Interference Analysis for AspectJ

Maximilian Srzer, Jens Krinke
Universitat Passau
Passau, Germany
{stoerzer, krink¢@fmi.uni-passau.de

March 1, 2003

Abstract risks, too. Changes introduced with AspectJ are not visi-
bledirectlyin the source code of the base system. Aspects

Aspect] is a language implementing aspect-oriented p&ge a new modularization unit usually stored in separate
gramming on top of Java. Besides modification of préites. The effect of this code can influence semantics of
gram flow and state usiragvice AspectJ offers languagethe whole system. Tool support is necessary to reveal the
elements to statically modify existing classes by changifigpact of aspect application. To motivate this necessity,
their position in the inheritance hierarchy or introducinghis paper presents problems related to AspectJ language
new members. This can lead to binding interference, ignstructs which might be avoided by modifying the As-
the dynamic lookup of method calls not affected directpyect] language itself. However, impact on language de-
by the aspect might change. sign is not in the scope of this paper.

This paper presents methods allowing programmers 0y, achieve this support, methods to determine the im-

automatically check the impact of introductions and higfz ot of aspect application have to be developed. As a first
archy modifications on existing programs. step, a method to decide an aspect modifies base sys-
tem behavior is presented. This analysis will be extended
to perform an impact analysis to shavheresystem be-
havior is influenced by an aspect.

Aspect oriented programming (AOP) is a new paradinghroughout this paper, the simple class hierarchy de-
in programming, extending traditional programming tecfined by progran{ T]1 will be used as an example to
nigues, first introduced in [5]. Its basic idea is to encaffémonstrate aspect influence. This hierarchy will be mod-
sulate concerns which influence many modules of a givdigd using introduction and hierarchy modification and
software system, so calledosscutting concerng anew Some of the classes will be declared to implement inter-
module calledaspect facel .

This encapsulation improves separation of concernsThis paper describes the problem emerging from these
and can avoid invasive changes of a program if crosscuisnsformations, presents an algorithm to detect their ef-
ting concerns are affected by system evolution. The furfects and suggests how this information can be used to
tionality defined in the aspect igoveninto the base sys-reduce flaws in a software system. Organization is as fol-
tem with a so calledspect weaverat compile time, load lows: Each section takes a look at a AspectJ language
time, or even run time of the program. Hekspectd—an construct, starting with interface introduction in section
aspect-oriented language extending Java—is considef@&dSectior] B presents an algorithm to detect binding in-
Main features of AspectJ are introduction, modificaticlerference for class introduction, sect{gn 4 for hierarchy
of class hierarchies and advice. This paper will concemodification. Sectiofi]5 shows how these results can be
trate on the first two points which are designed to statised for impact analysis. Sectiph 6 presents an example
cally change a given system by introducing new membexgplication of this analysis for a given hierarchy. Section
in classes or modifying the structure of an inheritance fi-briefly summarizes the preliminary implementation and
erarchy. outlines future work. Sectiofj§ 8 concludes and gives an

AOP is a very powerful technique but includes newverview of related work.

1 Motivation

Program 1.1 Example Hierarchy A
class A { void n() { A
print("A.n()"); o~ 1 .

class B extends A { ? m B P

void m() { print("B.m()"); } B x Nt
class C extends B {

public void x() { print("C.x()"): N |+| 3 '
class D extends B { cx|c G D |b.x ' [:

public void y() { print("D.y()"); 1 Dy Cxf C G D |D.x

public void x() { print("D.x()"); 3! ? Y Dy

class E extends C {} cx|l e F |D x ? ?

class F extends D { Dy Cx| E F [Dx

void n() { print("F.n()"); 1 Ly Dy
class G extends B {

void n() { print("G.n()"); 1} Figure 1: Using default implementations.
interface | {

void x(); void y();

} 3. The set of classe&;; which do not provide an im-
plementation of all interface methods (i.e. which use
the default implementations) has to be determined.

