
Identifying Similar Code with Program Dependence Graphs

Jens Krinke
Lehrstuhl Softwaresysteme

Universiẗat Passau
Passau, Germany

Abstract

We present an approach to identify similar code in pro-
grams based on finding similar subgraphs in attributed di-
rected graphs. This approach is used on program depen-
dence graphs and therefore considers not only the syntac-
tic structure of programs but also the data flow within (as
an abstraction of the semantics). As a result, there is no
tradeoff between precision and recall—our approach is very
good in both. An evaluation of our prototype implementa-
tion shows that our approach is feasible and gives very good
results despite the non polynomial complexity of the prob-
lem.

1. Introduction

Duplicated code is common in all kind of software sys-
tems. Although cut-copy-paste (-and-adapt) techniques are
considered bad practice, every programmer is using them.
Code duplication is easy and cheap during software devel-
opment, but it makes software maintenance more compli-
cated:

• Errors may have been duplicated together with the du-
plicated code.

• Modifications of the original code often must also be
applied to the duplicated code.

Especially for software renovation projects, it is desirable
to detect duplicated code; a number of approaches have
been developed [10, 4, 3, 11, 13]. These approaches are
graph-based [10], text-based (and language independent)
[4], syntax-based [3] or are based on metrics (syntax- and/or
text-based) [11, 13]. Some approaches can only detect (tex-
tual or structural) identical duplicates, which are not typical
in software systems as most duplicates are adapted to the
environment where they are used.

In Figure 1 two similar pieces of code inmain.c from
the agrep program are shown, which have been detected

as duplicates by our prototype tool. Let us assume that the
left part is the original and the right part is the duplicate. We
can identify some typical modifications to the duplicate:

1. Parts of the code will be executed under different cir-
cumstances (lines 742 and 743 have been moved into
an if statement in lines 473-476).

2. Variables and/or expressions are changed (lines
743/478, 747/483, . . .).

3. Parts of the code are inserted or deleted (“lasti =
i-1 ” in line 758).

4. Code is moved to different locations (“j++ ” in line
481/748).

Modifications disturb the structure of the code and dupli-
cated code is more complicated to identify. This causes
a tradeoff between precision (amount of false positives)
and recall (amount of undiscovered duplicates) in text- or
structure-based detection methods. To also detect not iden-
tical but similar duplicates (increased recall), the methods
have to ignore certain properties. However, this may lead to
false positives (reduced precision). This tradeoff has been
studied in [11]. Some of the approaches suffer thesplited
duplicatessymptom: A simple modification in a duplicate
causes a detection of two independent duplicates, one du-
plicate for the code before the modifications and one after
it. If the unmodified parts are to small, the duplicate is not
even identified.

We have developed an approach which does not suffer
under the tradeoff between recall and precision and where
modified duplicates can still be detected. Such an approach
cannot just be based on text or syntax, but has to consider
semantics too. Our approach is based onfine-grained pro-
gram dependence graphs (PDGs)which represent the struc-
ture of a program and the data flow within it. In these
graphs, we try to identify similar subgraph structures which
are stemming from duplicated code. Identified similar sub-
graphs can be directly mapped back onto the program code
and presented to the user. However, our approach is work
in progress and some issues are still to be resolved.

c©2001 IEEE. Published in the Proceedings Eigth Working Conference on Reverse Engineering, 2001 in Stuttgart, Germany. Personal use of this material
is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

740 if(c != Newline)
741 {
742 r1 = Init1 & r3;
743 r2 = (Next[r3] & CMask) | r1;
744 }
745 else {
746 r1 = Init1 & r3;
747 r2 = Next[r3] & CMask | r1;
748 j++;
749 if(TAIL) r2 = Next[r2] | r2 ;
750 if((r2 & 1) ˆ INVERSE) {
751 if(FILENAMEONLY) {
752 num_of_matched++;
753 printf("%s \n", CurrentFileName);
754 return;
755 }
756 r_output(buffer, i-1, end, j);
757 }
758 lasti = i - 1;
759 r3 = Init0;
760 r2 = (Next[r3] & CMask) | Init0;
761 }
762 c = buffer[i++];
763 CMask = RMask[c];
...

