose associated GitHub
commits were no longer accessible. This process yielded a full slice of 140 entries.

From this full slice, we filtered for projects that had an associated Japicmp/RevAPI log detailing
bytecode-level breaking changes—information essential for our zero-shot approach (yielding 85
results) and discard 20 entries which have multiple suspicious files. This yields a light slice of 65
entries. We focus in the light slice on files with single suspicious files to avoid the risk of overrunning
the context window limitations of the LLM used in the zero-shot approach. Notably, in the full slice,
68% of compilation errors affected a single file (with 32% spanning multiple files), whereas in the
light slice, 83% were single-file errors (only 17% involved multiple files). This creates an apparent
discrepancy: The 17% involving multiple files in the naive maven compile error statistics trace
back to a single suspicious file containing the root API consumer. Compiler errors elsewhere occur
because of inheritance — a nuance that is captured by using the Japicmp/RevAPI-based approach
from Reyes et al. [57]. On average, entries in the full slice had 2.56 Maven errors (SD = 5.54),
compared to 1.22 errors (SD = 0.52) in the light slice.

Given that the majority of errors in both sets were in a single file, we believe the limitation
of the zero-shot approach to be justified. To compare the performance of the approaches, both
the zero-shot and agentic approaches are evaluated on the light slice, with the agentic method
additionally assessed on the full slice.

To support our experiments, we generated multiple input variations for both slices. Code was
provided either in original form or processed to retain only the relevant AST nodes surrounding
the lines with Maven errors. This processing, performed using Spoon [53], trims the code to the
method where the initial compilation error occurred (preserving necessary overloads and imports
only as needed). We also created versions with and without comments to assess their impact on
the LLM’s repair performance.

Since every BUMP commit involves a version change, we produced two representations of the
version change: a diff of the pom. xml file triggering the change, and a custom-parsed syntax (e.g.,
org.yaml:snakeyaml 2.0 -> 2.1). Additionally, the Maven error logs were processed in various
ways (with and without line/column numbers) to preserve context.

4.2 Experimental Setup

To judge the effectiveness of any such approach with a Language Model, we selected test suite
success (i.e., running mvn clean test) as success metric. As shown by Hejderup and Gousios [25],
test suite success can be a somewhat reliable indicator of the success of fixing the issue. It is not a
perfect indicator given the fact that some elements in the dataset lack tests altogether. As flaky and
missing test suites have been observed in parts of the benchmark, the test error metric has been
introduced as well, measuring compilation success of entries failing the test suite after.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:11

Table 1. Manual Evaluation Results of Test Suite-Passing Patches

Zero-Shot (n = 10, N = 48) Agentic (n = 16, N = 78)

Dimensions R #1 R #2 R #1 ‘ R #2
Correct 9/10 8/10 13/16 11/16
Minimal 8/10 4/10 10/16 9/16
Maintainable 8/10 8/10 10/16 14/16

Agreement Kcorrect = 0.435 (81%) ~ Moderate
Kminimal = 0.308 (65%) — Fair
Kmaintainable = 0.161 (69%) - Shght

To achieve replicability, the experimental system is designed to log all inputs and outputs of the
LLM and the experiments. The system is also designed to log the full OpenInference traces, as well
as a custom output format showing all inputs and outputs per experimental trial. In addition, the
solutions for both approaches that passed either compilation or the test suite are published in a
Docker image, which is based on the original dataset, but adds the modified files in the container,
aiding verification of the reported results. All quantitative analysis is performed on git diffs of the
workspace after application of the patches, excluding any whitespace changes introduced by the
more lenient diff parser.

We experimented with a mix of open- and proprietary models. We mostly employed recent
releases of proprietary models of varying sizes, as well as Llama 3.1 70B and Mistral NeMo 12B as
open models. To aid comparability, we employed a temperature setting of 0 for all providers. While
setting temperature to zero minimises output variability, inherent model randomness remains.
More extensive randomness analysis would require substantial computational resources beyond our
current scope, but our setup provides a reliable and reproducible baseline. We exclusively leverage
hosted model versions at different providers. The OpenAlI family models were used via Azure and
the OpenAlI API, the Anthropic and Google Models were used via Google Cloud, Mistral NeMo
was used via the Mistral API and Llama was used via the together.ai APL

4.3 Evaluation of Patches

To validate the effectiveness of both approaches beyond test suite metrics, we conducted a manual
evaluation of generated patches. A stratified random sample of 20% from the test suite-passing
patches was selected, with 10 patches from the zero-shot approach and 16 from the agentic approach.
Two experienced software engineers independently and blindly (no association to model name or
approach type was possible) evaluated each patch across three key dimensions: correctness (proper
resolution of breaking changes without introducing new issues), minimality (containing only nec-
essary modifications), and maintainability (adherence to coding practices and review acceptability).
The evaluation results, presented in Table 1, show different agreement between reviewers (Cohen’s
k = 0.435 for correctness, k = 0.308 for minimality, and ¥ = 0.161 for maintainability). For the
zero-shot approach, reviewers found 85-90% of patches to be correct, 40-80% to be minimal, and
80% to be maintainable. The agentic approach achieved 69-81% correctness, 56—63% minimality,
and 63-88% maintainability ratings. While both approaches produced largely correct patches, they
differed notably in minimality and maintainability assessments.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Lukas Fruntke and Jens Krinke

FSE096:12
Table 2. Comparison of Language Models using the Zero-Shot and Agentic Approach
Zero Shot (light, n = 65) Agent (light, n = 65) Agent (full, n = 140)

1<) S~ 1<} S~ 1<) S~

8 E - & 3 EE_ & 3 E £ - E 3

5 a4 =) o EE = @ o g 8 g 9 o

=T > BV = © =T RV = o = o [= o

Q - (3] Q 3} . o - (3] Q 3} P o - 13} Q 13} .

x 5 s E £ £ |x % E 5 P |x B £ E < F

LM & = O F = < |BE B OF B < |EKEEH OB = <
Sonnet 3.5 |12 28 25 126 39M $1.98 |12 10 43 42 17M $0.85|32 12 96 225 42M $0.39
GPT40* 8 26 30 174 32M $255| 9 9 47 48 13M $1.00 | 17 11 112 238 29M $0.47
Gemini Pro* | 10 24 31 16.8 121M $945| 4 0 61 37 5M $030| 7 2 131 152 14M $0.14
GPT4omini | 4 11 50 127 22M $0.06| 6 7 52 36 11IM $0.03| 9 8 123 21.1 31M $0.01
Haiku 3% 7 22 36 131 33M $014| 2 0 63 21 12M $0.06| 6 1 133 7.8 26M $0.03
Llama 3.1% 4 7 54 21 10M $014| 2 1 62 26 11IM $0.14| 6 2 132 7.9 22M $0.07
NeMo? 3 14 48 50 27M $0.13 | oP 1 63 16 7M $0.03 | 1° 1 130 9.1 14M $0.02

2The models used are claude-3.5-sonnet@20240620, gpt-40-2024-05-13, gemini-1.5-pro-001, gpt-40-mini-2024-07-18,
claude-3-haiku@20240307, llama-3.1-70B and mistral-nemo respectively.

