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Observation-based slicing and its generalization observational slicing are recently-
introduced, language-independent dynamic slicing techniques. They both con-
struct slices based on the dependencies observed during program execution, rather
than static or dynamic dependence analysis. The original implementation of the
observation-based slicing algorithm used lines of source code as its program rep-
resentation. A recent variation, developed to slice modelling languages (such as
Simulink), used an XML representation of an executable model. We ported the
XML slicer to source code by constructing a tree representation of traditional source
code through the use of srcML.

This work compares the tree- and line-based slicers using four experiments in-
volving twenty different programs, ranging from classic benchmarks to million-line
production systems. The resulting slices are essentially the same size for the major-
ity of the programs and are often identical. However, structural constraints imposed
by the tree representation sometimes force the slicer to retain enclosing control
structures. It can also “bog down” trying to delete single-token subtrees. This oc-
casionally makes the tree-based slices larger and the tree-based slicer slower than a
parallelised version of the line-based slicer. In addition, a Java versus C comparison
finds that the two languages lead to similar slices, but Java code takes noticeably
longer to slice. The initial experiments suggest two improvements to the tree-based
slicer: the addition of a size threshold, for ignoring small subtrees, and subtree
replacement. The former enables the slicer to run 3.4 times faster while producing
slices that are only about 9% larger. At the same time the subtree replacement re-
duces size by about 8–12% and allows the tree-based slicer to produce more natural
slices.
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1 Introduction

Observation-based slicing and its generalisation observational slicing are two recently introduced
dynamic program slicing techniques that handle two long-standing challenges in program slicing:
slicing systems consisting of components written inmultiple programming languages, and slicing
systems that include binary components or libraries (Binkley et al., 2014; Gold et al., 2017).
Observation-based slicing replaces the complex static and dynamic analysis required by existing
slicing techniques with the observation of program behaviour via execution of a given test suite.
Operationally, it speculatively deletes parts of the code, builds, executes, and then observes the
program’s behaviour: it only commits to a deletion if the desired behaviour is still observed.
All of these steps can be constructed using the existing build tool-chain, obviating the need to
replicate much of the compiler’s infrastructure (e.g., parsing the code) for each specific language.
While similar to dynamic slices in their reliance on a selected set of inputs, observation-based

slices are based on observed dependencies, rather than the statically determined but dynamically
witnessed dependencies used by dynamic slicers. That is, a dynamic slice contains a statement
if a (statically determined) dependence is witnessed during some execution. By contrast, an
observation-based slice contains a statement if its deletion has an observable effect on the slicing
criterion.

Traditional and observation-based slicing compare projections of state trajectories, i.e., values
of variables during the execution, and require that the projections are the same for the original
and the sliced program. The notion of state trajectories and variable values are not appropriate for
slicing modelling languages or picture description languages. Thus, generalised observational
slicing (Gold et al., 2017) allows any form of observation.
The original implementation of observation-based slicing processed traditional source code

at the line-of-text level. A subsequent implementation enhanced the algorithm for observation-
based slicing to observational slice tree-represented modelling languages (Gold et al., 2017).
This second implementation suggests the slicing of traditional source code as a(n XML) tree.
We use srcML (Collard, 2005) to transform source code from lines of text into an XML tree.
Using this representation maintains the slicer’s language independence (within the limits of the
languages supported by srcML), while allowing it to exploit the more natural organization of the
source code; for example, deleting the entire body of a function in a single step rather than having
to consider each of the function’s lines.
This paper compares and contrasts the two observational implementations in the domain of the

original algorithm. It compares the actual slices produced by the two algorithms, the time taken
for slicing, and the impact of programming language on both. The paper extends our preliminary
work on the subject (Binkley et al., 2017) in the following ways.

• We have added six Java systems and replaced the previous production systems with three
newer and larger systems, including one with over five million lines of code.

• We pose an additional research question that investigates the influence of the programming
language on the slices and the slicing process.

• We present two modifications to the tree-based slicer that enable it to (a) ignore nodes that
represent only a small amount of code, and (b) replace a node with one of its subtrees.
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• We study the modified slicer to determine its characteristics.

The remainder of the paper is structured as follows. Section 2 provides basic slicing definitions
including that of observation-based and observational slicing, while Section 3 describes the two
implementations of observational slicing. Then Section 4 states our five research questions, and
Section 5 provides demographics for the systems studied. Results of the empirical comparison are
presented in Section 6. Finally, related work is discussed in Section 7 and Section 8 summarises
the contributions of the paper.

2 Slicing Definitions

Informally, Weiser defined a slice as a subset of a program that preserves the behaviour of the
program for a specific slicing criterion (Weiser, 1982). This section briefly describes tradi-
tional static and dynamic slicing before considering observation-based slicing and generalised
observational slicing.

2.1 Static and Dynamic Slicing

Static (Weiser, 1982) and Dynamic (Korel and Laski, 1988) slicing seek to find an executable
subset of a program’s statements that exhibits the same behaviour as the original program for a
specified variable at a specified location (referred to as a slicing criterion). A static slice does so
for all possible inputs, while a dynamic slice does so for a selected set of inputs.

It is interesting to note that, while Weiser’s original definition of program slicing (Weiser,
1982) is based on statement deletion, static and dynamic slicers tend to use dependency analysis
to determine which statements cannot be deleted. In contrast, observation-based slicing actually
deletes statements and then observes the behaviour at the slicing criterion.

Definition 1 (Static and Dynamic Slice) A slice S of program P taken with respect to slicing
criterion C (composed of variable v and line l) and set of inputs I is any executable program
with the following two properties:

1. S can be obtained from P by deleting zero or more statements from P.

2. Whenever P halts on input I from I with state trajectory T , then S also halts on input I
with state trajectory T ′ and PROJC(T) = PROJC(T ′).

The projection function PROJC(T) (Weiser, 1982) returns the elements of trajectory T pro-
duced at C. For a static slice the set I is the set of all possible inputs to the program, while
for a dynamic slice it is a subset of this set. Usually, the criterion for a dynamic slice explicitly
includes I and is thus given as (v, l,I) denoting variable v at location l for all occurrences in the
trajectory, or as (vi, l,I) where vi is the ith occurrence of variable v in the trajectory.
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2.2 Observation-Based Slicing

Observation-Based Slicing is a recently-introduced alternative to dependence-based slicing:
rather than relying on dependency analysis to identify allowed deletions, observation-based
slicing uses observation to preserve the relevant part of the state trajectory. Operationally, it
does this by tentatively deleting some portion of the program. Only if the result of the deletion
compiles and yields the correct output is the deletion made permanent. Because certain lines
are only deletable after other lines have been deleted, multiple passes are performed until a pass
performs no deletions. One advantage that observation-based slicing brings is the ability to slice
any system for which it is possible to delete components and then observe the computation at the
criterion.
While similar, the definition of static and dynamic slicing projects elements from the complete

state trajectory. In contrast observation-based slicing does not require the complete trajectory.
Instead it observes only the relevant values (Binkley et al., 2014):

Definition 2 (Observation-Based Slice) An observation-based slice S of a program P taken
with respect to slicing criterion C = (v, l,I) composed of variable v, line l, and set of inputs I,
is any executable program with the following properties:

1. S can be obtained from P by deleting zero or more components from P.

2. The execution of P for every input I inI halts and produces a sequence of valuesV(P, I, v, l)
for variable v at line l.

3. The execution of S for every input I inI halts and produces a sequence of valuesV(S, I, v, l)
for variable v at line l.

4. ∀I ∈IV(P, I, v, l) = V(S, I, v, l).

In practice, the sequence of values produced is observed by injecting a statement that outputs
the value of v, just before line l. As this captures the subsequence from the trajectory specific to the
criterion, the terms trajectory and trajectory-based are used in the following for the observations
made by an observation-based slice. Furthermore, while the definition of the components deleted
can simply be “statements” tomatch the definition usedwith static and dynamic slicing, it can also
be entirely language independent. For example, by deleting lines of text or white-space-delimited
tokens, it is possible to effectively slice multi-language systems (Binkley et al., 2014).

2.3 Generalised Observational Slicing

Observation-based slicing was generalised to observational slicing (Gold et al., 2017). The
original definition, Definition 2, compares sequences of values observed during execution. Ob-
servational slicing generalises this comparison by introducing an observer O and a matching
relation R as part of the criterion. More generally, an observer O(P, I) extracts from program
P some subset of the behaviour for a given input I. Furthermore, the relation between the
behaviour of the original program and its slice is related by the matching relation R. Generalised
Observational Slicing is defined as follows:
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Generalised Observational Slice: A generalised observational slice S of a program P on a
slicing criterion C = (O,R,I) composed of an observer O, a matching relation R, and a set of
inputs I, is any executable program with the following properties:

1. S can be obtained from P by deleting zero or more elements from P.

2. The execution of P for every input I in I halts and produces the observed behaviour
O(P, I).

3. The execution of S for every input I inI halts and produces the observed behaviourO(S, I).

4. ∀I ∈IO(S, I) ∼R O(P, I).

A simple output-focussed instantiation defines the observer O(P, I) as the output of a program P
when P is run on each input I ∈ I. If the matching relation, R, is equality, then the corresponding
generalised observational slice S is program P with code that does not influence the output elided.

Observation-based slicing is an instance of generalised observational slicing: given the crite-
rion C = (v, l,I) for an observation-based slice, the observer is O(P, I) = V(P, I, v, l) (trajectory-
based) and the matching relation R is equality. In this paper, trajectory-based observations and
equality dominate. However, for some larger systems, the more general observer and a more
lenient matching relation are used. While the paper uses the two definitions precisely, as a
simplification it can be read keeping only the more general notion of observational slicing in
mind along with the default sequence observer and equality matching relation.