472 if(c != Newline)
473 { if(CMask != 0) {
474 r1 = Init1 & r3;
475 r2 = ((Next[r3>>hh] | Next1[r3&LL]) & CMask) | r1;
476 }
477 else {
478 r2 = r3 & Init1;
479 }
480 }
481 else { j++;
482 r1 = Init1 & r3;
483 r2 = ((Next[r3>>hh] | Next1[r3&LL]) & CMask) | r1;
484 if(TAIL) r2 = (Next[r2>>hh] | Next1[r2&LL]) | r2;
485 if((r2 & 1) ˆ INVERSE) {
486 if(FILENAMEONLY) {
487 num_of_matched++;
488 printf("%s \n", CurrentFileName);
489 return;
490 }
491 r_output(buffer, i-1, end, j);
492 }
493 r3 = Init0;
494 r2 = (Next[r3>>hh] | Next1[r3&LL]) & CMask | Init0;
495
496 }
497 c = buffer[i++];
498 CMask = Mask[c];
...

Figure 1. Two similar pieces of code from agrep

The rest of this paper is structured as follows: In
the next Section we presentfine-grainedprogram depen-
dence graphs (in contrast to traditional program dependence
graphs). Section three formalize how similar subgraphs can
be identified in attributed directed graphs. In Section four
we present our specific implementation which is evaluated
in Section five. Related work is presented in Section six and
finally, in Section seven we discuss some future work.

2. Fine-grained Program Dependence Graphs

The traditionalprogram dependence graph (PDG)[8] is
a directed attributed graph whose vertices represent the as-
signment statements and control predicates that occur in a
program. Some of the vertices have an attribute that marks
them as entry vertices, which represent the entry of proce-
dures. The edges represent thedependencesbetween the
components of the program. They have two attributes: the
first is separating the edges intocontrol and data depen-
dence edgesand the second istrue or false for control
dependence edges. A control dependence edge from vertex
v1 to v2 represents that if the predicate that is represented
by v1 is evaluated to the second attribute of the edge, the
component that is represented byv2 will be executed. A
data dependence edge from vertexv1 to v2 represents that
the component represented byv1 assigns a value to a vari-
able which may be used at the component represented by

v2. Program dependence graphs can be used for all kind of
software engineering and reengineering problems; the main
application is program slicing [7, 8].

Our PDG is a specialization of the traditional and is sim-
ilar to both the AST and the traditional PDG. On the level
of statements and expressions, the AST vertices are almost
mapped one to one onto PDG vertices. The definitions of
variables and procedures have special vertices. The ver-
tices may be attributed with a class, an operator and a value.
The class specifies the kind of vertex: statement, expres-
sion, procedure call etc. The operator further specifies the
kind, e.g. binary expression, constant etc. The value car-
ries the exact operator, like “+” or “–”, constant values or
identifier names.

Between vertices that represents components of expres-
sions we have also specialized edges. Between the com-
ponents of an expression we have a special control depen-
dence which we callimmediate (control) dependence: the
targets of immediate control dependence edges are evalu-
ated before the source is evaluated. The data flow between
the expression components is represented by another spe-
cialized edge: thevalue dependence edge, which is like
a data dependence edge between expression components.
Another specialized edge represents the assignments of val-
ues to variables. Thereference dependence edgesare sim-
ilar to the value dependence edges, except that they show
that a computed value is stored into a variable.

Definition 1 (The definitions of data and control depen-
dence are still the same.)

1. An expression vertexn is value dependenton an ex-
pression vertexp, if the value computed atp is needed
at vertexn.

2. An assignment vertexn is reference dependenton an
expression vertexp, if the value computed atp is stored
into a variable atn.