PNeMo reproducibly failed to execute on 1 out of the 65, 8 out of the 140 projects with an http timeout error.

5 Results and Discussion
To answer the three Research Questions, we analyse the evaluation data from the zero-shot and

agentic approaches.

5.1 Is an Agentic Approach More Effective than Zero-Shot Prompting? (RQ1)

Our evaluation of zero-shot prompting and agentic approaches for automated dependency updates
in Java projects revealed significant differences in their effectiveness. We compare the performance
of seven language models in Table 2 across different dataset slices. We show how many repair
attempts fixed/repaired the breaking change, how many attempts failed either with a test suite
error (a failing test suite, but a successful compilation) or any error, we show the total runtime, the
token sum and the cost per repair attempt in US Dollars. We first contrast the performance of the
zero shot approach and the agentic approach within the 1ight slice, extending the analysis to the
full dataset slice for the agentic approach.

5.1.1 Analysis of the Light Slice. For the 1ight slice, we can directly compare the zero-shot and
agentic approaches:

Success Rates: Sonnet 3.5 achieved 12 successful repairs (18.5%) with 28 test errors in zero-
shot versus 12 fixes with 10 test errors in agentic approach (Table 2). GPT-40 showed modest
improvement (+1 fix) while GPT-40-mini improved from 4 to 6 fixes in agentic mode. Gemini Pro
declined sharply from 10 to 4 fixes, and NeMo failed completely in agentic mode.

Efficiency: Agentic Sonnet 3.5 reduced average cost from $1.98 to $0.85 (-57%) and time from
12.6h to 4.2h (-67%), though Llama 3.1-70B required 1M more tokens (10M—11M) and +0.5h (Table 2).
Positive correlations for both approaches were found between success rates, cost, and time in both
approaches. While the zero-shot approach exhibited a moderate positive correlation between fixed
cases and average cost per attempt (r = 0.602, p = 0.1529), this was not statistically significant.
Conversely, the agentic approach demonstrated strong and statistically significant correlations:
fixed cases correlated positively with both average cost per attempt (r = 0.845, p = 0.01666)
and time (r = 0.885, p = 0.008103). The findings suggest a strong correlation between resource
investment and improved performance in the agentic approach.

Error Distribution: Zero-shot approaches exhibited higher test errors where compilation
succeeded but tests failed (Sonnet: 28 vs 10 test errors in agentic), despite matching success counts

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:13

Table 3. Diff Metrics across all slices and approaches

Zero Shot (light, n = 65) Agent (light, n = 65) Agent (full, n = 140)
Format: Mean + Standard Deviation

IM Files Operation Hunk Files Operation Hunk Files Operation Hunk

Mod. Count Count Modified Count Count Modified Count Count
Sonnet 3.5% 1 383+159 1.75+0.62 | 1.27 +£0.63 10.73 +7.88 1.82+1.53 | 1.75+2.14 13.30+17.19 2.55+ 2.35
GPT40* 1 4.12+2.70 1.62+0.52 | 1.06 £0.24 9.28 +7.31 1.17£0.51 | 1.04+0.19 7.43 £6.67 1.32 £0.72
Gemini Pro* | 1 2.80+148 1.10+0.32 |1 2 1 1 2.78 +£1.30 1
GPT40 mini® | 1 3.75+1.26 2+0.82 1.10 £ 0.32 9.30 £5.01 1.10£0.32 | 1.07£0.27 7.79 £5.22 1.21 £ 0.58
Haiku 3* 1 3.14+090 1.86+0.69 |1 2 1 1 13 + 29.10 1
Llama 3.1% 1 2.25+0.5 1 1 4.33 +£2.52 1.33+£0.58 |1 2.88 +1.81 1.12 £ 0.35
NeMo? 1 3.33+£0.58 1.33+0.58 | N/AP N/AP N/AP 1 2 1

#The models used are claude-3.5-sonnet@20240620, gpt-40-2024-05-13, gemini-1.5-pro-001, gpt-40-mini-2024-07-18,
claude-3-haiku@20240307, llama-3.1-70B and mistral-nemo respectively.

2NeMo did not produce any successful patches to analyse.

(12 repairs) (Table 2). Therefore, the zero-shot approach managed to clear the compilation hurdle
more often, while still failing the test suite.

Patch Complexity: The agentic approach produced patches with higher operation counts
(where each operation represents an individual line addition, deletion, or modification in the diff)
compared to zero-shot, as evidenced by Sonnet 3.5’s average of 10.73 + 7.88 operations versus
3.83 + 1.59 in zero-shot (Table 3). While technically capable of multi-file modifications, 75% of
agentic repairs in the light slice modified < 2 files (average 1.27 + 0.63). Manual evaluation
(Table 1) reveals a complexity-minimality tradeoff: agentic patches were rated minimal in 56-63%
of cases versus zero-shot’s 40-80%, though maintainability remained comparable (agentic: 63-88%,
zero-shot: 80%). The data suggests agentic approaches may handle complex edits better when
required, but this doesn’t universally correlate with success rates — Sonnet’s higher complexity
accompanied improved results, while Gemini Pro’s increased operations coincided with failure rate
increases.

Model-Specific Performance Shifts: Some models showed pronounced differences in perfor-
mance between approaches. As evident from Table 2, GPT4o mini improved from 4 to 6 successful
repairs in the agentic approach. Conversely, Gemini Pro’s performance declined sharply (10 to 4
fixes). For the agentic approach, GPT40 mini performed better than Gemini, with Gemini performing
better in the Zero-Shot approach.

5.1.2 Analysis of the Full Slice. Expanding the evaluation of the agentic approach to the full
slice yielded additional insights.

Scalability and Efficiency: As shown in Table 2, Sonnet 3.5’s performance improved signifi-
cantly, repairing 32 projects (22.9%) compared to 12 (18.5%) in the 1ight slice, while further reducing
the average cost per attempt to $0.39. This suggests potential for scaling, though model variance
remains.

Scaling Patterns: While some models, such as Sonnet 3.5 (+4.4%), Haiku (+1.2%), Llama 3.1
(+1.2%), NeMo (+0.7%), showed improved performance on the full slice, compared to the 1ight slice,
the success rate of the GPT-40 mini (-2.8%), GPT-40 (-1.7%) and Gemini Pro (-1.2%) declined relative
to the dataset. This suggests that the benefits of the agentic approach may be model-dependent.