. Let method$C) be the set of all methods defined in
2 Interface Introduction ClassC. Then

Introduction is an AspectJ language construct to add new Cdi = {C € Clyes | T € Iges : C implementsT

members to existing classes or interfaces. The purpose A method$I) — method$§c) # 0}

of interface introduction is to providéefault implemen-

tationsof interface methods which can be used to reduce It is sufficient to check weather all methods in

necessary work for implementation. However, if no mul- methods$I) are implemented as other missing meth-

tiple inheritance is needed an abstract superclass can often ods are detected by the java compiler. Note that any

be used instead . subclass of an affected class is influenced as well,
Usage of this feature can result in ‘forgotten’ imple- unless it implements the necessary method and thus

mentations which may introduce flaws into a program. overrides the default implementation.

The compiler no longer issues an error message if a class i

implements an interface but does not (re)define all defaliffé Programmer must examine affected classes to check

implementations. To avoid flaws by ‘forgotten’ redeﬁni@_/vhetherthe default implementation given by the interface

tions a compiler warning should be given when a clas@PPropriate.

uses a default method implementation provided by the in-AS @n €xample consider aspédgiven by prograr 2]1,
terface. which declares that class&€andD implement interface

A simple analysis of interface introductions can prd- @nd introduces a defaultimplementation of methidd

vide the necessary information. Given a class hierarcdhf interface.

and an asped, an analysis could be performed in three — - -
P ys! ! P ! Program 2.1 Adding interface implementation.

steps:
aspect M {

1. The set of interfaces for which aspégprovides de- declare parents: C implements I;
fault implementations has to be determined by scan- declare parents: D implements I
ning A’s introductions. Letlye be the set of these
interfaces. FolT € Iyet let method§I) be the set public void 1.y() { print("Ly()"); }
of methods for which default implementations are
given.

2. The set of classes implementing an interfagelye
has to be identified. Lety,, be the set of these Figure[] presents the effects of this modifications. Note
classes. that classe€ and E—maybe unexpectedly—use the im-

A |AnN ods (some might not be visible in the subclass), thus re-
ducing binding interference.
If the introduced methoB.n() redefineA.n() with

B |B.n respect to behavioral sub-typirig [6], a (unknown) client of

B.m a subclass oB may still work as expected. However, nei-
ﬁt ther Java nor AspectJ guarantees this kind of method re-
definition. The described problem is a special case of the

B.n| C G D |B.n fragile base class problefi@]—subclasses change behav-
B.m B.m ior because of changes in the superclass. Although track-
Zﬁ g‘_ ”m Zﬁ ing down bugs introduced by changing a base class is dif-
B.n| E F |F.n ficult, the problem is even worse with aspect languages as
B.m B.m modifications of the base class are not visible if the code

_ _ _ _ is viewed in isolation (i.e. without the applied aspect). To
Figure 2: Example hierarchy, effects of introduction. track bugs emerging from dynamic interference, impact
analysis of aspect application should reveal method calls

plementation given by.y . This fact is reported by thewhosedynamlc lookup has changed

proposed analysis.) .
3.2 Detecting Semantical Changes

3 Noninterference Criterion To detect semantical changes in the hierarchy, the inter-
) ference criterion of [10]—informally stating that all vir-
for AspectJ Introduction tual calls evaluate to the same target as before—is applied

to aspects by reducing introduction to hierarchy composi-
In contrast to interface introduction, class introduction {fon. As a result, the correctness proof of the criterion can
more complex as program semantics may change withgetapplied to aspect introduction as well.
modifying any class directly. These effects are describedn contrast to Hyper/J, AspectJ is much more restrictive

in the following. in the possible static modifications of the class hierarchy.
Modification of system behavior is mainly achieved by
3.1 Impact of Class Introduction using advice. However, introduction can be viewed as a

_ _ hierarchy composition. Let a hierarclty be defined as
Introducing members to classes can result in changg§10]:

of dynamic lookup if the introduced method redefines a
method of a superclass, callelynamic interferencén pefinition 3.1 (Class Hierarchy) A class hierarchy is
[10]. However, as the term dynamic is misleading, theset of classes and an inheritance relatioh:= (¢, <).

term binding interferencas preferred. Consider the ex-, classc € 4 has a name and contains a set of members
ample hierarchy defined by progrgm]1.1 and aspbut According to this definition, memb¢€g does not contain

be applied: inherited members that are declared in super-classe&s of
aspect N o) o
void B.n& { print("B.nQ)"); } To indicate the members of cla€glefined in hierarchy
} H we write memberg (C); Cy references definition of