Figure 2 shows an example PDG of the following code.

void f (int a, int b, int c) {
x = a * (y = b + c);
z = x + y;

}

In this example, vertex 5 is an entry vertex, the vertices
6, 7 and 8 are formal-in vertices and the vertices 13, 14 and
15 are formal-out vertices. They all have the same kind and
operator. Vertex 12 is a compound vertex, which groups the
subgraphs of the two assignments together. The remaining
vertices are all expression vertices with different operators.
For example, vertex 26 is an expression vertex with opera-
tor kind “binary” and value “+”. Note that assignments are
expressions, e.g. vertex 25 is an expression vertex with an
operator “assign” and no value.

The benefit of fine-grained program dependence graphs
is the structural representations of expressions and the rich-
ness of the attributes that eases the identification of similar
or identical vertices and edges. This is presented in the next
section.

3. Identification of similar subgraphs

Program dependence graphs areattributed directed
graphs, where the vertex attributes are the class, the opera-
tor and the value of the vertices and the edge attributes are
the class and the label of the edges.

An attributed directed graphis a is a 4-tupleG =
(V,E, µ, ν) whereV is the set of vertices,E ⊆ V × V
is the set of edges,µ : V → AV maps vertices to the ver-
tex attributes andν : E → AE maps edges to the edge
attributes. Let∆ : E → Av × AE × Av be the mapping
∆(v1, v2) = (µ(v1), ν(v1, v2), µ(v2)). A path is a finite
sequence of edges and verticesv0, e1, v1, e2, v2, . . . , en, vn

whereei = (vi−1, vi) for all 1 ≤ i < n. A k-limited path
is a pathv0, e1, v1, e2, . . . , en, vn with n ≤ k.

Two attributed directed graphsG1 = (V1, E1, µ1, ν1)
and G2 = (V2, E2, µ2, ν2) are isomorphic, if a bijective
mappingφ : V1 → V2 exists with:

(vi, vj) ∈ E1 ⇐⇒ (φ(vi), φ(vj)) ∈ E2,

∆1(vi, vj) = ∆2(φ(vi), φ(vj))

1 2

3

4

5

6

7

10

11

12

14

15

16
17

13

16

8

A

A

B

B

B

C

D

E A

E

A

A

C

B

B

B
C

D

E

A

F

Figure 3. Two simple graphs

This means that two graphs are isomorphic if every edge
is bijectively matched to an edge in the other graph and the
attributes of the edges and the incident vertices are the same.
The questionwhether two given graphs are isomorphicis
NP-complete in general.

In Figure 3 two simple attributed graphs are shown,
where the edge labels represents the complete attribute-
tuple of the vertex and edge attributes. There is no sin-
gle pair of maximal isomorphic subgraphs, at least two ex-
ists with six vertices each. We are also more interested
in similar subgraphs which do not have to be isomorphic.
Defining something to be similar is always tricky, as sim-
ilarity is nothing precise but something vague. Neverthe-
less we try to define similarity between graphs by relax-
ing the mapping between edges: We consider two graphsG
andG′ as similar, if for every pathv0, e1, v1, e2, . . . , en, vn

in one graph there exists a pathv′0, e
′
1, v

′
1, e

′
2, . . . , e

′
n, v′n in

the other graph and the attributes of the vertices and the
edges are identical if the path are mapped against each other
(∀1≤i≤nei, e

′
i : ∆(ei) = ∆′(e′i)). The second restriction is

that all paths have to start at a single vertexv in G and atv′

in G′ (v0 = v, v′0 = v′ for all such paths).

A naive approach to identify the maximal similar sub-
graphs would now calculate all (cycle free) paths starting at

f/0
entry
5

a/1
form-in
6

b/1
form-in
7

c/1
form-in
8

compound
12

x/0
form-out
13

y/0
form-out
14

z/0
form-out
15

assign
16

*
binary
17

a/1
reference
18

assign
19

+
binary
20

b/1
reference
21

c/1

reference dependence

value dependence

immediate dependence

data dependence

reference
22

y/0
reference
23

x/0
reference
24

assign
25

+
binary
26

x/0
reference
27

y/0
reference
28

z/0
reference
29

Figure 2. Example for a fine grained PDG

v andv′ and would do a pairwise comparison afterwards.
Of course, this is infeasible. Even if the paths are length
limited, the maximal length would be unusable small.