Complexity-Performance Trade-off: The increase in patch complexity from the light to
full slice (Table 3) occurred with improved success rates for Sonnet 3.5. However, other models
like GPT-40 showed reduced complexity without success rate improvements. For instance, Sonnet
3.5 shows an increase in average files modified (1.75 + 2.14 vs 1.27 + 0.63) and operation count
(13.30 + 17.19 vs 10.73 + 7.88), corresponding to its improved success rate.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:14 Lukas Fruntke and Jens Krinke

Table 4. Frequency Distribution of Intersections between Language Models for Test Success and Test Error

LLM-Intersections 0 1 2 3 4

Test Error (%) 83 16.7 41.7 25.0 8.3
Test Success (%) 52,5 175 175 75 5.0

Token Efficiency at Scale: Despite the increased complexity of repairs, some models showed
improved token efficiency compared to the 1ight slice. This is especially apparent for GPT-40-mini
(-23.6% tokens), Gemini Pro (-23.1%) and Sonnet 3.5 (-12.8%). Meanwhile, the trend was reversed
with Llama 3.1 (+7.7%) and NeMo (+7.7%). This might indicate the agentic approach becoming more
efficient in its use of context and generation within the full slice. There is, however, no correlation
to the success rate.

Real-World Applicability: Agentic repairs modified an average of 1.75 + 2.14 files in the
full slice (Table 3), though 68% still involved < 2 files. When tests passed, both approaches
showed acceptable correctness (zero-shot: 85-90%, agentic: 69-81% in Table 1), suggesting reliable
functionality for successful patches. Notably, 43.1% of zero-shot attempts passed compilation but
failed tests (vs 15.4% for agentic), indicating agentic methods more effectively align fixes with
functional correctness. Observed efficiency gains (agentic cost reduction: 57-80% across models)
combined with maintainability ratings (63-88%) suggest practical utility for contained dependency
updates, though the approach’s 1.75 average file modifications and model-dependent performance
(Sonnet: 32 fixes vs NeMo: 1) indicate current limitations in handling complex scenarios.

Answer to RQ1: Agentic approaches show variable efficiency improvements, with Sonnet 3.5
reducing costs by 57% ($1.98—$0.85) and time by 67% (12.6h—4.2h) in the light slice (Table 2).
Model dependence remains significant — GPT-40-mini improved fixes (+50%) while Gemini Pro
declined (-60%). The manual evaluation (Table 1) suggests comparable patch quality when tests
pass (69-90% correctness), though minimality varies. The agentic approach becomes more cost-
efficient when scaled to larger datasets (as shown by Sonnet 3.5’s reduced cost of $0.39 per
repair attempt in the full dataset), but effectiveness varies significantly between language models,
requiring careful model selection for optimal results.

Our analysis suggests agentic approaches may offer efficiency advantages over zero-shot methods
(57% cost reduction, 67% faster processing for Sonnet 3.5 in 1ight slice), though performance varies
substantially across models (+50% fixes for GPT-40-mini vs -60% for Gemini Pro). Both represent
early examples of LLM-based dependency repair, with agentic methods showing particular promise
in balancing compilation success with functional correctness (28—10 test errors for Sonnet). While
demonstrating capability for multi-file edits (1.27-1.75 files on average), the approaches currently
show more consistent effectiveness for localized repairs. The 22.9% success rate on the full dataset
(Sonnet 3.5) suggests potential for practical application, though model selection and error handling
require careful consideration given the 43-131 other errors observed in failed attempts.

5.2 How Does the Performance of the Agentic System Vary Across Different Language
Models, and Which External Factors Influence 1t? (RQ2)

To address this question, we conducted a comprehensive analysis of influence factors on the
performance of the agentic approach on the full dataset slice.

Specifically, 52.5% of test successes and 8.3% of test errors were unique to a single model. This
finding suggests that different language models exhibit distinct strengths in addressing various

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:15

types of breaking changes. Comparing these findings to Table 2, the difference of Sonnet 3.5 (32
repairs) and GPT-4o (17 repairs) is represented in the intersection data.

Intersection Analysis of Successful Repairs. We first examined the degree of overlap in
successful repairs across different language models. As shown in Table 4, the majority of successful
repairs were unique to individual models or shared between three models. Specifically, 52.5% of
test successes and 8.3% of test errors were unique to a single model. This finding suggests that
different language models exhibit distinct strengths in addressing various types of breaking changes.
Comparing these findings to Table 2, the stark difference of Sonnet 3.5 (32 repairs) and GPT-40 (17
repairs) is represented in the intersection data.

Correlation with Berkeley Function Calling Benchmark. As our agentic approach uses
the capability of tool calling for all interactions with the environment, its performance may be
influenced by the proficiency of the language model in this area. Function calling by an LLM is
modelled via the output language, thereby being susceptible to hallucinations similar to other tasks.
Therefore the proficiency in function calling could be a factor in the success of the agentic approach.
We investigated potential correlations between our success metrics and the Berkeley Function
Calling Leaderboard v1 [67] in its version from 2024-08-11. The Function Calling Leaderboard
measures the proficiency of language models in correctly formulating and executing function calls.
The Java Simple Function AST task is a component of the Berkeley Function-Calling Leaderboard
that evaluates models’ ability to generate syntactically correct Java function calls when presented
with function signatures. The task uses Abstract Syntax Tree parsing to verify correctness of 100
Java function call examples, with emphasis on Java-specific type handling (e.g., HashMap, primitives
with type suffixes like long with "L").

Our analysis shows this Java-specific function calling capability strongly correlates with repair
success (r = 0.702), exhibits negative correlation with repair errors (r = -0.653), and positively corre-
lates with test errors (r = 0.677). In contrast, the Overall Accumulated metric from the leaderboard
shows weaker correlations with repair performance (r = -0.423 for errors, r = 0.577 for test errors, r
= 0.298 for success), suggesting that Java-specific function calling proficiency is more predictive of
repair capabilities than general function calling ability across languages.

These findings highlight that function calling benchmarks serve as a useful predictor of a model’s
repair capabilities in our context. As new models are released, improvements in Java AST-related
tasks on the Berkeley Function Calling Leaderboard may indicate better overall repair performance.
This would allow industry practitioners to potentially predict the performance of new models on
the task of automated dependency repair.

Correlation Analysis between GitHub Popularity and Repair Success. To examine whether
dependency popularity influences repair success, we analysed GitHub stargazers as a proxy metric.
Pearson correlation analysis showed no correlation (r = 0.0186, p = 0.5632) between stargazers and
detailed success levels, and not even a correlation (r = 0.0728, p = 0.0232) when simplifying success
into binary. These results indicate that dependency popularity does not predict repair success.