. i ~ classCin hierarchy#.
This aspect introduces a methadto classB, which is any AspectJ introduction can be viewed as a hierarchy

already defined in superclagsof B. Any (virtual) call composition by defining a new hierarchy induced by an
e.g. from clas<C now results in call oB.n() and not aspecta.

in A.n() as before. So, the semantics of a calhtbas

possibly changed for any object of cla&&sr any subclass Definition 3.2 (Hierarchy induced by Introduction)

thereof without direct modification of these classes. Figet # = (C, <) be a hierarchy an aspedtis applied to.

ure[2 indicates the changed lookups in bold. Let | be the set of introduction statements of this aspect.
The presented considerations abstract from Java acdglssnents of | have the forif€,m). C € C indicates the

specifiers: All methods are considerpdblic . Addi- class where the new membarshould be introduced to.

tion of access specifiers reduces the set of inherited méthen:

1. VC € # create a new empty 1. C=aue

class named, add it to ¢’

2. (£)=(z1Ux2)

2. Y(C,m) € | add membemto the

corresponding class € ¢’ created in (1) 3 VC € Cyr : member&y,) =

* memberfC,,) UmemberfC,,)

3. (<) = (<) (same inheritance relations as iH)

It is easy to see that the effect of composigand #H’
using operatorps has the same effects as the introduc-
tions of AspectJ: Both operations simply add the intro-

Informally, the resgltmg hierarchy contains N0 Meny o4 members to the respective classes of the resulting
bers from the base hierarchy but any introduced member

and mirrors the inheritance relations. Empty classes arerarchy.
bossible : pty ?—ollowing the analysis of[10], it is now possible to ap-

As name clashes atatic interferencare considered ply the stated noninterference criterion for AspectJ intro-
an error by the Aspect] compilai duction as well, which informally states that all used vir-
y P priajc tual calls must evaluate to the same method as before.

The hierarchy induced by | i’ = (C',<').

VC € C': Vm € memberg, (C) :
C € CAm ¢ memberg(C) 3.3 Finding Changed Lookups

always holds for syntactically correct Aspect] progranifo test the interference criterion it has to be checked,
Aspect does not allow overriding introductions. Savhether the dynamic lookup for any possible call has
only basic compositiond.e. compositions without prior- changed. The analysis described below only needs the hi-
ity rules to choose from a set of possible method implerarchy and signature information as input; method bod-
mentations, have to be considered. ies arenot analyzed. This approach guarantees that the
The hierarchy induced by an aspect needs not to tierarchy preserves its behavioni binding interference
syntactically correct as methods introduced by the aspecturs at all.
might reference methods not presentffi but only in For impact analysis, this information is insufficient as
7. All these dangling references are bound after combe set of changed lookups calculated by the subsequent
nation of the resulting hierarchies if the original Aspectdnalysis demands that behavioraofy affected class to-
program was correct. gether with its subclasses has to be considered as beeing
The hierarchy#’ induced by the introductions of anchanged. The reason is that methods defined in a class in
aspectA will now be composed with the hierarchy of the/ might transitively use a call with a changed lookup in
base systemt by using a hierarchy composition operatdaheir implementation.
@s. When working with arbitrary hierarchies, the inher- To reduce the set of affected classes, a simple code
itance relations of both hierarchies can be contradictosganning of an affected method for calls with changed
e.g. if(B,C) € < and(C,B) € <5. lookup might be enough—methods only using unchanged
This is immpossible if a hierarchy induced by an asalls in their implementation as well as calls evaluating to
pect should be combined with the base hierarchy, as tiraffected classes are guaranteed to work as before if only
resulting inheritance relation is always conflict free (herthese methods are called. The call graph is an appropriate
they are identical), no collapsing of cycles is necessatgta structure to calculate all this information.
and the general combination operator[of/[10] can simpli- Note that newly introduced methods may very well

fied as follows: change the state of objects, thus altering system behav-
ior. Anyhow, introduced methods are never called by the
Definition 3.3 (Simplified Hierarchy Composition) original system as the system would not have been syn-

Let #; = ((1,<1), Hz2 = ((2,<2) be two class hierar- tactically correct otherwise—the method did not exist in
chies with conflict free inheritance relations;, <, and the original systeffi

no static interference. TheM; ®s 75 = (C, <) is defined
as follow§}

3Here,memberg:%) indicates the set of members defined in class
Cin hierarchy#]. If ¢ ¢ #;, thenmemberé{:}q) =0.