Our approach is constructing the maximal similar sub-
graphs by induction from the starting verticesv andv′ and
is matching length limited similar paths. What makes this
approach feasible, is that it considers all possible matchings
at once. In many cases, an edge under consideration can be
matched to more than one edge. Instead of checking every
possible pair, we check the complete set of matching edges.
This is best seen at the example:

1. The algorithm starts withv = 1 and v′ = 10.
These vertices are considered the endpoints of match-
ing paths of the length zero.

2. Now, the matching paths are extended: The inci-
dent edges are partitioned into equivalence classes
based on the attributes. There is only one pair
of equivalence classes that share the same at-
tributes in both graphs:{(1, 2), (1, 3), (1, 4)}A and
{(10, 11), (10, 12), (10, 16)}A.

3. The reached vertices are now marked as being part of
the maximal similar subgraphs and the algorithm is
continuing with the sets of reached vertices{2, 3, 4}
and{11, 12, 16}.

4. Again the incident edges are partitioned
into the first pair {(2, 5), (3, 5), (3, 6)}B and
{(11, 14), (12, 15), (12, 16)}B and the second
pair {(4, 7)}C and {(11, 13), (12, 17)}C . For both
pairs the algorithm continues recursively.

5. The reached vertices{5, 6} and {14, 15, 16} are
marked as parts of the maximal similar subgraphs. No
edges are leaving these vertices.

6. The other set pair of reached vertices{7} and{13, 17}
are marked. No edges are leaving these vertices.

7. As no more set pairs exists, the algorithm terminates.

In the end, the algorithm has marked{1, 2, 3, 4, 5, 6, 7} and
{10, 11, 12, 13, 14, 15, 16, 17} which induce the maximal
similar subgraphs. By accident, this is identical to the union
of all maximal isomorphic subgraphs. In general, it will
only be similar to maximal isomorphic subgraphs.

A simplified version of the algorithm is is shown in Fig-
ure 4. It calculates the maximal similar subgraphsG1 and
G2 which are induced byk-limited paths starting at the ver-
ticesv1 in G1 andv2 in G2. We call these graphsmaximal
similar k-limited path induced subgraphsGk

v1
andGk

v2
.

Before maximal similark-limited path induced sub-
graphsGk

v andGk
v′ can be found, the possible pairs(v, v′)

propagate (V1, V2, l):
If l ≤ k:

Let V1 ⊂ V andV2 ⊂ V be the the endpoints
of similar paths.

Let E1 andE2 be the edges that are leaving
the vertices ofV1 andV2.

PartitionE1 andE2 into equivalence classes
E1i andE2i based on∆.

For allE1i
with their correspondingE2i

:
Add edges fromE1i

andE2i
to Gv1 andGv2

Let V1i
andV2i

be the vertices that are
reached by the edges inE1i andE2i

Call propagate (V1i , V2i , l + 1)

generate (v1, v2, k):
Initialize Gv1 andGv2 to be empty.
Call propagate ({v1}, {v2}, 1)
ReturnGv1 andGv2 as result.

Figure 4. Algorithm to generate Gv1 and Gv2

have to be detected. A naive approach would be to check
all pairsV ×V which leads to a complexity ofO(|V |2) (in-
dependent of the complexity of the generation of the sub-
graphs them self). Even with smarter approaches, this com-
plexity cannot be reduced. Therefore, only a subset ofV
should be considered as “starting” vertices, as most other
vertices are reached during the construction of the maximal
subgraphs. This subset should be based on specific features
of the vertices which is highly application specific.

4. Implementation

To find similar code based on identifying maximal simi-
lar subgraphs in fine-grained PDGs we first had to find the
subset of the vertices which are used in the pairwise con-
struction of the subgraphs. One possibility would have been
to use entry vertices, which would find similar procedures.
We decided to use predicate vertices instead, because we
also want to find similar pieces of code independent of pro-
cedures. For every pair of predicate vertices(v1, v2) the
maximal similarGk

v1
andGk

v2
are generated. The genera-

tion is basically a recursive implementation of the induction
from Figure 4.