Answer to RQ2: The performance of the agentic system varies significantly across language
models, with 52.5% of test successes and 8.3% of test errors being unique to one language model.
Language-specific capabilities, particularly Java AST manipulation skills, show strong correlations
with repair success (r = 0.702 for test success), while GitHub popularity of dependencies exhibits
no correlation with overall repair success.

The performance of language models in the agentic approach is highly variable, albeit influenced

to varying degrees by external factors like the LLM’s proficiency in function calling. We establish
that the popularity of a dependency does not influence the repair outcome.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:16 Lukas Fruntke and Jens Krinke

Table 5. Parameter importances and Trial values

Parameter Importance ‘ Baseline T1 T2 T3 T4 T5 T6 T7 T8
API Change 0.542380 | REVAPI OMIT

Mvn Error 0.216602 | MINIFIED SMIN OMIT
Code 0.082599 | ALL MIN MIN

Dep. Change 0.070491 | MINIFIED_PARSED DIFF OMIT DIFF
Max. Hops 0.059507 | 30 40 10
LSP Check 0.028420 | False True True

Test Success (n=65) 7 7 4 5 7 2 6 5 5
Test Error (n=65) 22 22 23 21 22 21 22 15 19
Duration (hours) 13.1 32.2 8.6 6.8 13.0 8.1 10.1 33.0 5.3
Input Tokens 32.4M 304M 322M 25.8M 43.1M 279M 41.0M 233M 10.2M
Output Tokens 977.9K 9534K 1.2M 1.2M 1.3M 1.5M 1.4M 10.2M 434.1K

SMIN = Super Minified, MIN = MINIFIED

Analysing this data, it becomes clear that the variability from external factors such as the BFCL
leaderboard and the patch metrics is not high enough to explain the exceptionally high performance
of Sonnet 3.5. This suggests that the model selection is the most important factor in the performance
of the agentic approach.

5.3 Which Input Variation Yields the Best Results for the Zero-Shot System? (RQ3)

We aim to explore whether we can systematically improve the performance of the zero-shot system,
to ideally be competitive with the agentic approach. To address this question, we conducted a
comprehensive hyperparameter analysis of the zero-shot system using different prompt variations.
We employed claude-3-haiku for this analysis due to its optimal balance between success metrics
and cost-effectiveness. While we acknowledge that our findings in RQ2 identified model selection
as a critical success factor, we chose to conduct hyperparameter optimisation on a single model to
manage computational costs and establish a baseline for optimisation strategies. We note that the
hyperparameter importance findings may be model-specific, and the relative importance of different
input representations could vary across models with different capabilities and architectures. The
results of this analysis and the variations employed are presented in Table 5 the table shows both the
parameter variations employed per trial, as well as the Baseline. For all trials it shows the success
metrics for comparison purposes, as well as the duration and the input and output tokens. We
evaluate the trials for repair effectiveness as well as efficiency in resource usage, across both duration
and token usage. For the optimisation process, we leverage Optuna, a popular hyperparameter
optimisation framework, which allows to efficiently explore the search space of the hyperparameter
combinations [3]. While trials one to six in the Table were designed to test specific parameters,
trials seven and eight leveraged Optuna’s integrated Tree-Structured Parzen Estimator to explore
promising parameter combinations.

Our investigation revealed variations in performance across different input configurations. Table 5
summarises the importance scores of various factors influencing the system’s performance.

API Change Representation emerged as the most influential factor (importance: 0.54). The
baseline configuration used the REVAPI representation, while Trial 5 omitted this information.
This omission led to a notable drop in test success (2 vs. 7) and a slight reduction in test errors
(21 vs. 22), indicating its key role. Maven Error Representation was the next most important
(importance: 0.22). The baseline employed a MINIFIED error representation, and Trial 2 used
a SUPER_MINIFIED version. This change resulted in lower test success (4 vs. 7) and a minor
improvement in test errors (23 vs. 22), as well as a reduction in total duration by about 4.5 hours.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:17

The Code Representation had an importance score of 0.083. The baseline used the complete code,
whereas Trial 3 tested a MINIFIED version. This adjustment slightly reduced both test success
(5 vs. 7) and test errors (21 vs. 22). Although this trial achieved the largest runtime reduction
(6.31 hours), the decrease in success rates suggests that the backtracking limit is important for
achieving success beyond 10 retries. Dependency Change Representation (importance: 0.07)
and Maximum Hops (importance: 0.06) also affected performance. For instance, Trial 8, which
combined adjustments to these parameters, saw declines in both test success (5 vs. 7) and test
errors (19 vs. 22). Integration of Language Server Protocol (LSP) Checks showed the least
influence (importance: 0.028). Activating this feature in Trial 1 maintained the baseline test error
(22) and test success (7) rates, suggesting a stabilizing effect; however, it increased the duration
significantly (32.24 hours vs. 13.11 hours). The integration of a language server-based linting and
static analysis pipeline, inspired by the work of Agrawal et al. [2], represents a novel approach
in our study. Unlike previous implementations that directly modified LLM output probabilities,
our LLM-agnostic approach feeds the language server’s diagnostics back to the LLM, allowing for
iterative improvement of the generated patches.

Given its distinctive features, the outcomes of Trial 7 need particular consideration. Through the
combination of several parameter modifications such as minified code representation, omission
of dependency change information, and activation of LSP checks, this experiment yielded an
unforeseen result in terms of output tokens. While most trials generated between 1-1.5M output
tokens, Trial 7 produced a remarkable 10.2M output tokens, more than ten times the baseline.

In terms of overall efficiency, Trial 8 stands out as the most promising configuration. It achieved 5
test successes and 19 test errors, which is only slightly lower than the baseline (7 and 22, respectively).
However, it accomplished this with significantly reduced resource usage: 5.34 hours of runtime
(compared to 13.11 hours for the baseline), 10.18M input tokens (compared to the baseline of
32.36M), and 434.1K output tokens (compared to 977.9K).

We recognise that prompts themselves are brittle, and future work into optimising the prompt
generation process could yield significant improvements. Since the prompt produces rather high
input token usage, common LLM issues such as confusion due to long contexts [43, 59] could
artificially deflate performance. Additionally, future studies could investigate the role of prompt
parameter ordering, as the order of few-shot examples has been shown to influence performance
[46], suggesting that zero-shot prompt order might also be an influential factor, as well as general
prompt quality. Further experiments could also be tiered towards a systematic exploration of
few-shot examples to improve the zero-shot approach’s performance.

Answer to RQ3: API change representation and Maven error representation are the most cru-
cial factors influencing the zero-shot approach’s performance. The baseline was usual the best
performing configuration, with the exception of Trial 2, which repaired one more candidate
towards compilation success/test error. We identified a configuration (Trial 8) that significantly
reduces resource usage (59% less runtime, 68% fewer input tokens) while maintaining reasonable
performance (71% of baseline test success, 86% of baseline test errors/compilation success).