1Referenced Version is 1.0.6. 4Keep in mind, that advice is not considered here—advice code
2|n this papers will refer to @s. might call newly introduced methods.

The information necessary to check the interferenbeld]
criterion as well as for impact analysis is the set of
changed lookups. 1n [10], calculation of changed lookups .
is more precise as only calls actually appearing in thel ~Impact of Changing the
hierarchy are examined (using points-to analysis). The Inheritance Hierarchy
method proposed here calculates any possible chang(ﬁl]ré impact of changes in the inheritance relations is

lookup due to aspect application. The loss of Prédemonstrated in figug 3. The changes presented in thie

sion might be negligible as the set of changed lookupgample are due to application of the following simple
is much smaller (explicit introduction instead of arbitraryspect:

hierarchy combination). As an additional advantage, our
algrithm is independent of a specific client, because alipect O {
statically possible calls are examined. declare parents: D extends G;

This set of method calls can easily be calculated byta
modified version of breadth first search, given by algo-))) _ o
rithm[3-3. Recall that a class hierarchy in Java (as well A5 Irst sight any client using classes with a modified in-
in Aspect]) always defines a tree. Therefore, the inhe!?ﬁ”?ance hierarchy should still work as any type relation
tance relation< always containgava.lang.Object is st|II.correct. However, there are two problems. tdte
as maximal element. For the algorithm lete ¢ a1 object of type:
be a class. Therints(C) is the set of all meth-
ods introduced in clas€. For the root object, define
Alookup(father(root)) = 0.

instanceof: In example of figurd |3, clasb is moved
down the inheritance hierarchy by aspé&atAny
predicated instanceof G now changed value—
from false to true. More generally, thetype of

Algorithm 3.1 Calculation of Changed Lookups classD has changed. This allows additional up-casts
algorithm get-binding-interference ((G)d), which resulted in &ClassCastExcep-
input: hierarchy* = (C,<),VC € C: Ints(C) tion before. These exceptions might have been
output:VC € C : Alookup(C) caught and so control flow might have changed.
queue ={max(<)} binding interference: Change of inheritance hierarchies
while queue# 0 do might possibly change the method actually executed
C = removéqueug by a virtual call. Figur¢[3 gives an example of this
Alookup(C) = (Alookupfather(C)) situation with method call.n() : Without applica-
—member&C)) Ulnts(C) tion of the aspectA.n() is called; withOapplied,
VD :D < C do: addD to queue the virtual call evaluates tG.n() .

The changes in lookup are used as input for a sué)- . e
sequent impact analysis (refer to sectign 5). Howev r,2 H_'erarChy MOd'f'Ca_t'_on as
changes in lookup are not only due to introduction but ~ Hierarchy Composition
can have a different reason: hierarchy modification.

. . : ﬁodmcanon of the inheritance hierarchy can again be
effects are examined in the next section.

viewed as a hierarchy combination. In this case, the hier-
archy induced byeclare parents ...extends
. . . statements contains an empty class for any class in the
4 Noninterference Criterion base hierarchy and an inheritance relatidrmodified by

for Hierarchy Modification the aspect statement as follows:

Besides introduction, AspectJ allows structure modificgif'n't'°”h4'l (Induced H'erar‘f_hﬁ) LetH = (Sa 5% be
tion of inheritance hierarchies, with the intention to moya Nierarchy an aspech is applied to. Let D be the set
classes (together with all their subclasses) ‘down’ the IN-54t is not possible to move classes ‘up’ in the inheritance hierarchy
heritance hierarchy, so that original type relations st{lkspectJ accepts this declaration without effect).