4.1. Weighted subgraphs

If we take the subgraphs as direct result, they just rep-
resentstructuralsimilarity which can also be achieved via
less expensive techniques like [3]. The subgraphs can be
large even if they do not even have a similar semantic. The
reason is that the data dependence edges may not match and

the subgraphs are only or mostly induced by control depen-
dence edges. For example, two nodesA andB may be in-
cluded in the subgraph because they are reached by control
dependence edges which match in the similar subgraph. It
is possible that a data dependence edge fromA to B is not
included in the subgraph, because there is no matching edge
in the similar subgraph. Only if the data dependence edges
are considered special it is guaranteed that the subgraphs
have a similar semantic.

Therefore the constructed subgraphs have to be
weighted. A simple criterion is just the number of data de-
pendence edges in the subgraphs. As our evaluation in the
next section shows, this criterion is good enough. How-
ever, other, more sophisticated criterions are possible like
the percentage of data dependence edges or the amount and
the length of paths induced by data, value and reference de-
pendence edges.

Another possibility is to reduce the constructed sub-
graphs, which are edge induced, to a connected node in-
duced part. In that case no pair of nodes exists in the sub-
graph, which are connected by an edge not included in the
subgraph. This is planned for the future.

4.2. The used infrastructure

The presented technique has been implemented in a pro-
totype on top of our infrastructure to analyze ANSI-C pro-
grams [12]. This infrastructure is aimed at the validation of
measurement system software and therefore complex data
flow analysis techniques like flow sensitive points-to anal-
ysis are used to construct the PDGs. For the application of
identifying maximal similar subgraphs such complex data
flow techniques are not needed, we just used it for our
prototype implementation because it was readily available.
PDGs for the application of identifying similar subgraphs
just need basic data flow information.

5. Evaluation

Like any otherk-limited technique, the presented work
had to be “tuned” to find an appropriate value fork. We
therefore checked a set of test programs stemming from dif-
ferent sources for duplicated code. The results can be seen
for some examples in Figure 5. The size of the programs are
given in terms of lines of code and the number of vertices
and edges in the PDG. For different limitsk between 10 and
50 the running times are given (measured in seconds of user
time spent). A direct relation between the size of a program
and the running time does not exists as the running time
is mostly dependent on the size and the amount of similar
subgraphs within a program. However, due to the pairwise
comparison we expect a quadratic complexity overall. In
the same table, the last three columns show the amount of

Project LOC Edges Vertices Time f. limit k (sec) Duplicates
k=10 k=20 k=30 k=40 k=50 k=100 ≥10 ≥20 ≥50

agrep 3968 69032 22588 26.4 207.9 1465 7150 38848 - 155 91 12
bison 8303 79030 28071 8.9 47.4 249.2 714.5 920.3 921.6 34 22 0
cdecl 3879 40578 12939 0.6 0.6 0.6 0.6 0.6 0.6 0 0 0
compiler 2402 99219 16497 226.8 237.6 237.6 237.6 237.6 237.6 94 67 51
ctags 2933 45249 12446 0.6 0.8 0.8 0.8 0.8 0.8 0 0 0
diff 17485 169508 43518 2.5 9.1 32.0 61.4 63.6 63.6 40 10 0
fft 3242 35701 16446 6.0 53.4 297.2 892.9 1292 1296 16 14 8
flex 7640 124730 37073 3.3 3.8 4.2 4.3 4.3 4.3 16 0 0
football 2261 63833 18718 30.3 49.9 54.7 54.7 54.7 54.7 50 2 0
larn 10410 817432 158077 271.4 4242 5878 5905 5867 5876 91 53 6
patch 7998 196106 29766 6.27 7.5 8.6 9.2 9.3 9.2 2 0 0
rolo 5717 50816 17438 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0
simulator 4476 34939 14438 1.4 2.4 2.6 2.6 2.6 2.6 0 0 0
spim 19739 1338294 122819 525.9 703.5 798.5 809.1 809.1 807.2 30 16 0
twmc 24950 1605532 181281 918.4 24263 - - - - 1383 992 639

Figure 5. Sizes and running times for some test cases

discovered duplicates with a minimum weight of 10, 20 and
50. The limit used wask = 20 and only minimal differ-
ences exists for largerk (except fortwmc). Due to lack of
time it was impossible to manually verify all reported du-
plicates. However, all reported duplicates we checked were
correct (100% precision).