For claude-3-haiku, we discovered that hyperparameter optimisation is unable to improve
the baseline’s performance, thereby not improving the competitiveness to the agentic approach.
Moreover, it indicates that the weak performance of the zero-shot approach is not caused by
improper prompt inputs, but rather by the inherent limitations of the zero-shot approach.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:18 Lukas Fruntke and Jens Krinke

5.4 Discussion

In our work, LLMs have shown the ability to effectively handle breaking changes in dependencies,
which could result in more frequent and lower-risk updates in software projects. Concretely, in
fixing abandoned Dependabot-initiated pull requests from the BUMP dataset, our solution helps
in addressing potential security vulnerabilities from outdated dependencies. As a result, software
security and stability could be greatly improved throughout the industry. Nevertheless, the shift
from research to practical application poses numerous challenges that require careful consideration.
When incorporating LLM-based repair tools into existing development workflows, it is important
to carefully evaluate the strengths and limitations of these models. One potential avenue to explore
is the creation of semi-automated systems that present LLM-generated patches to developers as
suggestions, similar to existing code review tools. This is especially apparent when discussing
the repairs that failed the test suite but passed the compilation. They could contain numerous
semi-optimal solutions, that should be refined by human intervention.

This research has produced several tangible resources that contribute significantly to the research
community:

o Anenhanced version of the BUMP dataset, originally introduced by Reyes et al. [57], providing
a more robust foundation for future studies in automated dependency updates.

o A substantially modified fork of the multilspy tool, initially developed by Agrawal et al. [2],
optimised for Eclipse JDT-LS and packaged as a Docker image, facilitating easier integration
of language server capabilities in future research.

e Docker images of the agentic upgrades, enabling straightforward replication and extension
of our work by other researchers.

e Complete Openlnference traces, along with the experimental dataset.

These resources not only enhance the reproducibility of our findings but also provide a solid
foundation for future research in this domain. Future studies could leverage these resources to
explore questions related to the interpretability and reliability of LLM-generated code changes.
The implications of this research extend beyond academia to industry practices. As LLM-based
repair tools mature, they have the potential to significantly reduce the time and effort required for
dependency management, allowing development teams to focus on more creative and high-value
tasks. However, this transition will require careful consideration of ethical implications, such as
the potential over-reliance on automated systems and the need for maintaining human oversight
in critical code changes.

6 Threats to Validity

This study, like all empirical research, is subject to several threats to validity that must be acknowl-

edged and addressed.

6.1 Internal Validity

Internal validity concerns the causal relationships inferred from our study. We identify the following
threat to internal validity:

LLM Training Data: The knowledge cutoff dates of the LLMs used in this study encompass
the majority of Java repositories on GitHub. This temporal overlap between the LLMs’ training
data and our test data could lead to inflated performance metrics if the models have prior exposure
to similar codebases or update patterns and could threaten out-of-distribution applicability. We
recognise however, that the majority of Java projects on GitHub are centered around a few popular
libraries, making the case for very little need for generalisability for real-world applications.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

Automatically Fixing Dependency Breaking Changes FSE096:19

Limitation of the Zero-Shot Approach: We limited the zero-shot approach to process one
suspicious file at a time, since we lacked API Change information for the excluded projects of
the full slice. This potentially could have led to an underestimation of the performance of the
zero-shot approach, irrespective of poor outcomes with the omission of API Change information in
the hyperparameter trials in RQ3.

6.2 External Validity

External validity relates to the generalisability of our findings beyond the specific context of our
study:

Dataset The relatively small size of our dataset (65 projects for the 1ight slice and 140 for the
full slice) limits the generalisability of our findings. The performance characteristics observed
may not hold for a broader, more diverse set of Java projects and dependency updates. In addition,
the complexity of the projects in our dataset may not be representative of the ecosystem. We
acknowledge that the underlying BUMP dataset could have had a selection bias towards certain
projects and unknown limitations, which we could not control for.

Test Flakiness We cannot fully rule out that the test suite success rates are under-reported due
to test suite flakiness. This could lead to an underestimation of the success rates.

LLM API Rate-Limits The use of LLMs in this study is subject to API rate limits, which could
have affected the results. We mitigated this by using generous exponential retries and reporting
of errors within our data collection pipeline. Yet, the rate limits could have affected the results in
unforeseen ways.

LLM Selection The selection of LLMs used in this study, while diverse, does not encompass
the entire landscape of available models. The performance characteristics we observed may not
generalise to other versions or different LLMs. This paper does not use Chain-of-Thought prompting,
or ‘reasoning’ models, which could potentially perform better (at higher cost).

6.3 Conclusion Validity

Conclusion validity relates to the reliability of our conclusions based on the observed data:

General Applicability There is a certain threat to the applicability of the LLM-based tooling
presented in this paper, as the study by Lu et al. [45] shows that the emergent abilities of LLMs are
mostly in-context learning from instruction tuning of the LLMs, which might not be applicable to
the task of code repair, as the LLMs training dataset might not fully sample less common libraries,
errors, etc. This is further supported by the study of Bubeck et al. [9], which shows that the planning
capabilities of LLMs are not yet sufficient for complex tasks. This might be a reason for the low
success rates of the LLMs in the agentic approach, as the planning capabilities are not sufficient to
plan the repair of the code.

Model-Specific Findings in RQ3 The generalisability of our findings in Research Question 3,
which examined input variations for the zero-shot system, may be limited due to the use of a single
language model (claude-3-haiku) for all experiments. While this approach ensured comparability
across trials, it potentially constrains the broader applicability of these results across different
language models.

6.4 Mitigation Strategies

To overcome some of the identified limitations we included several mitigation strategies in our
study: To address LLM selection bias, we experimented with a mix of open and proprietary models,
including recent releases of varying sizes. To aid comparability between LLMs, we also used
consistent temperature settings (T=0) across all providers to ensure comparability. We also measured
test errors, i.e., compilation success as a secondary metric, recognising the limitations of test suites

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

FSE096:20 Lukas Fruntke and Jens Krinke

as identified by Hejderup and Gousios [25]. By establishing that repair success is not correlated to
dependency popularity, we reduced the risk of overfitting to popular dependencies.

7 Conclusion

Our examination of zero-shot prompting and agentic methods employing Large Language Models
(LLMs) shows clear advantages: the agentic method shows remarkable efficacy in successfully
passing test suites (up to 23%), while zero-shot prompting performs well in generating compilable
repairs (up to 43%). The fix-rate of up to 23% is in line with the current state of the art [17]. We
identified notable model-specific capabilities, namely in the manipulation of Java AST, which
exhibit a robust connection (r = 0.702) with the success of repairs. The analysis of input variations
for the zero-shot system highlights the significance of API modification details and Maven error
representations on the system performance.