A |An allows to make control flow dependent of the type of an

A AN object.

m [ﬁ To guarantee that behavior of a client is preserved, all

B |An instanceof statements have to evaluate to the same

B [An B.m value. To calculate the value of such expressions, the type

B.m of each reference involved in amstanceof predicate

JAN o) . .

has to be known. Approximations with points-to analysis

Gn are possible but precise points-to analysis is undecidable.
B.m B.m Thus in general only a superset of the type of an object a

G
B.m - B.m [ﬁ [ﬁ reference points to can be calculated.
n
T T 5
F

>
=]

(@]
®
O
>
=]

B m Gn Preservation of behavior can only be guaranteed iff
B.m points-to sets of references involved in an instanceof-
statement before and after the hierarchy modification
evaluate to thesame single type-a very rigid require-
ment. In general, when using static analysis, many pred-
icates will evaluate to type-sets with a cardinality big-
ger than one. In this case, conservative approximation
requires to assume that the behavior of the client has

F.n
B. m

Figure 3: Effects of hierarchy modification.

changed.
of tuples derived frondeclare parents ... ex- To check the impact of changes to any client of the
tends statements of this aspect. Thehis defined as modified hierarchy the noninterference criterion can be
follows: applied if RTTI is excluded. Finding the method calls
(<') = (< uD) with changed lookup is easy: Only calls to methods

_ _ o .,) (re)defined in a class between (and including) the new and
The hierarchy defined biis #" = (', <’), whereC’ = the former superclass can be influenced, if those methods
C,VC e C': memberfC) = 0. are not redefined by the affected class itself.

As hierarchy modifications in AspectJ are restricted—% Detecti f Binding Interf
is only allowed to declare that a class now is a subclass p‘ etection or binding Interrerence

a sibling (or a subclass therdgif) the inheritance tree— due to Hierarchy Modifications

the following always holds: Detection of changes in lookup due to hierarchy modifi-

o (<)C (<) cation can be achieved by a simple algorithm. The idea
T is that any method call has a changed target iff now the
e (DC) € (<) = (CD) ¢ (<) (no conflicts in<’) virtual call evaluates to a newly assigned superclass. This

change in lookup again has to be propagated to any sub-
With this properties, the simplified hierarchy combinatiogiass not redefining the affected method.
operator can be applied as no collapsing of equivalenceCalculation of the necessary data can be performed in
classes due to conflicts is necessary. The resulting hietaree steps:

chy is given by#H = (C,<').
yisg Y (6= 1. Get the set of class&affected by hierarchy modi-

fication.
4.3 Impact of Type Changes

2. Vd € D calculate the intermediate class€dbetween
To prove that any client still works as before, the interfer- this class and the newly assigned superclass.
ence criterion of [10] is a necessary Imatt sufficienton-) .
dition. If a language contains statements for run time type>: FOr any methodnknown ind, check if a call now
identification RTTI), control flow might change although ~ actually evaluates to a classc IC. If this is the
the above noninterference criterion is met. Java contains ¢2S€; the behavior of the call possibly changed
such statements with the prediciistanceof , which andmhas to be added #lookup(d).

61f u, vare siblings= (U,v) ¢ (<*)A(wU) & (<) ATwe C: (uw) e Again, any (transitive) subclass dfwhich does not rede-
(<) A(v,w) € (<*), (<*) indicates the transitive closure o). fine mis affected by the change as well.

5 Impact Analysis of Changes subset of test cases which must be rerun can be de-
termined. Impact of these changes can be checked
In [9], a method to compute impact of system modifica- by the results of these regression tests only.
tions on a set of given test drivers has been suggested. It _) i i
breaks modifications down into atomic changes kil o For the given hlergrchy[, impact of §tat|c featur.es
method(AM) and add field (AF). These atomic changes of aspect apphcangn on the semantics of the hierar-
can be easily derived from the aspects; dependent changes €hY ¢an be determined.
like change lookupare calculated by the analysis prefhis information can be used by the programmer to avoid
sented in sectiorid 3 ahd 4. unexpected changes and specifically examine results of
With the set of changed lookups at hand, impact anaitended changes.
ysis can be used to choose a set of test drivers which has
to be rerun to check whether the system still works as in- .
tended. Only a short summary is presented here, for é An Example AnalyS|S
tails refer to[[9].
The classes of the hierarctly under consideration ar
now associated with a set of test drivers= {t1,...,tn},
where eacht € T calls a subset of methods defined

To see how the proposed algorithms work, the analysis

is applied to an example using all static modification fea-
bE}Jres of AspectJ.