3 Observational Slicers

This section describes two observational slicing implementations: a line-based slicer, ORBS,
and a more recent tree-based slicer, T-ORBS. To begin with the components considered by
ORBS are lines of text (Binkley et al., 2014). If source files are formatted with one statement
per line, then ORBS can produce 1-minimal statement slices from which it is not possible to
delete any single statement, however, it may be possible to delete a combination of multiple
statements; consequently the slices are not necessarily n-minimal. Unfortunately, finding such
slices is computationally intractable.

The core of the observation-based ORBS algorithm, shown as Algorithm 1, loops through
each undeleted line in current slice S. For each such line, cl, the algorithm attempts to delete a
sequence of lines up to the maximum windows size, max_ws. This enables mutually dependent
lines (e.g., opening and closing braces on successive lines) to be deleted. The maximum deletion
window size places an upper bound on the number of lines that can be deleted together in one
deletion. Higher values offer potentially smaller slices at the cost of increased slicing time. As the
algorithm is observation-based, the Execute step extracts the sequence of variable values (Line
14), which is compared against the oracle sequence (Line 15). To improve efficiency, ORBS
caches results from previous Build and Execute steps. If a subsequent build or execution
produces a cache hit then the cached result is used. For simplicity of presentation, the algorithm
is stated as working from Lines 1 through length(S). The actual implementation processes the
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Algorithm 1: Core of the ORBS slicer
ORBS_Core(S,I,V,max_ws)
Input: Current slice S, input set I, Oracle output V , and maximum deletion window size,
max_ws
Output: Updated slice, S
(1) cl← 1 // for each current line
(2) while cl ≤ length(S)
(3) if scl < S // i.e., if scl has been deleted
(4) cl← cl + 1
(5) continue
(6) builds← False
(7) for ws = 1 to max_ws
(8) S′← S − {scl, . . . , smin(length(S),cl+ws−1)}

(9) B′← Build(S′)
(10) if B′ built successfully
(11) builds← True
(12) break
(13) if builds
(14) V ′← Execute(B′,I)
(15) if V = V ′

(16) S ← S′

(17) cl← cl + ws
(18) return S

1 if (x < 0) {
2 print x;
3 }
4 y = 42; // Slice taken w.r.t. y

Figure 1: Deletion Window Motivation

lines of text in the opposite order in the hope, for example, of deleting all uses of a variable
before attempting the deletion of its declaration.
As an example, consider the code segment shown in Figure 1. ORBS cannot produce the

minimal slice (i.e., just Line 4) by attempting to delete only a single line at a time. While deleting
Line 2 alone is a legitimate slicing action, Lines 1 and 3 can only be deleted in tandem because
deleting only one of them results in a syntax error. ORBS avoids this issue by increasing the
deletion window until the result compiles. Using a maximum deletion window size of two or
more, ORBS produces the desired slice by first deleting the body of the conditional and then on
a subsequent pass the two lines of the conditional itself.
For the generalised observational variant of ORBS shown as Algorithm 2, the Build and

Execute phases are replaced by an invocation of the observer O (Line 10), returning a set of
observations that are not necessarily sequences of variable values (or trajectories). Moreover, the
observations are no longer compared for equality, but rather bymatching relation R. Moreover, the
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observer O executes the candidate for all inputs I ∈ I, folding properties 2–4 of the Generalised
Observational Slice Definition into one observer.

Algorithm 2: Core of the generalised observational ORBS slicer
ORBS_Core(S,O,R,I,V,max_ws)
Input: Current slice S, the criterion consisting of observer O, matching relation R, and input set
I, Oracle output V , and maximum deletion window size, max_ws
Output: Updated slice, S
(1) cl← 1 // for each current line
(2) while cl ≤ length(S)
(3) if scl < S // i.e., if scl has been deleted
(4) cl← cl + 1
(5) continue
(6) for ws = max_ws to 1
(7) S′← S − {scl, . . . , smin(length(S),cl+ws−1)}

(8) V ′← O(S′,I)
(9) if V ∼R V ′

(10) S ← S′

(11) cl← cl + ws
(12) break
(13) return S

The experiments use a parallelised version of observational ORBS (Islam and Binkley, 2016;
Binkley et al., 2014) that considers several different deletion window sizes in parallel. The largest
deletionwindow that succeeds (i.e., compiles and produces the same trajectory) is accepted, while
the other attempts are discarded. The algorithm then proceeds to the next line where again a
number of deletion windows are tried in parallel. All experiments in this paper involving the
line-based slicer make use of the parallelised version of ORBS.
Turning to the the second observational slicing implementation, T-ORBS was built to slice

Simulink models and their embedded Stateflow, both of which are stored using XML (Gold et al.,
2017). The core of the T-ORBS algorithm is shown as Algorithm 3. It computes slices of trees.
Thus, rather than line-by-line, the loop on Line (2) performs a breadth-first tree traversal. During
each iteration, T-ORBS attempts to delete the subtree rooted at current node, c. If the resulting
system produces the correct sequence of values then c is permanently deleted. Otherwise c’s
children are placed on the worklist. The breadth first ordering aims to delete (large) top-level
structures (e.g., classes or functions) before considering their constituent parts. Other orders,
such as a depth-first traversal, are possible, but their study is left to future work. Outside of
efficiency, in principle the order makes no difference as a component is either deletable or not.
In practice, statement capture, as discussed in Section 6.2, could lead to minor differences.
Since the T-ORBS implementation was constructed to operate on XML representation of

Simulink models, traditional source code such as C or Java code has to be first transformed
into XML to be sliced. This transformation is done using srcML (Collard, 2005). In theory,
T-ORBS should be able to slice the resulting XML tree-based source code representation without
modification. In practice, this came close to being true. Unlike Simulink’s XML representation,
srcML includes XML namespaces. Thus it was necessary to extend T-ORBS’ command-line
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Algorithm 3: Core of the observational Tree-ORBS Slicer
T-ORBS_Core(T,O,R,I,V)
Input: Current Tree T , the criterion consisting of observer O, matching relation R, and input set
I, and Oracle output V
Output: Updated Tree, T
(1) q← append(empty_queue, start_node(T))
(2) while ¬ empty(q)
(3) c← dequeue(q)
(4) T ′← delete(T, c)
(5) V ′← O(T ′,I)
(6) if V ∼R V ′
(7) T ← T ′

(8) else
(9) q← append(q,children(c))
(10) return T

arguments to include a namespace specification. The only other change necessary was to
transform srcML’s output from mixed content, where the source text is free with the tags, to
element content. In greater detail, the output from srcML uses mixed content (much like HTML)
where an element may contain text and other elements. For example, the <if> tag includes the text
“if” and several elements including the element for the (boolean) condition: <if>if <condition>
... </condition> ... </if>. The transformation to element content moves the “free” text “if” to be
an attribute of an element, resulting in the XML <if text=“if”> <condition> ... </condition> ...
</if>. This transformation avoids ambiguities concerning to which element the intermixed text
belongs. The resulting T-ORBS slicer is capable of slicing any language supported by srcML or
any other XML creation tool. For example, it was initially developed for C code, but was able to
slice C++ and Java code without modification.

Finally, to relate the expected effort expended by the two algorithms, we compare their
complexity in terms of the size of representation, the way it is examined, and the cost of
executing the observer. The cost, C, of evaluating a candidate slice by the observer is typically
the time needed to build the program and run all the tests. It is therefore a combination of the
build time and the execution times over the inputs (we assume that the cost of observing the
output and comparing it to the oracle is included within the execution time). More formally, each
observation requires one build, B, and as many executions, E , as there are inputs I ∈ I. In other
words, in the worst case C = B + E × |I|.
ORBS’ complexity is a function of the number of window sizes, denotedWS, and the number

of lines of code, L, while T-ORBS’ complexity is a function of the number of XML nodes, N . A
single pass of the ORBS algorithm attemptsWS deletions starting at each of the L lines yielding
a complexity of O(L ×WS) observations. In the worst case each pass deletes only a single line,
yielding an overall complexity of O(L2 × WS). T-ORBS complexity is similar, but replaces L
with the number of nodes, N . A single pass of Algorithm 3 makes O(N) observations. In the
worst case this pass deletes a single leaf node, yielding a complexity of O(N2). Finally, we
note that empirically there is a strong linear correlation between L and N where N = 6.5 × L,
R2 = 0.98, so for comparison we might write T-ORBS complexity as O(L2).
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3.1 Modifications to T-ORBS

The initial experiments presented in Section 6 led to two interesting insights: first, T-ORBS can
get bogged down attempting to delete small trees, and second, by its very nature, it has to preserve
the block nesting structure of the code and thus if a statement is in the slice then some form of
its enclosing control structure must also be included. These insights led to two modifications to
T-ORBS: the ability to specify a size threshold and the ability to perform subtree replacement.
These extensions are presented here for easier comparison to the original algorithm above. The
effects of these modifications are explored in Section 6.5.

3.1.1 Size Threshold

To address the first issue, the core of T-ORBS algorithm, Algorithm 3, was updated to accept a
minimum size threshold h. Only subtrees that represent at least h lines of code are considered
for deletion. The result is Algorithm 4. The implementation includes a size threshold, given by
the command-line option -st. This option is followed by a list of size thresholds. Thus, -st 0 is
equivalent to the original T-ORBS slicer, while using -st 1 will not attempt to delete subtrees
that represent less than one complete line of code. Multiple thresholds can be given, where -st
4,2,1 first performs a single pass ignoring subtrees that represent less than four lines of code,
then a single pass ignoring subtrees that represent less than two lines, and finally one or more
passes ignoring subtrees that represent less than one line of code. Akin to the original T-ORBS
algorithm, in all cases, the last value is repeated until a pass is unable to delete any further code.