Overall, this study offers three important contributions to the field of automated program
repair. Our study showcases the practicality of employing LLMs to automatically fix breaking
changes in Java dependencies. The results highlight the potential of LLMs in effectively addressing
practical software maintenance challenges. Additionally, we analyse the factors that impact repair
performance. These factors include a specific agentic tool usage capability related to Java AST
manipulation (which has a strong correlation of 0.702 with repair success) and the significance of
representing API changes in zero-shot inputs. In conclusion, our study presents opportunities for
further investigation, as well as industrial uptake.

Data Availability

The code is available on Zenodo under the DOI 10.5281/zenodo.14926755 [20]. The dataset with the
full traces used in this study is available via Zenodo under the DOI 10.5281/zenodo.13686296 [21].
All Zenodo artifacts have README files with instructions on how to reproduce the results.

e The enhanced version of the bump-dataset is available as part of the code package, but the
specific improvements via Pull Request are also available at GitHub:
— https://github.com/chains-project/bump/pull/187
— https://github.com/chains-project/bump/pull/186
e The LSP tool is accessible at https://github.com/LukvonStrom/multilspy-java.
e Docker images of the agentic upgrades are available via Zenodo (10.5281/zenodo.13686296).
e The OpenInference traces are available via Zenodo (10.5281/zenodo.13686296).
e The experimental dataset, including all inputs and final results, is available as part of the
code package. (10.5281/zenodo.14926755)

References

[1] Vibhor Agarwal, Yulong Pei, Salwa Alamir, and Xiaomo Liu. 2024. CodeMirage: Hallucinations in Code Generated by
Large Language Models. arXiv:2408.08333

[2] Lakshya Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K Lahiri, and Sriram Rajamani. 2023. Monitor-Guided
Decoding of Code LMs with Static Analysis of Repository Context. In Thirty-seventh Conference on Neural Information
Processing Systems.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation
Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. doi:10.1145/3292500.3330701

[4] Meriem Belguidoum and Fabien Dagnat. 2007. Formalization of Component Substitutability. In Proceedings of the 4th
International Workshop on Formal Aspects of Component Software (Electronic Notes in Theoretical Computer Science,
Vol. 215). doi:10.1016/J. ENTCS.2008.06.022

[5] Federico Bono. 2024. Automatic Program Repair For Breaking Dependency Updates With Large Language Models. Master’s
Thesis. KTH Royal Institute of Technology, Stockholm, Sweden. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
354835

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

https://dx.doi.org/10.5281/zenodo.14926755
https://dx.doi.org/10.5281/zenodo.13686296
https://github.com/chains-project/bump/pull/187
https://github.com/chains-project/bump/pull/186
https://github.com/LukvonStrom/multilspy-java
https://dx.doi.org/10.5281/zenodo.13686296
https://dx.doi.org/10.5281/zenodo.13686296
https://dx.doi.org/10.5281/zenodo.14926755
https://arxiv.org/abs/2408.08333
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1016/J.ENTCS.2008.06.022
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-354835
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-354835

Automatically Fixing Dependency Breaking Changes FSE096:21

(6]
(7]
(8]

—
O
—

[10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. 2024. RepairAgent: An Autonomous, LLM-Based Agent
for Program Repair. arXiv:2403.17134

Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente. 2018. APIDIff: Detecting API breaking changes. In
25th International Conference on Software Analysis, Evolution and Reengineering. doi:10.1109/SANER.2018.8330249
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Annual Conference on Neural
Information Processing Systems.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat
Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang. 2023. Sparks of
Artificial General Intelligence: Early experiments with GPT-4. arXiv:2303.12712

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu, Guoliang
Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan Bian, Tao Xie, and Qianxiang Wang. 2024.
CodeR: Issue Resolving with Multi-Agent and Task Graphs. arXiv:2406.01304

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. 2023. Teaching Large Language Models to Self-Debug.
arXiv:2304.05128

Andreas Dann, Ben Hermann, and Eric Bodden. 2023. UPCY: Safely Updating Outdated Dependencies. In 45th
IEEE/ACM International Conference on Software Engineering. doi:10.1109/ICSE48619.2023.00031

Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Evolution of Technical Lag in the npm Package
Dependency Network. In 2018 IEEE International Conference on Software Maintenance and Evolution. doi:10.1109/
ICSME.2018.00050

Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An empirical study into evolution problems in
Java programs caused by library upgrades. In IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering. doi:10.1109/CSMR-WCRE.2014.6747226

Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. 2021. Generating bug-fixes using pretrained
transformers. In Proceedings of the 5th ACM SIGPLAN International Symposium on Machine Programming. doi:10.1145/
3460945.3464951

Thomas Durieux, César Soto-Valero, and Benoit Baudry. 2021. Duets: A Dataset of Reproducible Pairs of Java Library-
Clients. In 18th IEEE/ACM International Conference on Mining Software Repositories. doi:10.1109/MSR52588.2021.00071
Hadeel Eladawy, Claire Le Goues, and Yuriy Brun. 2024. Automated Program Repair, What Is It Good For? Not
Absolutely Nothing!. In Proceedings of the [IEEE/ACM 46th International Conference on Software Engineering. doi:10.
1145/3597503.3639095

Lishui Fan, Jiakun Liu, Zhongxin Liu, David Lo, Xin Xia, and Shanping Li. 2024. Exploring the Capabilities of LLMs for
Code Change Related Tasks. arXiv:2407.02824

Stan Franklin and Arthur C. Graesser. 1996. Is it an Agent, or Just a Program?: A Taxonomy for Autonomous Agents.
In Intelligent Agents III, Agent Theories, Architectures, and Languages (ATAL). doi:10.1007/BFB0013570

Lukas Fruntke and Jens Krinke. 2024. Automatically fixing dependency breaking changes (Code). doi:10.5281/zenodo.
14926755

Lukas Fruntke and Jens Krinke. 2024. Automatically fixing dependency breaking changes [Data set]. doi:10.5281/
zenodo.13686296

Xiang Gao, Arjun Radhakrishna, Gustavo Soares, Ridwan Shariffdeen, Sumit Gulwani, and Abhik Roychoudhury. 2021.
APIfix: output-oriented program synthesis for combating breaking changes in libraries. In Proceedings of the ACM on
Programming Languages. doi:10.1145/3485538