classes inH. For each test drivet;, impact analysis is - - .
' Program 6.1 Combined Aspect Applied to Hierarchy.
performed using the call graph gfto determine if the g ! P il ! y

class Main {

new D(); d.n(); d.m();
new E(); e.n(); e.m();
f = new F(); f.n(); f.m();
g = new G(); g.n(); g.m();

test driver (or client) is affected. This is done by checking public static void main(String[] args) {
ey it ; print("A:); A a = new A(); a.n();
if t; calls (maybe transitively) any method with changed ! "B b = now B(. bnl: b.mo:
Iookup. ¢ = new C(); c.n(); c.m();

d =

e =

This check uses calculated information about changed
lookups when traversing an edge in the call graph. If
the call matches a call in the set of changed lookups
Alookup(C) the test driver has to be rerun.

To create the call graph, the type of the calling object }
at runtime has to be determined for each method call to aspect MnO {
decide whether the call changed its behavior. This is the // declare parent extends / implements

. . . declare parents: D extends G;
case if the object reference may have a type with changed declare parents: C implements I;

A
B
; C
Y. D
, E
F
G

println();

behavior as indicated by the analysis presented above. declare parents: D implements I;
Unfortunately, calculation of the exact type at runtime II' introductions _
is undecidable. However, points-to analysis can be used to Public void 1y) { print("ly("); 4
void B.n() { print("B.n()"); }

calculate an approximation: the set of possible types for

an object reference in the test driver. If a call of any type p“';'ri;t(s..t/i‘_“c..)_"olld amii”rfgwngg, aggrf())_ {
in this set is contained in the set of methods with changed print(’B: *): B b = new B(): b.n(): b.m();
semantics, conservative approximation demands that the p”';t_g;‘(:)ﬂ "C)?X(‘):_ oo C0: en0;
semantics of this call have to be considered as changed. print¢'D: *); D d = new DQ; d.n();
In this case, the test driver containing this method call has | Sm0 X0 408
to be rerun. The results of this regression tests show if the em(); ex(); ey();
program still works as intended. pri?‘(n:gi ;?;()F ffy(z)_ new F(; f.n();

So, the analysis proposed here can provide different re- print("G:), G g = new G(); g.nQ); g.m;
sults: printin();

e A set of introductions and hierarchy modifications
with no effecton a given sedf test-drivers can be de-
termined. These changes can be incorporated safely

into the system as the semantics of the systemare@ol The System to Analyze
changed.

As a starting point, the class hierarchy defined by program
e For atomic changes modifying system behavior, tfie] is given, together with aspetNQwhich combines

the effects of former aspects. It introduces a new methigproduces the results visible when comparing sections
n to classB, changes the inheritance relatiate€lare (a) and (b) of figuré}4.
parents:D extends G) and declares that class€s

and D implement interfacd . Methods are inserted to : ;
class interface . Additionally, the aspect defines an owr(15'3 Using these Results—Impact Analysis

main -method which is necessary to test the results Phe calculated information about changed lookups can be
interface declaration. Effects of aspect application areiged for impact analysis to determine whether a given test
changed structure as well as a changed lookup for sogiter has to be rerun. For illustration consider the set
methods. of (quite simple) test drivers associated with the example
The classes of this example are quite simple: All methierarchy presented in program16.3.

ods only print their name and the class they are definedro decide if control flow has been changed by intro-

in, but this setting is already sufficient to show how thguctions, the call graph has to be constructed. Note that
aspect affects the existing system. Figure 4 presents pdnts-to analysis is necessary as the types of caller and

output of the system. The figure contains three sectioBallee of a virtual call has to be identified or at least re-
The output of the original system without application of

the aspect is marked with ‘(a)’. The effects of binding a) : original system
interference are visible in section ‘(b)’, which shows the jayac demo java
output of the original main method with asp@dNCap- java Main

plied to the system. The set of known methods is identi- A: A.n()
cal, but the dispatch has changed for clag3es, E, and B: An() B.m()
D. The first three classes are affected by the introduction C: A.n() B.m()
of n to B, classD by the change of the hierarchy. D: An() B.m()
All effects of the aspect are visible in secton E*AnOQ — Bm(
‘(c), where the effects of theleclare parents: F: F.n) B.m()
G: G.n() B.m()