Algorithm 4: Core of the Tree-ORBS Slicer including threshold
T-ORBS_Core(T,O,R,I,V, h)
Input: Current Tree T , the criterion consisting of observer O, matching relation R, and input set
I, Oracle output V , and threshold h
Output: Updated Tree, T
(1) q← append(empty_queue, start_node(T))
(2) while ¬ empty(q)
(3) c← dequeue(q)
(4) if LoC(c) ≥ h
(5) T ′← delete(T, c)
(6) V ′← O(T ′,I)
(7) if V ∼R V ′
(8) T ← T ′

(9) else
(10) q← append(q,children(c))
(11) return T

3.1.2 Subtree Replacement

The secondmodification to the core algorithm (for subtree replacement) is shown in Algorithm 5.
Given a node N , the algorithm tests if one of N’s children represents at least 60% of the source
lines represented by N . If it does, then N is replaced with this child and the resulting program
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is compiled and executed. If the output is unchanged, then the replacement is made permanent.
While informal, the 60% cutoff was arrived at empirically where smaller values tend to result in
too many failed attempts while larger values preclude viable replacement opportunities.

Algorithm 5: Subtree Replacement
Subtree_Replacement(T,O,R,I,V,N)
Input: Current Tree T , the criterion consisting of observer O, matching relation R, and input set
I, Oracle output V , and current node N
Output: Updated Tree, T
(1) subtree_sizes← map(line_count,children(N))
(2) big_kid← max(subtree_sizes)
(3) if big_kid > 0.60 × line_count(N)
(4) T ′← replace(T,N,big_kid)
(5) V ′← O(T ′,I)
(6) if V ∼R V ′
(7) T ← T ′

(8) return T
The initial implementation applied the subtree replacement whenever a node could not be

deleted slowing the slicer down on average by a factor of 30% to 50%. Unfortunately, this means
that subtree replacement is too expensive for continuous application. Subsequently, T-ORBS
was modified to make a subtree replacement pass when it received the special size threshold of
-1.

4 Research Questions

Prior work (Binkley et al., 2014) compared ORBS with various forms of dynamic slicing,
all of which are its ‘algorithmic cousins’ because they all have common roots in dynamic
analysis. Subsequently, ORBS slices were compared to static slices in order to explore the
subtleties and limits of static analysis (Binkley et al., 2015). This paper directly compares
the two implementations of observational slicing, ORBS and T-ORBS, “head-to-head”. The
comparison is framed by the following five research questions.
RQ1: How do ORBS and T-ORBS slices compare quantitatively? This quantitative question

considers the sizes of the slices produced by the two implementations.
RQ2: How do the slices produced by ORBS and T-ORBS compare qualitatively? This

qualitative question considers differences in the slices produced by the two implementations.
RQ3: What impact does implementation have on the time taken to compute a slice? This

quantitative question asks if T-ORBS’ ability to delete large sub-trees pays for its having to
consider a multitude of small subtrees (e.g., each token of an expression such as a * b + c).
RQ4: What impact does source language have on slicer behaviour? This question investigates

ORBS and T-ORBS behaviour when slicing four systems for which we have implementations in
two languages.
RQ5: How does the modified T-ORBS algorithm perform? This question considers the two

modifications described in Sections 3.1.1 and 3.1.2: not getting “bogged down” attempting the
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deletion of small subtrees and enabling subtree replacement.

5 Subject Demographics

Our experiments concern the 20 programs shown in Table 1. These are split into three sets, each
of which is specifically chosen to help address various aspects of the comparison. The first set
includes five widely-studied (tiny) benchmark programs taken from the literature because they
have been used to exemplify slicing challenges and techniques. While not large, the programs
of the second set are small enough that it is feasible to compute all slices for all computations of
scalar values (e.g., values of types int, char, double, etc.). The third set includes three production
systems (GMAT, DAIDALUS, jDAIDALUS) and is used to study the scalability of observational
slicing. All three sets contain programs that come in two variants for two different programming
languages. For example, jHanoi (Java) and hanoi (C) both solve the Tower-of-Hanoi puzzle.

For each program the table includes the languages used in the code, the number of lines of code
(LoC) and source (non-comment, non-blank) lines of code (SLoC), and the number of slices of
the program computed. For the larger systems, computing all such slices is infeasible and thus a
reduced set is considered. The source code of all programs (except for the production systems)
has been automatically formatted in the same way so that differences in layout do not impact the
slicing results. In particular the Java programs have been formatted in the same way as the C
programs (e.g., so that braces are each on their own line).

5.1 Known Semantics

The first of the tiny programs, sumprod computes the sum and product of the first ten integers.
It is commonly used to illustrate that slicing can separate the computation of the sum from that
of the product. The second tiny program, word count, is shown in Figure 2. It computes the
number of lines, words, and characters in an input text. Its slices are used in many papers on
slicing (Gallagher and Lyle, 1991; Reps and Turnidge, 1996) as trivial examples of static slices.
It is implicit in all treatments of this example that the slices are trivial and present few interesting
issues, hence its widespread use as an illustrative example. As we shall see, observational slicing
reveals that there are, in fact, subtleties, even in this simplest of examples.

Third, the SCAM mug example, shown in Figure 3, appeared on the souvenir mug given to
delegates of the first incarnation of the SCAM conference in Florence, 2001. It has subsequently
been used as a ‘challenge’ example for slicing algorithms (Ward, 2003), due to its subtle seman-
tics and the difficulty in obtaining a minimal slice, even using very sophisticated algorithmic
techniques.

Finally, theMontréal Boat Example, shown in Figure 4, was formulated by Sebastian Danicic
and John Howroyd during a boat excursion at the 2nd incarnation of the SCAM conference in
Montréal, 2002. It was discussed at length at the conference as an example of the subtleties
of producing minimal slices (Danicic and Howroyd, 2002). This example is considered in a C
variant (mbe) and a Java variant (jMBE).
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Table 1: Subjects Considered in the Empirical Investigation
Program Language LoC SLoC Slices

Known Semantics
sumprod C 20 16 8
wc C 128 70 17
mug C 73 62 16
mbe C 82 62 12
jMBE Java 62 53 10

Exhaustively Sliced (Sorted by SLoC)
jPermutation Java 142 129 43
tcas C 185 141 43
jHanoi Java 171 158 62
jTCAS Java 198 165 43
hanoi C 206 177 21
schedule2 C 302 256 74
totinfo C 415 274 54
schedule C 465 313 58
printtokens2 C 579 361 74
printtokens C 733 436 81
replace C 658 541 309
jDaisy Java 1411 787 101

Production Systems
DAIDALUS C++ 44 897 22 504 140
jDAIDALUS Java 38 750 20 361 140
GMAT inc libs C/C++ etc. 5 219 731 2 912 526 15
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1 word_count()
2 {
3 while (scanf("%c", &c) == 1)
4 {
5 characters = characters + 1;
6

7 if (c == ’\n’)
8 {
9 lines = lines + 1;

10 }
11

12 if (isletter(c))
13 {
14 if (inword == 0)
15 {
16 words = words + 1;
17 inword = 1;
18 }
19 }
20 else
21 {
22 inword = 0;
23 }
24 }
25 }
26

27 int isletter(char c)
28 {
29 if (((c >= ’A’ ) && (c <= ’Z’))
30 || ((c >= ’a’ ) && (c <= ’z’)))
31 {
32 return 1;
33 }
34 else
35 {
36 return 0;
37 }
38 }

Figure 2: The word count program
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1 int mug(int i, int c, int x)
2 {
3 while (p(i))
4 {
5 if (q(c))
6 {
7 x = f();
8 c = g();
9 }

10 i = h(i);
11 }
12 return x;
13 }

Figure 3: The SCAM’01 Mug Example. Predicates p and q, and function h depend only on
their single formal parameter while functions f and g return (unknown) constant values.
The key point in this code is that in any terminating execution the final value of x is
independent of Line 8: if q(c) is initially false, it remains false and thus x retains its
initial value. On the other hand, if q(c) is true one or more times then x will have the
value assigned at Line 7. In the latter case, it does not matter how often q(c) is true and
thus the assignment at Line 8 does not impact the value of x at Line 12.

1 int mbe(int j, int k)
2 {
3 while (p(j))
4 {
5 if (q(k))
6 {
7 k = f1(k);
8 }
9 else

10 {
11 k = f2(k);
12 j = f3(j);
13 }
14 }
15 return j;
16 }

Figure 4: The Montréal Boat Example. Predicates p and q, and functions f1, f2, and f3 are not
shown. They depend only on their single formal parameter. The relevant observation is
that in any terminating execution, the computation of k is irrelevant to the computation
of j.
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5.2 Exhaustively Sliced

In addition to having been used in prior slicing research (Binkley et al., 2014, 2009; Harman
et al., 2009; Binkley et al., 2001), the next set of programs was chosen because it is possible to
compute all slices for assignments involving basic scalar types (e.g., ints). Doing so supports the
comparison over a large number of slices that have a wide range of complexity (from slices taken
with respect to variable initializations all the way through to slices taken with respect to final
outputs). The programs are either written in C or Java and most of the programs are compiled
from a single file (plus necessary header files for the C programs). The only exception is jDaisy,
which contains multiple Java files. Only the main Java file Daisy.java is sliced. It includes 631
lines of which 307 are non-blank, non-comment lines. Table 1 includes the size of each program
sliced in this category, not including header files.