Paul Gauthier. 2023. Unified Diffs Make GPT-4 Turbo 3X Less Lazy. https://aider.chat/2023/12/21/unified-diffs.html
Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2023. Automating Dependency Updates in Practice: An
Exploratory Study on GitHub Dependabot. IEEE Trans. Software Eng. 49, 8 (2023). doi:10.1109/TSE.2023.3278129
Joseph Hejderup and Georgios Gousios. 2022. Can we trust tests to automate dependency updates? A case study of
Java Projects. J. Syst. Softw. 183 (2022). doi:10.1016/J.JSS.2021.111097

David Hidvégi, Khashayar Etemadi, Sofia Bobadilla, and Martin Monperrus. 2024. CigaR: Cost-efficient Program Repair
with LLMs. arXiv:2402.06598

Daniel Horvath, Viktor Csuvik, Tibor Gyimoéthy, and Laszl6 Vidacs. 2023. An Extensive Study on Model Architecture
and Program Representation in the Domain of Learning-based Automated Program Repair. In IEEE/ACM International
Workshop on Automated Program Repair. doi:10.1109/APR59189.2023.00013

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. 2023. AgentCoder: Multi-Agent-based Code
Generation with Iterative Testing and Optimisation. arXiv:2312.13010

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

https://arxiv.org/abs/2403.17134
https://doi.org/10.1109/SANER.2018.8330249
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2304.05128
https://doi.org/10.1109/ICSE48619.2023.00031
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1109/CSMR-WCRE.2014.6747226
https://doi.org/10.1145/3460945.3464951
https://doi.org/10.1145/3460945.3464951
https://doi.org/10.1109/MSR52588.2021.00071
https://doi.org/10.1145/3597503.3639095
https://doi.org/10.1145/3597503.3639095
https://arxiv.org/abs/2407.02824
https://doi.org/10.1007/BFB0013570
https://doi.org/10.5281/zenodo.14926755
https://doi.org/10.5281/zenodo.14926755
https://doi.org/10.5281/zenodo.13686296
https://doi.org/10.5281/zenodo.13686296
https://doi.org/10.1145/3485538
https://aider.chat/2023/12/21/unified-diffs.html
https://doi.org/10.1109/TSE.2023.3278129
https://doi.org/10.1016/J.JSS.2021.111097
https://arxiv.org/abs/2402.06598
https://doi.org/10.1109/APR59189.2023.00013
https://arxiv.org/abs/2312.13010

FSE096:22 Lukas Fruntke and Jens Krinke

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]
[50]

[51]

[52]

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng,
Xiaocheng Feng, Bing Qin, and Ting Liu. 2023. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. arXiv:2311.05232

Dhanushka Jayasuriya. 2022. Towards Automated Updates of Software Dependencies. In Companion Proceedings of
the 2022 ACM SIGPLAN International Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. doi:10.1145/3563768.3565548

Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, Samuel Ou, and Kelly Blincoe. 2023. Understanding Breaking
Changes in the Wild. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis.
doi:10.1145/3597926.3598147

Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break — An empirical study. Inf. Softw. Technol. 65
(2015). doi:10.1016/J.INFSOF.2015.02.014

Naveed Jhamat, Zeeshan Arshad, and Kashif Riaz. 2020. Towards Automatic Updates of Software Dependencies Based
on Artificial Intelligence. Global Social Sciences Review V, III (2020). doi:10.31703/gssr.2020(V-1II).19

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of Code Language Models on Automated Program
Repair. In 45th IEEE/ACM International Conference on Software Engineering. doi:10.1109/ICSE48619.2023.00125
Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. 2024. From LLMs to LLM-based Agents
for Software Engineering: A Survey of Current, Challenges and Future. arXiv:2408.02479

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy. 2023.
InferFix: End-to-End Program Repair with LLMs. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. doi:10.1145/3611643.3613892

Harshit Joshi, José Pablo Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen, and Ivan Radicek. 2023. Repair
Is Nearly Generation: Multilingual Program Repair with LLMs. In Proceedings of the AAAI Conference on Artificial
Intelligence. doi:10.1609/AAALV3714.25642

Mehdi Keshani, Simcha Vos, and Sebastian Proksch. 2023. On the relation of method popularity to breaking changes in
the Maven ecosystem. J. Syst. Softw. 203 (2023). doi:10.1016/J.JSS.2023.111738

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful
Hagq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher Potts. 2023.
DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines. arXiv:2310.03714

Raula Gaikovina Kula, Daniel M. Germéan, Ali Ouni, Takashi Ishio, and Katsuro Inoue. 2018. Do developers update
their library dependencies? An empirical study on the impact of security advisories on library migration. Empir. Softw.
Eng. 23,1 (2018). doi:10.1007/S10664-017-9521-5

LangChain Inc. 2024. LangGraph. https://langchain-ai.github.io/langgraph/

Zhihao Lin, Wei Ma, Tao Lin, Yaowen Zheng, Jingquan Ge, Jun Wang, Jacques Klein, Tegawendé F. Bissyandé, Yang
Liu, and Li Li. 2024. Open-Source Al-based SE Tools: Opportunities and Challenges of Collaborative Software Learning.
arXiv:2404.06201

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2024.
Lost in the Middle: How Language Models Use Long Contexts. Trans. Assoc. Comput. Linguistics 12 (2024). doi:10.1162/
TACL_A_00638

Yizhou Liu, Pengfei Gao, Xinchen Wang, Jie Liu, Yexuan Shi, Zhao Zhang, and Chao Peng. 2024. MarsCode Agent:
Al-native Automated Bug Fixing. arXiv:2409.00899

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych. 2024. Are Emergent
Abilities in Large Language Models just In-Context Learning?. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/v1/2024.acl-long.279

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2022. Fantastically Ordered Prompts and
Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). doi:10.18653/V1/2022.ACL-LONG.556

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. 2024. How to Understand Whole
Software Repository? arXiv:2406.01422

Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Automated Program Repair of Java Simple Bugs.
In 18th IEEE/ACM International Conference on Mining Software Repositories. doi:10.1109/MSR52588.2021.00063
Martin Monperrus. 2018. Automatic Software Repair. ACM Computing Surveys (CSUR) 51, 1 (2018). doi:10.1145/3105906
Sebastian Nielebock. 2017. Towards API-specific automatic program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. doi:10.1109/ASE.2017.8115721

Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen J. Vinju. 2022. Breaking bad? Semantic versioning and
impact of breaking changes in Maven Central. Empir. Softw. Eng. 27, 3 (2022), 61. doi:10.1007/S10664-021-10052-Y
Behrooz Omidvar-Tehrani, Ishaani M, and Anmol Anubhai. 2024. Evaluating Human-AI Partnership for LLM-based
Code Migration. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. doi:10.1145/