...implements | statements become visible. No
‘old’ base system code uses this effects as in the origi-

. .) b) : changes due to dynamic
nal hierarchyC andD did not implement . So, forC, D

interference

and all their subclasses, methadsandy can be called. ajc demo.java demo.aj
For classC only an implementation af is provided, for java Main
y the defaultimplementation ¢fis used—as is visible in A: An()
the output. B: B.n() B.m()
C: B.n() B.m()
) . D: G.n() B.m()
6.2 Applying the Proposed Analysis E: B.n() B.m()
. . . . F: F.n() B.m()
The analysis revealing classes only using the defaultim- . g) B.m()

plementation of an interface, like e.g. does, is quite

simple and not considered. The example concentrates on ¢) : including introduction

changes in lookup. Changes due to introduction can be to interface

found by applying algorithri 3]1. For the example hier- ajc demo.java demo.aj

archy, tabl¢ b summarizes the gathered information. The Jjava M

example application of the algorithm traverses all classes A.n()

of a given hierarchy according to a bfs-order determined B.n() B.m()

by the structure of the class hierarciger applying hier- 22(()) BB”I;(()) ([:)’)(((()) I[.)y() 0

archy modifications of the aspect. BN 0 B.m 0 C..x() Iy();
Step 7 is interesting as at this position the changed F.nQ) Bm() Dx() Dy

lookup results from the change of hierarchy structo, . G.n() B.m()

from introduction (the father dD now isG which has an

own definition of methoah so introduction ofmto B has

no longer any effect o®). When calculating changes in

lookup, these effects must be considered. The algorithm Figure 4: Example: Produced output.

GMMmMoUOw>

Step v declared methods members(v) Intr(MMlookuplv) queue

1 - - - - - {A}
2 A n n - - {B}
3 B n, m m n B.n {C, G}
4 C n, m - - B.n {G, E}
5 G n, m n - - {E, D}
6 E n, m - - B.n {D}
7 D n, m - - G.n {F}
8 F n, m n - - 0

Figure 5: Results produced by the algorittxny omitted).

Program 6.2 Test Drivers for the Example Hierarchy. due to aspect application as no lookup for Rwbject

class T { changed. Test drivef2 calls n from a B-object. This
P o o ool ares) { lookup has changed from.n() toB.n() due to intro-
fmQ; // calls B.m() duction of method.n . This test driver has to be rerun.
fnQ; /4 calls F. . . .
} "0 alls Fin0 Test driverT3 is a little more complex as here the
type of the calling object is statically unknown. Possi-
class T2 . .
public static void main(String[] args) { ble types ar® andG. For aG-object, semantics would be
B b = new B(; preserved, but for ®-object, the call would evaluate to
b.n(); /I calls B.n(), changed lookup

G.n() and nottoA.n as in the original hierarchy. Con-

dass T3 { servative approximation demands to rerun test dii@&r

public static void main(String[] args) { Certainly this is a simple example, but there is no restric-
G d; tion to apply this analysis to real-world call graphs as it
if (args.length = 0) d = new D(); ; B ;
else d = new G(); can be done by performing this simple check for every
d.n(); // calls G.n(), caller: D or G edge_

}
}

7 Preliminary Implementation
and Future Work

stricted to a as-small-as-possible type set.

F.n
: / A prototype of the analysis presented in sections 2 to 4
1. main has been implemented and produces reasonable results for
\ B.m programs written in a subset of AspectJ, including the ex-
ample of sectiof]6 presented in this paper.

T2 main E plen Howgver, implementation of the impact anglysis and
extension of the set of analyzable programs still has to be
done. A point of interest is the handling of Jargort -

T3.main [—DOor-Gpy Gn statements as imported classes are necessary information

to built up the hierarchyt. For these classes, source code
Figure 6: Call Graph of Simple Test drivers might not be available. To solve this problem, itis planned
to reconstruct class information out of Java byte code us-
To get a first impression how impact analysis work#)d the BCEL API.
consider test driver$1 to T3 and their call graph. The Evaluation of occurence of binding interference in ‘real
edge labels of figurg 6.3 indicate the type of the callirife’ AspectJ programs is necessary to determine if this
object. To evaluate the impact of an aspect using the qadbblem is actually relevant for Aspect] programmers.
graph, we need the results of tapje 5. However, even if binding interference is not very frequent,
Test driver T1 is obviously unaffected by changeshe Aspectd compiler should issue a warning.