5.3 Production Systems

The three remaining systems are in production use and comprise the NASA-led General Mission
Analysis Tool (GMAT) (NASA, 2017b) (an open source system for space mission analysis that
is in its tenth release year), and the two parts of the NASA Detect and AvoID Alerting Logic
for Unmanned Systems (DAIDALUS) system (NASA, 2017a) (implementations of detection and
alerting logic, and manoeuvre guidance for unmanned aircraft systems). GMAT includes (or
downloads) a number of libraries required to build it. From a slicing perspective it is interesting
for its large overall size, the size of some of the individual source files, and the fact that, when
its required supporting libraries are included for building, it is a system comprising some 13
programming languages along with various other encoding languages like XML and YAML.
The C/C++ core of the system without the libraries includes around 360k SLoC; the figures
shown in Table 1 are the totals produced by the utility cloc for the complete source package
including libraries. Everything cloc describes as code is included. DAIDALUS is interesting
because it has two implementations of the same functionality, one in C++ and the other Java
(treated as two separate systems in Table 1, DAIDALUS and jDAIDALUS, to separate the C++ and
Java implementations respectively). The totals shown for these systems are for the C++ and Java
files only.
For the larger systems, computing all possible slices is infeasible. Instead, the simple output-

focused version of generalised observational slicing (Gold et al., 2017) was used where the sliced
program must generate the same output as the original program for the same set of test inputs.
For both GMAT and DAIDALUS, the test cases chosen were drawn from example and tutorial
code supplied with the systems. The oracle observations considered were the full output of the
example code (DAIDALUS) or an excerpt thereof (GMAT: an excerpt was used because the full
output includes a timestamp and is thus different with every execution). Thus the slice produced
in each case constitutes a one-minimal slice for the target file for the example code used.
While only a single file was sliced for the other two sets (the known semantics set and the

exhaustively sliced set), a set of files was sliced for the production systems. For DAIDALUS,
all the source files were selected except one whose build included a time/date stamp and thus
produced a different binary for every compilation of the same source). For jDAIDALUS, the set
of files comprising the largest Java package was selected (except one where the slicer run failed
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and which is thus excluded from the analysis here). For GMAT, a small selection of C/C++ files
(the languages GMAT’s core is written in) was selected from the large number of source files.

6 Results

6.1 RQ1: How do ORBS and T-ORBS slices compare quantitatively?

To answer RQ1, the quantitative slice-size comparison looks at two sets of slices. The first
set aims to determine if, like ORBS, T-ORBS can produce minimal static slices of the tiny,
well-studied benchmark programs. The second set includes the exhaustively sliced programs.
Exhaustive slicing avoids potential experimenter bias when selecting which slices to consider.
We constructed 1026 slices in total including, for completeness, 63 slices of the known-semantics
benchmark programs. Table 2 shows the average slice sizes produced by the two slicers for the
17 exhaustively sliced programs. The average percent reduction ranges from 21% to 84%.

Comparing the two slicers, for most systems their performance is similar. Only two programs,
wc and jTCAS, showmore than a five percentage point difference in terms of the percent reduction.
For wc ORBS significantly outperforms T-ORBS, which is caused by T-ORBS maintaining
structure when ORBS does not and for jTCAS T-ORBS significantly outperforms ORBS, which
is caused by T-ORBS being able to delete large blocks of code that can only be deleted together
– something that ORBS is unable to. Both scenarios will be illustrated later in this section.
For two programs with known semantics, sumprod and mug, ORBS and T-ORBS produce

almost the same slices with two exceptions. First, there are layout differences (these are removed,
for example, by pretty printing). Second, there are some semantic differences because T-ORBS
can remove elements within a line, e.g. it removes the int type from C function declarations
(functions without a declared type as given the implicit default type int). Moreover, T-ORBS
removes parameters from function declarations when the parameter has been removed from the
function body, and deletes the corresponding arguments at the function call site. However, none
of the above cause the slices to have more than minor differences and thus the slice sizes as
measured in SLoC are the same.
A larger difference occurs with twombe slices where ORBS removes lines of text that are part

of an if statement, while T-ORBS retains the predicate and empty true branch. This statement is
found on Lines 5-13 in Figure 4. In the slice, k’s value does not affect the value of j and thus only
the assignment to j in the false branch is semantically necessary. This enables ORBS to delete
Lines 5-9. The following is the T-ORBS slice:

5 if ((k))
6 {
7

8 }
9 else

10 {
11

12 j = f3();
13 }
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Table 2: Average Slice Sizes (values in bold are better)
Average Slice Percent

Original ORBS T-ORBS Reduction
Program (SLoC) (SLoC) (SLoC) ORBS T-ORBS

Known Semantics
sumprod 16 9.0 9.0 44% 44%
wc 70 15.8 19.8 77% 72%
mbe 62 29.7 30.5 52% 51%
mug 62 19.4 19.2 69% 69%
jMBE 53 40.2 41.8 24% 21%

Exhaustively Sliced (Sorted by Original SLoC)
jPermutation 129 92.9 97.5 28% 24%
tcas 141 22.9 22.9 84% 84%
jHanoi 158 39.1 44.1 75% 72%
jTCAS 165 64.8 48.1 61% 71%
hanoi 177 36.1 40.8 80% 77%
schedule2 256 79.8 73.1 69% 71%
totinfo 274 83.4 72.4 70% 74%
jDaisy 307 128.1 122.9 58% 60%
schedule 313 115.2 124.8 63% 60%
printtokens2 361 122.7 122.3 66% 66%
printtokens 436 192.7 191.0 56% 56%
replace 541 186.5 202.2 66% 63%
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The T-ORBS slice correctly untangles the computations of k and j. However, it retains Lines
5–9 because in the tree of the if statement, the keyword if is part of a parent node that has three
subtrees representing the condition, then-part, and else-part of the if statement. Thus its removal
is only possible if the entire if statement can be deleted. Research Question 5 considers the
possibility of replacing a parent (e.g., the if node) with one of its children (e.g., the else branch
in the example). These two slices account for the minor average-slice-size differences seen for
mbe and jMBE in Table 2 and for the more significant differences seen for wc.
The significant difference between T-ORBS and ORBS for jTCAS is due to T-ORBS’ ability to

remove large blocks of code. jTCAS has a few methods which ORBS is not able to delete. These
methods contain a return statement that must be retained (otherwise a compile error occurs) and
consequently the computation of the returned value must also be retained. In contrast, T-ORBS
can delete the methods entirely as soon as they are no longer called.
The same happens in another Java program with significant differences in average slice sizes,

jTCAS. Here, T-ORBS is able to remove complete if statements or while loops, while ORBS
retains them. This happens for three of the jPermutation slices and for 34 of the jTCAS slices.
Interestingly, the same does not occur for jDaisy or jHanoi, where most of the if and while
statements are small and can be completely removed by ORBS.
Returning to the complete set of 1026 slices, Figure 5 graphs slice-size differences. Each bar

is the size of the ORBS slice minus the size of the T-ORBS slice. Most of the differences hover
around zero. For example, 65% (661 of 1026) differ by less than 10 lines, although only 9.6%
(98) have the exact same size. T-ORBS produces smaller slices than ORBS 40.0% (410) of the
time while ORBS produces smaller slices than T-ORBS 50.0% (518) of the time.
Inspecting a random sample of the slices in the second set, ORBS tends to produce smaller

slices when T-ORBS is forced to preserve code structure, as illustrated in the mbe slice above.
Other reasons why ORBS produces smaller slices are discussed in Section 6.2. On the other
hand, T-ORBS produces smaller slices when ORBS deletes an initialisation because of fortuitous
placement, which later inhibits the deletion of lines elsewhere in the code. For example, consider
two subsequent function calls to functions f and then g each having a single local variable, lf
and lg, respectively. In C, local variables are not automatically initialized and thus end up with
the value found in the memory they are assigned. Unless overwritten, the value of lg during the
call to g will be the final value of lf from the call to f (assuming that the activation records for
the two have a similar layouts). If ORBS deletes the initialization of lg because it fortuitously
has the correct value, it will then be unable to later delete f and the code that gives lf its final
value because it is needed to maintain the initial value of lg. While T-ORBS is susceptible to
the same issue, it deletes components in a different order and thus commonly deletes f before
attempting to delete lg.
In summary, for RQ1 the slices produced by the two algorithms are similar in size for the

majority of programs. ORBS was seen to have one representational advantage in that T-ORBS
is forced to retain elements to maintain the tree structure with which it represents code. On the
other hand, T-ORBS is able to remove large blocks early which sometimes need to be (partially)
retained by ORBS.
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Figure 5: Slice Size Comparison (positive values indicate that the T-ORBS slice is smaller)

6.2 RQ2: Qualitatively how do the slices produced by ORBS and T-ORBS
compare?

RQ2 provides a qualitative look at the slices. The analysis focuses on the tiny programs where
knowing the ground truth facilitates comparison. We find that there are four categories of
difference between the implementations: preservation, dissection, capture, and order. First
and foremost, except for the mbe slice described in Section 6.1, like ORBS, T-ORBS computes
minimal slices for the challenge problems mug and mbe. And even when not minimal, T-
ORBS untangles the complex control and data dependence interactions found in the code. This
observation and the representative examples considered in this section point to T-ORBS structure
preservation as being the one substantial difference between the two implementations. In the
remainder of this section we consider two additional preservation examples, four dissection
examples, two capture examples, and two order examples.

6.2.1 Preservation

The second preservation example finds T-ORBS structure preservation a detriment in the tcas
slice taken with respect to need_downward_RA. It turns out that the test suite includes only tests
that make the predicate of the if statement on Line 4 true. ORBS “discovers” this and thus its slice
omits the predicate. More importantly, it also omits those definitions upon which the predicate
depends. Thus the ORBS slice retains only Line 6 of the following code. In contrast, T-ORBS
retains all of the code because it cannot remove the predicate of an if statement without removing
both its then and else subtrees. This T-ORBS shortcoming is revisited in Section 6.5.

1 #define OLEV 600 /∗ in feets/minute ∗/
2 ...
3 enabled = High_Confidence && (Own_Tracked_Alt_Rate <= OLEV) && (Cur_Vertical_Sep

> MAXALTDIFF);
4 if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))
5 {
6 need_downward_RA = Non_Crossing_Biased_Descend && Own_Above_Threat();
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A final preservation example shows T-ORBS’ inability to delete the lines #ifdef DEBUG and
#endif. In the srcML representation, each of these is a separate (sub)tree and thus T-ORBS cannot
remove them, because it attempts to do so one at a time.