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3563768.3565548
https://doi.org/10.1145/3597926.3598147
https://doi.org/10.1016/J.INFSOF.2015.02.014
https://doi.org/10.31703/gssr.2020(V-III).19
https://doi.org/10.1109/ICSE48619.2023.00125
https://arxiv.org/abs/2408.02479
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1609/AAAI.V37I4.25642
https://doi.org/10.1016/J.JSS.2023.111738
https://arxiv.org/abs/2310.03714
https://doi.org/10.1007/S10664-017-9521-5
https://langchain-ai.github.io/langgraph/
https://arxiv.org/abs/2404.06201
https://doi.org/10.1162/TACL_A_00638
https://doi.org/10.1162/TACL_A_00638
https://arxiv.org/abs/2409.00899
https://doi.org/10.18653/v1/2024.acl-long.279
https://doi.org/10.18653/V1/2022.ACL-LONG.556
https://arxiv.org/abs/2406.01422
https://doi.org/10.1109/MSR52588.2021.00063
https://doi.org/10.1145/3105906
https://doi.org/10.1109/ASE.2017.8115721
https://doi.org/10.1007/S10664-021-10052-Y
https://doi.org/10.1145/3613905.3650896
https://doi.org/10.1145/3613905.3650896

Automatically Fixing Dependency Breaking Changes FSE096:23

3613905.3650896

Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier. 2015. Spoon: A Library
for Implementing Analyses and Transformations of Java Source Code. Software: Practice and Experience (2015).
doi:10.1002/spe.2346

Kristiina Rahkema and Dietmar Pfahl. 2022. Analysing the Relationship Between Dependency Definition and Updating
Practice When Using Third-Party Libraries. In Product-Focused Software Process Improvement — 23rd International
Conference, Vol. 13709. doi:10.1007/978-3-031-21388-5_7

Daniel Ramos, Hailie Mitchell, Inés Lynce, Vasco Manquinho, Ruben Martins, and Claire Le Goues. 2023. MELT:
Mining Effective Lightweight Transformations from Pull Requests. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1516-1528. doi:10.1109/ASE56229.2023.00117

Frank Reyes, Benoit Baudry, and Martin Monperrus. 2024. Breaking Good: Explaining Breaking Dependency Updates
with Build Analysis. arXiv:2407.03880

Frank Reyes, Yogya Gamage, Gabriel Skoglund, Benoit Baudry, and Martin Monperrus. 2024. BUMP: A Benchmark
of Reproducible Breaking Dependency Updates. In IEEE International Conference on Software Analysis, Evolution and
Reengineering. doi:10.1109/SANER60148.2024.00024

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2024. Toolformer: language models can teach themselves to use tools. In Proceedings
of the 37th International Conference on Neural Information Processing Systems.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H. Chi, Nathanael Schérli, and Denny Zhou.
2023. Large Language Models Can Be Easily Distracted by Irrelevant Context. In International Conference on Machine
Learning. https://proceedings.mlr.press/v202/shi23a.html

Arnav Singhvi, Manish Shetty, Shangyin Tan, Christopher Potts, Koushik Sen, Matei Zaharia, and Omar Khattab. 2023.
DSPy Assertions: Computational Constraints for Self-Refining Language Model Pipelines. arXiv:2312.13382
Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, Bowen Li,
Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff,
Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and Graham Neubig. 2024. OpenHands:
An Open Platform for Al Software Developers as Generalist Agents. arXiv:2407.16741

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, Shengmai Chen, Lei Ma, and Tianyi Zhang. 2024. Where Do Large
Language Models Fail When Generating Code? arXiv:2406.08731

[63] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah. 2023.
How Effective Are Neural Networks for Fixing Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. doi:10.1145/3597926.3598135

Laerte Xavier, Aline Brito, André C. Hora, and Marco Tilio Valente. 2017. Historical and impact analysis of API
breaking changes: A large-scale study. In IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering. doi:10.1109/SANER.2017.7884616

Chungqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going: Fixing 162 out of 337 Bugs for $0.42
Each Using ChatGPT. arXiv:2304.00385

Xiufeng Xu, Chenguang Zhu, and Yi Li. 2023. Compsuite: A Dataset of Java Library Upgrade Incompatibility Issues. In
38th IEEE/ACM International Conference on Automated Software Engineering. doi:10.1109/ASE56229.2023.00127
Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica, and Joseph E. Gonzalez.
2024. Berkeley Function Calling Leaderboard. https://gorilla.cs.berkeley.edu/blogs/8_berkeley function_calling
leaderboard.html

Quanjun Zhang, Chunrong Fang, Yang Xie, Yuxiang Ma, Weisong Sun, Yun Yang, and Zhenyu Chen. 2024. A Systematic
Literature Review on Large Language Models for Automated Program Repair. arXiv:2405.01466

Li Zhong and Zilong Wang. 2024. Can LLM Replace Stack Overflow? A Study on Robustness and Reliability of Large
Language Model Code Generation. In Proceedings of the AAAI Conference on Artificial Intelligence. doi:10.1609/AAAL
V38119.30185

[53

[t

[54

flan)

[55

—

[56

—

[57

—

[58

[

[59

—

[60

—

(61

—

(62

—

[64

=

[65

—

[66

—

[67

—

[68

[t

[69

[

Received 2024-09-12; accepted 2025-04-01

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE096. Publication date: July 2025.

https://doi.org/10.1145/3613905.3650896
https://doi.org/10.1145/3613905.3650896
https://doi.org/10.1002/spe.2346
https://doi.org/10.1007/978-3-031-21388-5_7
https://doi.org/10.1109/ASE56229.2023.00117
https://arxiv.org/abs/2407.03880
https://doi.org/10.1109/SANER60148.2024.00024
https://proceedings.mlr.press/v202/shi23a.html
https://arxiv.org/abs/2312.13382
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2406.08731
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1109/SANER.2017.7884616
https://arxiv.org/abs/2304.00385
https://doi.org/10.1109/ASE56229.2023.00127
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/2405.01466
https://doi.org/10.1609/AAAI.V38I19.30185
https://doi.org/10.1609/AAAI.V38I19.30185

	Abstract
	1 Introduction
	2 Related Work
	2.1 Dependencies and Breaking Changes
	2.2 Automated Program Repair (APR)
	2.3 Large Language Models for APR
	2.4 Fixing Dependency Breaking Changes

	3 Approach
	3.1 Architecture Overview
	3.2 Zero-Shot Prompting
	3.3 Agentic Approach

	4 Evaluation
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Evaluation of Patches

	5 Results and Discussion
	5.1 Is an Agentic Approach More Effective than Zero-Shot Prompting? (RQ1)
	5.2 How Does the Performance of the Agentic System Vary Across Different Language Models, and Which External Factors Influence It? (RQ2)
	5.3 Which Input Variation Yields the Best Results for the Zero-Shot System? (RQ3)
	5.4 Discussion

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity
	6.3 Conclusion Validity
	6.4 Mitigation Strategies

	7 Conclusion
	References