8 Conclusion and Related Work [3] D. Batory and Y. Smaragdakis. Building product-
lines with mixin layers, 1999.

This paper pointed out the problem of binding interfer-

ence emerging from usage of the AspectJ features intré#] Don Batory and Sean O'Malley. The design and im-

duction and hierarchy modification. Definitions are given ~ Plementation of hierarchical software systems with

how AspectJ introduction and hierarchy modification can ~ eusable componentsACM Transactions on Soft-

be interpreted as hierarchy combinations. With this defi- Ware Engineering and Methodolog¥(4):355-398,

nitions at hand, the noninterference criterion[of[10] and ~ 1992.

the impact analysis of [9] can be applied to check if client]

of the hierarchy under consideration possibly change

behavior. This analysis can help Aspect] programmers

to examine the impact of aspects before application and

avoids subtle flaws in their programs.

Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Mehmet Aksit and Satoshi Matsuoka, ed-

. . . itors, Proceedings European Conference on Object-
To improve separation of concerns, several different ap- Oriented Programmingvolume 1241, pages 220—

proaches besides aspect oriented programming have been 242. Springer-Verlag, Berlin, Heidelberg, and New
suggested. Aksit et al. proposed composition filter5][2, 11 v 1997 ' ' ’

to route incoing and outgoing messages through a filter
queue, thus enabling similar functionality. Batory et al{6] Barbara H. Liskov and Jeannette M. Wing. A behav-
proposed layered designs [4, 3]. ioral notion of subtyping. 1994.

Especially relevant for the approach presented here is) o] o
[8]. Ossher and Tarr proposed multi-dimensional sepd/] Leonid Mikhajlov and Emil Sekerinski. A study
ration of concerns, leading to a separate implementation ©f the fragile base class problemecture Notes in
of different features and a composition of the resulting COmputer Scienced 445:355-382, 1998.
hierarch.ies according to user defined composition rglefg H. Ossher and P. Tarr.
Semantics of these compositions are a research topic ad-
dressed in[10].

Besides[[10], very little work of program analysis for
AOSD approaches is known, although impact analysis of
[9] could be used for AOSD software as well.

Multi-dimensional separa-
tion of concerns and the hyperspace approach, 2000.
Proc. Symposium on Software Architectures and
Component Technology: The State of the Art in
Software Development.

[9] Barbara G. Ryder and Frank Tip. Change impact
analysis for object-oriented programBroceedings

Acknowledgements of the Workshop on Program Analysis for Software
Tools and Engineering (PASTE 200fpages 46-53,
Thanks to Silvia Breu for her valuable feedback. 2001.
[10] Gregor Snelting and Frank Tip. Semantics-based
References composition of class hierarchies. ECOOR page
562ff, 2002.

[1] M. Aksit and B. Tekinerdogan. Solving the model-
ing problems of object-oriented languages by com-
posing multiple aspects using composition filters,
1998.

[2] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk
Bergmans, and Akinori Yonezawa. Abstracting
Object Interactions Using Composition Filters. In
Rachid Guerraoui, Oscar Nierstrasz, and Michel
Riveill, editors, Proceedings of the ECOOP’93
Workshop on Object-Based Distributed Program-
ming volume 791, pages 152—-184. Springer-Verlag,
1994,

	Motivation
	Interface Introduction
	Noninterference Criterion for AspectJ Introduction
	Impact of Class Introduction
	Detecting Semantical Changes
	Finding Changed Lookups

	Noninterference Criterionfor Hierarchy Modification
	Impact of Changing the Inheritance Hierarchy
	Hierarchy Modification as Hierarchy Composition
	Impact of Type Changes
	Detection of Binding Interference due to Hierarchy Modifications

	Impact Analysis of Changes
	An Example Analysis
	The System to Analyze
	Applying the Proposed Analysis
	Using these Results---Impact Analysis

	Preliminary Implementation and Future Work
	Conclusion and Related Work