6.2.2 Dissection

In the preservation examples, the use of the tree-based structure by T-ORBS causes it to include
parent structures (e.g., if statements) when only a child structure (e.g., the else block) is required,
as well as preprocessor directives such as #ifdef. However, the use of a tree-base structure also
enables T-ORBS to “dissect” individual lines of text. Four dissection examples are considered.
The first dissection example involves the replacement of the lines

1 typedef enum Boolean
2 { FALSE = 0, TRUE = 1, FAIL = 0, SUCCEED = 1, OK = 1, NO = 0, YES = 1, NOMSG = 0,
3 MSG = 1, OFF = 0, ON = 1 } BOOLEAN;

with

1 typedef enum { OK = 1, NO = 0, YES } BOOLEAN;

The second dissection example involves the function header int h(int i) where the type int is
C’s implicit default type. ORBS is unable to delete the text line containing the function header
because the function h is part of the slice. However, T-ORBS reduces this line to h(i), because
the srcML for a function includes four subtrees: (return) type, (function) name, parameter_list,
and block (body):

1 <function>
2 <type><name>int</name></type>
3 <name>h</name>
4 <parameter_list> (<parameter><decl><type><name>int</name></type> <name>i</name

> </decl></parameter>)</parameter_list>
5 <block>{}</block>
6 </function>

A related dissection example occurs when T-ORBS removes parameters because a preceding
call has placed the same value at the correct stack location. For example, in the following code
(a fragment of the slice for the Montréal Boat Example in Fig. 4), the call q(k) places k on the
stack in the first parameter position, thus the call f1() effectively also passes k to f1() (because k is
still on the stack). This T-ORBS behaviour can be suppressed using an enhancement discussed
in Section 6.5.

1 if (q(k))
2 {
3 k = f1();
4 printf("\norbs:%d\n", k); //slice here w.r.t. k

20



The final dissection example comes from the SCAM mug example. This program is really a
schema (Danicic et al., 2004; Laurence, 2004) as it involves several unspecified constants. In the
concrete implementation, these constants are assigned values using command-line arguments
that are extracted using code such as x = (int) strtol(argv[3], NULL, 10). Because the actual
value chosen is uninteresting (apart from degenerate values such as zero), various constants were
chosen. The ORBS test suite, which includes no degenerate values and is thus sufficient to ensure
that ORBS produces the expected static slice, was initially used with T-ORBS. The particular
value chosen happened to be 10, the base of the conversion used in the call to strtol. T-ORBS
replaced the initialization with x = (int) (10), which preserved the behaviour. Updating its test
suite to include a value other than 10 caused T-ORBS to generate the expected slice.

6.2.3 Capture

The next two examples illustrate a form of “capture” in which ORBS is able to combine parts
of different syntactic units. The first capture example is from sumprod. The first seven lines of
which are as follows:

1 for(i=1; i<=10; i++)
2 {
3 sum = sum + i;
4 prod = prod ∗ i;
5 }
6 printf("at end i = %d\n", i);
7 printf("\norbs:%d\n", i); //slice here w.r.t. i

For the slice taken with respect to i, T-ORBS produces the expected slice by removing the body
of the loop and the first call to printf (Lines 3, 4, and 6). In contrast, with a window-size of four,
ORBS deletes Lines 2-5. In the resulting code, the first of the two printf calls gets “captured” by
the loop header leading to the following code.

1 for(i=1; i<=10; i++)
2 printf("at end i = %d\n", i); // indentation added for clarity
3 printf("\norbs:%d\n", i); //slice here w.r.t. i

Because this syntactically correct program computes the correct values for i, it is a slice of the
original. Here ORBS produces the smaller slice (of only three lines), while T-ORBS produces
the more natural slice (the one that preserves more of the original structure).
The second capture example is one of the more interesting ORBS slices where the slice

combines statements from two (adjacent) functions. The following code is from the word count
program. The slice was taken with respect to the value of c at the top of the function isletter. It
just so happens that the same variable name is used by the caller.

1 while (scanf("%c", &c) == 1)
2 {
3 if (isletter(c))
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4 {
5 ...
6

7 int isletter(char c)
8 {
9 printf("\norbs:%c\n",c); //slice here w.r.t. c

10 ...

In this example, ORBS discovers that it is possible to merge code from these two functions. The
resulting slice includes Line 1, the while loop, and Line 9, the call to printf.

1 while (scanf("%c", &c) == 1)
2 printf("\norbs:%c\n",c); //slice here w.r.t. c

T-ORBS is unable to produce such a slice because it cannot merge subtrees.

6.2.4 Order

The final set of examples are order examples, which occur because of a difference in the order
in which deletions are attempted. In the first example, the program tcas initializes the variable
alt_sep to zero at the top of the function alt_sep_test. The slices taken with respect to this
initialization must preserve the call which ORBS does by retaining the entire line fprintf(stdout,
"%d\n", alt_sep_test()). In contrast, T-ORBS reduces this line to (alt_sep_test()), dropping the
name fprintf associated with the call and two of the three arguments leaving an expression list
with a single entry, the call to alt_sep_test().

The second order example highlights an interesting results of the test suite including a test
with insufficient command-line arguments. For this test case no output should be generated. The
following is the relevant part of the code.

1 if(argc < 13)
2 {
3 fprintf(stdout, "Error: Command line arguments are ...\n");
4 exit(1);
5 }
6 ...
7 Climb_Inhibit = atoi(argv[12]);
8 ...
9 fprintf(stdout, "%d\n", alt_sep_test());

Because ORBS and T-ORBS involve different deletion orders, T-ORBS retains the if statement
and the call exit(1) (but not the call to fprintf on Line 3). ORBS on the other hand deletes Lines
1-5 including the call exit(1). It thus is forced to retain the call atoi(argv[12]), which causes the
program to abort when there are insufficient arguments – effectively preventing the program from
calling alt_sep_test(). In this case, again, T-ORBS produces the more natural slice.
In summary for RQ2, the differences in the slices produced by the two slicers fall into four

categories. ORBS produces smaller slices when T-ORBS, by its very nature, is forced to retain
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more of the structure of the underlying code. In contrast, T-ORBS naturally performs “sub-line”
deletions, which in one case helped to focus an enum on only those entries relevant to the slice.
Third, ORBS is more prone to capture lines. While this can produce smaller slices, they are
often harder to comprehend. On the other hand, in the final group T-ORBS produces several
more intuitive slices. It is clear from these examples that each slicer brings pros and cons to the
qualitative comparison.

6.3 RQ3: What impact does implementation have on the time taken to compute a
slice?

RQ3 takes a quantitative look at slicing time. In the broad context, the expectation is that
T-ORBS will be faster when large chunks of code can be deleted in a single deletion (e.g., an
entire function body), but must pay for this as it considers all subtrees. This is particularly costly
when a line is required by the slice and has lots of subtrees. For example, T-ORBS attempts the
independent deletion of a, =, b, +, and c from the statement a = b + c. T-ORBS also incurs the cost
of running srcML, which includes the single execution to create the initial srmML version and
then an execution ahead of each compile to convert the tree back into source code. Empirically
srcML makes the text of the source about 4.6 times larger (R2 = 0.99). Based on a random
sample of the process statistics for T-ORBS, tree manipulations consume from 2% to 50% of
the total execution time. It is higher in the last iteration where the cache hit rate is quite high.
Finally another expected advantage of ORBS is the speed-up achieved through parallelisation by
attempting multiple deletion windows in parallel making the most of multi-core CPUs.
Table 3 shows the CPU (user) and wall-clock times for both ORBS and T-ORBS for the twenty

programs of Table 1. The times displayed are average times over all the slice computations for
each program. The smaller time (both CPU and wall-clock) for each program is highlighted in
bold. With one exception, ORBS is universally faster. This exception is the CPU time for the
largest program, which provides greater opportunities to delete large subtrees (some larger than
many of the smaller programs in their entirety) in a single deletion. Furthermore, the impact of
ORBS parallelism can be seen by separately comparing the user times and the wall-clock times.
It is slightly surprising that ORBS achieves lower CPU times for all but one program. Given

that ORBS is attempting multiple deletion windows in parallel but only uses the result of the
winning one, as opposed to T-ORBS which is single threaded, it was expected that, barring edge
cases, T-ORBS would exhibit lower CPU times than ORBS. Looking ahead to Section 6.5 it
turns out that this is largely caused by T-ORBS attempting sub-line deletions. When limited to
deleting nodes that represent at least one line of code, T-ORBS runs about three times faster.
ORBS parallelisation can be seen at work in particular for the Java programs, where the CPU

utilization is well above 200%. Here, the inherent parallelism coming from the JVM is also
evident. This JVM parallelism is even evident in the T-ORBS Java slices when the wall-clock
time is less than the CPU time. Numerically, ORBS is between 1.3% and 1116% faster than
T-ORBS in terms of CPU time and between 77% and 1089% faster in terms of wall-clock time.
On average it is 71% faster in terms of CPU time and 319% faster in terms of wall-clock time,
again showing the impact of its parallelisation.
In summary, the investigation into RQ3 involving the impact of slicer implementation strategy

on slice time suggests trends related to scalability. Outside the largest system, it seems that the
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Table 3: Slice Times (smaller times shown in bold)
ORBS T-ORBS

User Wall User Wall
Time Clock Time Clock

Program (h:m:s) (h:m:s) (h:m:s) (h:m:s)

sumprod 0:03 0:02 0:04 0:10
wc 0:10 0:06 0:10 0:13
mug 0:10 0:14 0:15 0:30
mbe 0:16 0:22 0:18 0:40
jMBE 4:30 1:13 4:43 4:03
jHanoi 11:38 3:26 13:02 11:46
jTCAS 15:45 5:42 20:55 20:37
jPermutation 14:34 4:29 28:55 28:09
tcas 0:18 0:12 0:38 0:58
hanoi 0:21 0:14 0:55 2:30
schedule2 0:49 0:47 3:07 5:30
jDaisy 59:54 17:23 64:22 38:29
schedule 1:04 0:44 5:32 8:18
totinfo 0:51 0:33 2:52 6:36
printtokens2 1:19 2:51 5:41 12:01
replace 1:40 3:07 20:20 25:40
printtokens 3:16 8:25 16:25 29:26
DAIDALUS 33:18 16:43 39:56 45:57
jDAIDALUS 2:21:36 38:42 2:47:31 2:51:59
gmat 10:30:06 5:40:45 5:20:50 7:20:29

ability of T-ORBS to delete large subtrees does not counter-balance the cost of traversing the trees
down to leaves. Overall, ORBS makes much better utilization of the CPU and performs better
in terms of wall-clock time for all of the programs. Finally, the slice times hint that T-ORBS
would benefit from greater use of parallelism, because the main reason for ORBS’ performance
is leveraging multi-core CPUs.

6.4 RQ4: What impact does source language have on slicer behaviour?

Four of the systems studied have both C and Java implementations: mbe, hanoi, tcas, and
DAIDALUS. The first two, mbe and hanoi, share a common implementation style because both
versions of mbe and the C version of hanoi were written by the authors. The two versions of the
other two programs were written independently.
The investigation considers first a quantitative look at the data and then a qualitative one. The

relevant quantitative data includes both slicing time and the reduction attained by each slicer. For
each of the eight programs, Table 4 shows the T-ORBS data, which includes the mean slicing
time (measured in seconds) and the mean percent reduction (measured as percentage of SLoC).

24



Table 4: Per-slice average size reduction and run time (programs are ordered according to the
mean time or mean percent reduction attained)

Slicing Time (sec) Size Reduction
Program Time Tukey Program Reduction Tukey

jDAIDALUS 10191 a tcas 84% a
DAIDALUS 2396 b hanoi 77% ab
jTCAS 1255 b DAIDALUS 73% ab
jHanoi 782 b jTCAS 73% ab
jMBE 283 b jHanoi 71% abc
hanoi 55 b jDAIDALUS 69% bc
tcas 38 b mbe 51% c
mbe 18 b jMBE 21% d

Each comparison includes the results of Tukey’s HSD (Honestly Significant Difference) Tukey
(1949), which provides some statistical backing to the numeric trends across all eight programs.
This statistical test performs pairwise comparison of a set of treatments while correcting for
multiple comparisons and then summarizes the results by labelling each treatment with a letter.
Treatments that do not share a letter are statistically different from each other. In addition,
we consider head-to-head t-tests comparing the time and reduction percentage for each pair
independently.
Considering first the slicing time data, slicing Java typically takes considerably longer (with

the exception of the C program DAIDALUS). Because DAIDALUS and jDAIDALUS are so much
larger the comparison of all eight slice times is not very informative. For example, Tukey’s
HSD finds only that jDAIDALUS takes much longer to slice. Furthermore because of its size, it
is reasonable to consider whether it is simply the overall size that causes this. In an attempt to
account for the relative size of programs, Table 5 shows the effect of ‘normalising’ the slicing
time. This normalisation divides each time by the number of source lines of code in each system.
This gives a nominal measure of the slicing time per source line of code. This data more clearly
shows that the Java programs take longer to slice than the C/C++ group. It is noticeable that
jDAIDALUS and DAIDALUS have much lower ratios. This is perhaps related to T-ORBS ability to
remove large subtrees in a single deletion, a behaviour that is impossible in the other programs
because of their relatively small size.
Compared head-to-head, the slicing time for the C code is significantly less in each of the four

comparisons. The p-value for comparing tcas and jTCAS is 0.0008, while the other three are
< 0.0001. Furthermore, the C code shows less variation over the range of programs considered;
the range for C is less than a factor of three (2936/19 = 155) while for Java the range is almost
double that of the C code (10051/39 = 258).
Moving on to the reduction attained, unlike the time taken by the slicer, the percent reduction

attained by T-ORBS is independent of programming language. This can be seen in Table 4 where
each pair of programs shares a letter except for mbe and jMBE. In this last case Java’s higher
overhead (e.g., a four line C program can print argv[0] while printing args[0] requires seven lines
of Java) is significant given the small size of many of the slices. Comparing each pair head-to-
head brings greater statistical power and finds a difference between the reduction attained between
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Table 5: Nominal slicing time per line of code (ordered from smallest to largest)

Program Time/SLoC
DAIDALUS 0.11
tcas 0.28
mbe 0.31
hanoi 0.31
jDAIDALUS 0.49
jHanoi 4.73
jMBE 5.20
jTCAS 7.54

tcas and jTCAS (p-value = 0.0014) as well as mbe and jMBE (p-value = 0.048). Furthermore, it
is interesting to note that the artificial Montréal Boat Example sees the smallest reduction where
the Java version jMBE sees the least and is statistically less than all the other programs. This is
an expected result because mbe is designed to illustrate the subtlety of dependence analysis and
thus has tightly knit semantics. Finally, while not statistically significant, in each pairing, the C
code shows the larger numeric reduction. This is largely due to C’s “looser” semantics allowing
type-unsafe deletions.
We repeated the analysis using the ORBS data for the same eight programs. The results are

identical except that the size comparison yields slightly sharper statistics. Specifically the smaller
percent reduction for jDAIDALUS when compared to DAIDALUS is statistically significant when
using the ORBS data.
Finally, taking a qualitative look at some individual slices, the two languages show very little

difference. This comparison does provide some insight into the larger relative reduction that
hanoi shows when compared to that of jHanoi. The original Java code makes use of the standard
Java stack library class. In contrast, the C translation implements a simple stack as part of the
code. This stack code is not present in all slices and thus, on average, more code is removed from
the C version than from the Java version.
In conclusion when considering RQ4, the source language brings little difference to the actual

slices. In contrast, language plays a significant role in the slicing time. While not directly a
language issue, one surprising result was that both ORBS and T-ORBS have a relatively lower
time per source line for DAIDALUS and jDAIDALUS. This seems to suggest that it is not only
T-ORBS’ ability to remove large subtrees in a single deletion that accounts for this pattern.

6.5 RQ5: How does the modified T-ORBS algorithm perform?

This section considers the effect of the modifications to the core T-ORBS algorithm presented in
Sections 3.1.1 and 3.1.2.

6.5.1 Size threshold

The effect of incorporating a size threshold into the T-ORBS algorithm (Algorithm 4) is inves-
tigated to determine what, if any, effect it has on the slicer performance and slice results. The

26



initial investigation considers singleton thresholds such as -st 8, which ignores nodes that repre-
sent less than 8 lines of code, and then combinations such as -st 8,4,2,1. The initial experiment
considers five different thresholds: 0, 1, 2, 4, and 8. The goal of this experiment is to understand
the trade-off between slice size and slice time, with larger thresholds expected to be quicker in
exchange for producing larger slices.
The results of this experiment are shown in Figure 6 and Table 6. Because the runtimes for

the various programs vary so widely, the values for both time and slice-size are normalized to
the time and size when using size threshold zero (which is equivalent to the original T-ORBS
slicer). Considering first the slicing time in Table 6, a threshold of one reduces the average
slicing time by over 70% to 29.4% of its original value. As can be seen in the top chart shown in
Figure 6, this reduction is reasonably consistent across all of the programs. Going a step further,
a threshold of two further reduces slicing time by approximately two-thirds of the threshold one
value. Said another way, a threshold of one is 3.4 times faster that the original, while a threshold
of two is 10.5 times faster (i.e., 3.1 times faster than threshold one). While thresholds four and
eight bring further reduction, they are much less dramatic. Statistically, as seen in Table 6, the
first two drops are statistically significant, while the shared letters indicate that this is less true
for the larger thresholds.
Of course with each speed increase, the slicer is examining less of the tree and thus runs an

ever greater risk of retaining larger portions of the code in the slice. Looking at the second
chart in Figure 6, larger thresholds clearly lead to larger slices. What is interesting is that the
thresholds clearly partition themselves with zero and one performing almost identically and then
the other three all having notably worse, but similar, performance. This visual division is born
out by the statistics where Tukey’s HSD test, shown in Table 6, finds two separate groups. The
practical upshot is that T-ORBS with a threshold of one runs three times faster while leading to
an insignificant increase in slice size.
While the two charts at the top of Figure 6 show per-program summaries of the slices, the

lower two charts show per-slice summaries. Because one of the jDAIDALUS slices takes over 18
hours to compute, a log scale is used on the y-axis of the third and fourth charts. The x-axis
shows each slice sorted by the average slicing time over all five thresholds considered. Two
things are evident in the figure: first, the trend lines show the same basic pattern as seen in the
per-program data. Second, as the threshold grows, the variation in performance also grows.
The final chart shows the per-slice size data using the same order on the x-axis and again using

a log scale on the y-axis. Here the trend lines clearly show the separation of the thresholds into
two distinct bands. While the slice sizes show a much larger variation than the slice times, the
summary here is the same as with the per-program data, a threshold of one is clearly the sweet
spot. However, given the variation, it would be interesting to learn if there were good predictors
of when a higher or lower threshold is preferable.
Summarizing the experiments using single thresholds, the “sweet spot” is clearly a threshold

of one, which balances reduced slicing time against slightly larger slices. Expanding on this, the
next experiment considers the value of an initial pass using a high threshold followed by a pass
with a threshold of one. The question being considered is if it is possible to get the best of both
worlds by combining an initial quick high-threshold pass to remove “most” of the code with the
precision of a threshold one pass. Despite two, four, and eight all having similar performance,
for completeness, all three are paired with one in the next experiment, which also considers their
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Slice Size Comparison per Program
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Slice Time Comparison per Slice
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Figure 6: By program and by slice data comparing the thresholds 8, 4, 2, 1, and 0.
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Table 6: RQ5 data CPU time and slice size normalized to the -st 0 value.
Size Percent Tukey Percent Tukey

Threshold CPU HSD Slice Size HSD
0 100.0% a 100.0% a
1 29.4% b 108.5% a
2 9.5% c 190.2% b
4 6.1% cd 215.9% b
8 4.0% d 240.2% b

Table 7: RQ5 data CPU time and slice size for threshold pairs, again normalized to the -st 0
value. (Note that the order of the size thresholds differs in the two comparisons.)

Size Percent Tukey Size Percent Tukey
Threshold CPU HSD Threshold Slice Size HSD
8,4,2,1 31.4% a 1 108.5% a
2,1 29.7% a 8,1 108.1% a
4,1 29.2% a 4,1 107.9% a
1 29.0% a 2,1 107.7% a
8,1 28.6% a 8,4,2,1 107.7% a

combination -st 8,4,2,1
The resulting data is shown in Table 7, which, similar to Table 6, compares the slice time and

reduction. The values are again normalized to those for a threshold of zero. Unlike Table 6, it
does not work well to show the thresholds in the same order and thus the CPU time and the slice
size are shown using different threshold orders.
The analysis of this data considers first the time taken and then the size reduction attained.

Finally, it considers an illustrative example. Considering first the CPU time, statistically there is
no difference between the five thresholds considered. Still, it is comforting to see that numerically,
the expected pattern is seen with -st 8,4,2,1 taking the most CPU time, and -st 8,1 taking the least.
Numerically, a first pass with a threshold of four or eight brings a time advantage, while a first
pass with a threshold of two and all three thresholds brings a disadvantage. Figure 7 compares
the times for the various programs. As captured by the statistics, there is no clear fastest option.
The chart helps to illustrate why as it shows that the order of performance for a given program
varies across the set of programs.
Turning to the slice size data again no statistical difference is seen. This is not unexpected as

each slice ends with a threshold of 1. In fact, it is perhaps more surprising that the values are
not all the same. While the variation is small (less than 1% from largest to smallest), different
threshold values can impact the order that code is deleted and thus can impact the slices.
As an illustrative example consider the following code from printtokens where we have added

comments to the two calls to print_token:

1 while(!is_eof_token((token_ptr=get_token(stream_ptr))))
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Figure 7: By program slice size comparison using threshold pairs.

2 {
3 print_token(token_ptr); // call 1
4 }
5 print_token(token_ptr); // call 2
6 exit(0);

For a slice taken with respect to the sequence of tokens produced by get_token, the -st 8,1 slice
includes

1 while(!is_eof_token((token_ptr=get_token(stream_ptr))))
2 {
3 }

and omits the definition of print_token. In comparison the -st 2,1 slice includes

1 while(!is_eof_token((token_ptr=get_token(stream_ptr))))
2 print_token(token_ptr); // call 2

The indentation here is important. Similar to the “capture” examples from Section 6.2, the while
loop has captured the second call to print_token that was originally after the loop. The capture
takes place during the first pass of the -st 2,1 slice, which skips the second call print_token
because it is less than two lines of code. It subsequently removes the body of the loop leading
to the capture. Once this is done, it cannot delete the captured call and thus must also retain the
skeleton of the function print_token.

In contrast, the first pass of the slice where -st 8,1 skips the while loop (and its subtrees)
because they represent less than eight lines of code. To understand the behaviour of the -st 8,1
slice, it is helpful to refer to the following srcml excerpt.

1 <while>while
2 <condition> ...
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3 <block>{
4 <expr_stmt><expr><call><name>print_token ...
5 }</block>
6 </while>
7

8 <expr_stmt><expr><call><name>print_token ...

On the second pass of the -st 8,1 slice, again the slicer fails to delete the entire while loop
because the condition is part of the slice. It thus places the subtrees rooted at <condition> and
<block> on the worklist and moves on to the next worklist element, the call labelled // call 2,
which T-ORBS can delete. Eventually the subtree rooted at <condition> reaches the font of the
queue. It cannot be deleted. Next is the subtree rooted at <block>. Because there is no longer
a capture-able statement following the call, this subtree cannot be deleted. So its (only) subtree,
the <expr_stmt>, is placed on the worklist. Eventually, this subtree reaches the front of the
queue. It can be successfully deleted yielding the final slice.
In the end the -st 8,1 slice includes two lines not in the -st 2,1 slice (the braces), while the -st

2,1 slice includes a call, the function header, and an empty body (two lines for the two braces).
This leaves the -st 2,1 slice two lines longer.

In summary, using a threshold size of one leads to a dramatic improvement in slicing time
without a significant increase in slice size. However, even the 5% improvement that comes from
pairing thresholds of eight and one, does not yield a statistically significant improvement.

6.5.2 Subtree replacement

The effect of incorporating subtree replacement into the T-ORBS algorithm (Algorithm 5) is
investigated to determine its effect. The replacement experiment considers the impact of an
initial subtree replacement pass, denoted -1,1, and a final subtree replacement pass, denoted 1,-1.
Note that the latter of these is more correctly labelled 1*,-1 as it slices with a threshold of one until
no further reduction is possible and then it makes a subtree replacement pass. The difference
between these two uncovers the impact of the subtree replacements enabled by slicing.
Table 8 shows the CPU time and size impact of the subtree replacement. As done in the other

tables, the values are all relative to the original T-ORBS slicer. Considering, first the CPU time,
it is possible that an initial subtree replacement would remove considerable code and thus speed
the subsequent slicing. On the flip side, it is possible that the subtree replacement is so time
consuming that any speed-up in the subsequent slicing is dwarfed by the cost of the replacement.
As can be seen by comparing the first and the third lines of Table 8, the cost of the replacement
dominates the overall cost. It is slightly more efficient to apply the subtree replacement at the
end of the computation (compare lines two and three) because the sliced code is smaller and thus
the expense less.
Turning to the reduction achieved by the slicer, the subtree replacement brings a statistically

significant reduction in slice size when applied after slicing. Compared directly to slicing with a
threshold of one, an initial subtree replacement pass reduces slice size by 13.8%. Furthermore,
because the slicing enables additional replacements, when the subtree replacement is run after
slicing, it yields a 18.8% reduction; thus slicing has enabled an additional 5.0% reduction. Given
that running the replacement at the end of the slice also means not having to consider deleted

31



Table 8: The impact of subtree replacement
Size Percent Tukey Size Percent Tukey

Threshold CPU HSD Threshold Slice Size HSD
-1,1 33.8% a 1 108.1% a
1,-1 33.3% a -1,1 93.2% b
1 29.0% a 1,-1 87.8% b
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Figure 8: By program slice size comparison using threshold pairs.

parts of the code, the data supports the use of subtree replacement as a post-slicing pass. Finally,
while it is possible to consider subtree replacement in the “middle” given the CPU cost, on
average doing so never led to an improvement.
Figure 8 shows the slice sizes for the three subtree-replacement options studied. While the

overall order seen in Table 8 is evident in the chart, it is interesting that for certain programs
(e.g., jTCAS) performing an initial subtree replacement produces noticeably larger slices. Finally,
applied after slicing, subtree replacement always reduces slice size.
Finally, to gain some intuition for the interplay between the subtree replacement and slicing,

we consider a representative example from mbe. The relevant code is from the main function:

1 while (p(j))
2 {
3 if (q(k))
4 {
5 k = f1(k);
6 }
7 else
8 {
9 k = f2(k);

10 j = f3(j);
11 }
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12 }

The example considers the slice taken with respect to the value of j right after the assignment j
= f3(j) and hinges on the amount of code in the true branch. If there is sufficiently little code in
this branch that an initial subtree replacement is possible, it succeeds yielding

1 while (p(j))
2 {
3 k = f2(k);
4 j = f3(j);
5 }

Subsequent slicing removes the computation of k. This slice is interesting because applying
subtree replacement at the end produces the same main function, but retains the definition of the
function q. Applying subtree replacement at the end removes the call found in if (q(k)), but it
would require a subsequent slicing pass to remove q’s definition. Such a pass is possible, but
comparatively expensive relative to the reduction achieved. Thus in this case, performing subtree
elimination before slicing yields the greater reduction.
In contrast, if in the original program there was more code in the true branch, then the initial

subtree replacement would not be applicable. However, if this code was removed by the slicer,
then slicing would have enabled subtree replacement if the replacement was applied after slicing.
This second situation is the more common and thus, as seen in Table 8, 1,-1 yields a greater
reduction than -1,1.

While mostly cosmetic, it is interesting that the subtree replacement enables T-ORBS to
produce what might be considered more natural slices. For example, slicing on the value of j
after the loop, T-ORBS when using 1,-1 produces the final slice

1 while (p(j))
2 j = f3(j);

while ORBS produces the slightly odd looking

1 while (p(j))
2 {
3 {
4 j = f3(j);
5 }
6 }

Several other engineering improvements have been incorporated into T-ORBS. We describe
one of them, the parent trap as a representative example. It is not uncommon for several
nodes in the tree to have a single descendant. For example, consider the srcml for a function
call: <expr_stmt><expr><call> ... </call></expr>;</expr_stmt>. If omitting the <expr_stmt>
node fails, the slicer places all its children on the worklist (in this case, the <expr> node). Since
these two nodes lead to the same source code, the parent’s failure predicts that of the child and
consequently, there is no need to attempt the deletion of the child.
In summary, RQ5 investigates the effect of two modifications to the T-ORBS algorithm: the

addition of a size threshold, and subtree replacement. While neither of these improvements
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led to clearly faster slicing and smaller slices, a size threshold of one captures an excellent
engineering trade-off where the slicer runs over 70% faster while producing slices that are only
about 10% larger. Likewise, the subtree replacement actually led to (statistically insignificant)
time increase, in exchange for a statistically significant reduction in slice size. On the qualitative
front, the subtree replacement also leads to more natural looking slices.

6.6 Summary

From the examples presented to study RQ2 and the data considered to address RQ1 and RQ3,
is clear that each slicer has its own pros and cons. In general, the two produce similar slices
where T-ORBS slices can be slightly larger because they must maintain the XML tree structure.
However, the larger slices produced by T-ORBS are often the more intuitive. On the other hand,
T-ORBS can perform “sub-line” deletion, which, as shown in Section 6.2, can be both a blessing
and a curse.
The experiments performed for RQ4, comparing of Java and C programs, showed that the

source language brings little difference to the actual slices. In contrast, language plays a sig-
nificant role in terms of the slicing time. As slicing time for T-ORBS is usually larger, RQ5
investigated two improvements to the tree-based slicer, the addition of a size threshold and subtree
replacement, and showed that, among other things, the improvements cause the slicer to run 3.4
times faster while producing more natural slices that have the same or even slightly smaller size.

6.7 Threats to Validity

Threats to internal validity concern the factors that may have incorrectly biased conclusions
claimed by this study. The primary threat to internal validity is the correctness of implementations
including the conversion to tree structures and program instrumentation for both ORBS and T-
ORBS. For the conversion, we rely on srcML (Collard, 2005) that is actively being maintained
and has stood against the scrutiny of many users and researchers. We have manually inspected
program instrumentation to ensure their correctness.
Threats to external validity concern any factor that may limit the extent we can generalise our

findings. To increase the representativeness of studied programs, we use awide range of programs
ranging from toy examples for which complete analysis is possible, to production systems with
millions of lines of code. Another threat to external validity is the extent to which the same
programs written in different languages share the same structural properties. For example, jHanoi
and hanoi, written by the same author, use different stack implementations: standard Java Stack
for the former, while a lightweight independent implementation for the latter. We posit that it is
possible to capture the typical properties of different languages via examples, and have tried to
avoid any further bias by using examples written by programmers other than authors whenever
possible. In case of alternative programs in different languages written by authors, two versions
have been written independently. Finally, we tried to avoid experimental bias in the selection of
slicing criteria by performing exhaustive slicing using all possible criteria.
Threats to construct validity concern the question of whether the experimental results are based

on observation of factors that actually reflect our claims. Both lines of code and number of tree
nodes are straightforward counting metrics that precisely reflect the effectiveness of slicing, and
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have been used in the literature extensively. To prevent line counts being affected by layouts,
we automatically formatted the source code of all programs (except for the production systems)
in the same style. Consequently, differences in layout do not impact our results. While there are
various line counting schemes (such as counting only executable lines, or including/excluding
whitespace only lines or comments), we do not think the choice of line counting scheme can
affect our results, as software size related metrics are highly correlated with each other (Mamun
et al., 2017).

7 Related Work

Static slicing was first introduced by Weiser (1981). Subsequently, Ottenstein and Ottenstein
(1984) proposed that program slicing can be formulated as a graph reachability problem on
the Program Dependence Graph (PDG). Horwitz et al. (1988) introduced an algorithm which
extended program slicing to be interprocedural using the System Dependence Graph (SDG) as
the representation. Horwitz et al. also introduced a two-pass static slicing (Horwitz et al., 1990),
an algorithm that remains as the most predominantly used and whose variants are widely studied.
Many flavours of static slicing algorithm attempted to reduce the size of the slice. Incremental

Slicing (Orso et al., 2001) allows selection of the type of data dependencies that are to be included
in a slice. Stop-list slicing (Gallagher et al., 2006) allows the programmer to define variables
that are out of interest, information that is subsequently used to purge the dependence graph
before computing slices, resulting in smaller slices. Barrier Slicing (Krinke, 2003) allows the
programmer to specify which parts of the program can and cannot be traversed while constructing
the slice. A barrier is specified with a set of nodes or edges of the PDG that cannot be passed
during the graph traversal, also resulting in focused and smaller slices. Use of path-sensitivity
analysis (Jaffar et al., 2012) with static slicing is another approach to reduce slice sizes by
removing infeasible paths. However, such techniques suffer from their combinatorial nature and
can only work precisely in the absence of certain constructs that lead to combinatorial explosion,
such as loops.
Amorphous Slicing (Harman and Danicic, 1997) is an approach that aims to preserve the

semantics of the program during slicing, but not the syntax. Amorphous slices use program
transformation to simplify programs, preserving the semantics of the program with respect to
the slicing criterion. While ORBS only transforms programs using deletions, the end result may
be merging between remaining program elements, which could be regarded as a form of (very
slightly) amorphous slicing.
To our knowledge no other slicing approach follows the observational statement-deletion

approach used by ORBS. The ORBS algorithm (Binkley et al., 2014) is a dynamic form of
slicing but it constructs slices using dynamically observed dependencies, rather than dynamically
occurring yet statically determined dependencies. Note that all other dynamic slicing approaches
rely on the statically determined dependencies.
Dynamic slicing is a concept introduced by Korel and Laski (1988, 1990). They considered

several algorithms to compute dynamic slices based on their definition. In contrast, most later
work on dynamic slicing ‘defines’ dynamic slicing based on the algorithms used to compute
it (e.g., Agrawal and Horgan (1990) and DeMillo et al. (1996)). Although many research
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prototypes and approaches exist (Beszedes et al., 2001, 2006; Mund andMall, 2006; Szegedi and
Gyimóthy, 2005; Zhang and Gupta, 2004; Zhang et al., 2007; Barpanda and Mohapatra, 2011),
all these approaches are for a single specific programming language and requires additional
analysis for the interface between languages to support multi-language programs. For example,
WebSlice (Nguyen et al., 2015) attempts to perform program slicing across different languages
for web applications, by identifying data-flow dependencies among data entities for PHP code
based on symbolic execution and connecting them to data flows in embedded language: SQL,
HTML, and JavaScript. Despite being multi-language, it is specific to these languages. The
observational nature of ORBS, on the other hand, allows it to slice programs constructed from
an unspecified set of multiple program languages (Binkley et al., 2014). Of all previous dynamic
slicing formulations, the closest to our observation-based slicing is Critical Slicing (DeMillo
et al., 1996). However, our previous empirical study has shown that critical slices are not only
significantly larger than observation-based slices, but also often incorrect (Binkley et al., 2014).
The idea of deleting parts of a program or test input also prominently features in Delta

Debugging (Zeller, 1999; Cleve and Zeller, 2000; Zeller and Hildebrandt, 2002). Some variants
of delta debugging try to reduce the cost of the original Delta Debugging by exploiting language
syntax and semantics. For example, Hierarchical Delta Debugging (Misherghi and Su, 2006)
exploits tree structures for a tree-based Delta Debugging approach: its relationship to the original
Delta Debugging is similar to that of T-ORBS to the original ORBS. Delta (McPeak et al.,
2006), a well known implementation of Delta Debugging, uses a separate tool to flatten the tree
structures in source code, before applying delta debugging. Regehr et al. (2012) exploit the
syntax and semantics of C for four delta-debugging based algorithms to minimize C programs
that trigger compiler bugs. They also introduce the concept of generalised delta debugging
that allows any iterative optimization strategy, including other transformations than deletion.
Their C-Reduce tool uses 30 source-to-source transformations for C code. Coarse Hierarchical
Delta Debugging (Hodován et al., 2017) is a recently introduced variant of Hierarchical Delta
Debugging that filters out tree nodes that are not allowed to be deleted by the grammar of the
language, thereby speeding up Hierarchical Delta Debugging. Perses (Sun et al., 2018) exploits
the formal syntax to guide the reduction of programs. It uses deletion and subtree replacement as
operations and applies Delta Debugging to sequence of child nodes. Similarly to observational
slicing, it allows any program property to be defined as a criterion. T-ORBS is more general than
Perses as it is not restricted to formal languages and can reduce any tree representation expressed
in XML.
Jiang et al. (2014) introduced a forward dynamic slicing approach similar to ORBS: their

techniquemutates the value of the variable at the location of the slicing criterion, and subsequently
observes the computed values in the state trajectory. The dynamic slice consists of all statements
for which the computed values have changed compared to the trajectory of the original program.
However, their forward dynamic slicing suffers from low recall ofwhat they call dynamic semantic
dependencies, which can have serious effects on impact analysis.

Finally, union slicing (Beszédes et al., 2002) is also related to ORBS. Union slicing approx-
imates a static slice by unioning dynamic slices obtained with a set of test inputs. However,
union slicing inherits the critical difference between dynamic and observation-based slicing:
dependencies considered by union slicing are dynamically occurring (but statically determined)
dependencies, rather than dynamically observed dependencies as in ORBS. Moreover, unioning
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of slices does not necessarily lead to correct slices (De Lucia et al., 2003), whereby ORBS
computes dynamic slices for all criteria without unioning.

8 Conclusion

Observational slicing is a new slicing technique that constructs slices using the dependencies
observed during execution. Previous work includes the comparison of observation-based slicing
to traditional static (Binkley et al., 2015) and to dynamic (Binkley et al., 2014) slicing techniques,
aswell as application of observation-based slicing to domainswith non-traditional semantics such
as visual languages (Yoo et al., 2014) and modelling languages (Gold et al., 2017). In particular,
the development of a slicer for modelling languages led to the creation of an observational slicer
for XML trees. Closing the loop, this paper applies the XML tree slicer to source code that
has been transformed into XML using srcML. The original ORBS uses physical lines as the unit
of speculative deletion, while T-ORBS uses subtree deletion: both use observation of program
execution to validate slicing criteria. Our aim is to compare the two slicers to better understand
the pros and cons of each representation and approach.
Our empirical comparison using twenty target programs shows that, while ORBS and T-ORBS

produce largely comparable slices, there are subtle differences due to both structural constraints
and opportunities imposed and revealed by each representation (i.e., lines versus trees). Based
on our analysis, we investigate some of the opportunities in the form of size threshold and subtree
replacement for T-ORBS. Overall, the results of our investigation hint at the rich diversity of
possible language-independent slicing strategies. Furthermore, they open the door for the future
study into the impact that variations might have as complements to existing slicing techniques.
Future work will consider the hybridisation between ORBS and T-ORBS. For example, our

results suggest that T-ORBS tends to be more effective at deleting large blocks of code. It is
natural to imagine a hybrid slicer that initially applies T-ORBS to only subtrees that represent
“large” blocks, followed by one or more ORBS passes to handle code elements that T-ORBS
cannot, such as #ifdef (because directives are each in their own subtree, T-ORBS cannot delete
matching pairs of #ifdef / #endif). A final T-ORBS pass that might only consider subtrees that
represent only “small amounts” of code would serve to simplifying existing lines as illustrated
in Section 6.2.
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