Due to the complexity of the data flow analysis used in
our infrastructure, we are only able to construct PDGs up to
a limited size. Therefore all of our test cases are of limited
size too. This does not mean that the presented technique
has the same limit—we plan a reimplementation on top of
a different infrastructure to evaluate for big programs.

5.1. Optimal limit

To insure highest possible recall, a very highk-limit is
desirable. However, this is not possible due to the expo-
nential complexity of the graph comparison. Our claim is
that a smallk is sufficient and that a limit above this small
value will not increase recall. We found this claim to be
true for almost any test case. A typical case isbison , for
which the results are shown in Figure 6. All test cases were
repeated for limits0 ≤ k ≤ 30 (y-axis). Also shown is
how many duplicates (z-axis) are reported that are above
a specific minimum weight (y-axis). As we can see, for
very smallk (< 5 − 10) almost no duplicates are reported.
For bigger (but still small)k (< 15 − 20) the amount of
reported duplicates is increasing fast. For biggerk (> 20)
the amount of reported duplicates is not changing any more.
We have found this to be the same for almost any other test
case—ak-limit around 20 seems to be sufficient for highest
recall.

bison

 100
 50

0 5 10 15 20 25 30 35 40 45
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140

duplicates found
with min. weight

Figure 6. Results for bison

5.2. Minimum weight

The other “tunable” parameter in our technique is the
minimum weight of a similar subgraph before it is reported.
This value is not critical like thek-limit, as it does not in-
fluence the comparison itself. Normally, all possible du-
plicates are identified independent of their weights and the
minimum weight just changes the amount ofreporteddupli-
cates. Thebison test case is an ideal example: for small
minimum weights, many duplicates are reported. For big-
ger minimum weights this changes quickly, which shows
that the majority of duplicates are small pieces of codes. For
minimum weights between 10 and 40, around 40 duplicates
are reported. For minimum weights above 45, no duplicates
are reported, which shows that the maximum weight of all
duplicates is less than 45.

1

10

100

1000

0 5 10 15 20 25 30

tim
e

se
c

limit k

bison

Figure 7. Running times of bison

1

10

100

1000

0 5 10 15 20 25 30

tim
e

se
c

limit k

compiler

Figure 8. Running times of compiler

We have found that there is no “ideal” minimum weight,
as every test case has different amounts of reported dupli-
cates with varying minimum weights. This is not unex-
pected, as duplication is different in every program. Unlike
k the minimum weigth can be tunedafter the identification
finished during presentation to the user.

5.3. Running time

Figure 7 shows the times for thebison example, which
are increasing exponential for largek. We claimed that a
k-limit around 20 is ideal for recall: we need 47 seconds
to analyzebison under this limit. For some test cases we
have found an interesting behavior—the running time is not
increasing exponential but reverse logarithmic for increased
k. This is shown in Figure 8 for the test casecompiler .
As you also can see in Figure 9, fork-limits bigger than ten
the amount of reported duplicates stays the same: there are
more than 50 duplicates with a weight bigger than 50. This

compiler

 150
 100
 50

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25
30

limit k

0
20
40
60
80

100
120
140
160
180

duplicates found
with min. weight

Figure 9. Results for compiler

twmc

 2000
 1500
 1000
 500

0 5 10 15 20 25 30 35 40 45 50
minimum weight 0

5
10

15
20

25

limit k

0
500

1000
1500
2000
2500

duplicates found
with min. weight

Figure 10. Results for twmc

means that there are no similar paths longer than 10 edges
in that software and the limit is not reached for larger lim-
its. The result is that the time needed to calculate the similar
graphs is independent ofk for k bigger than 10. Therefore,
the overall needed time is not changing above that. The
same behavior can be seen for most of the test cases in Fig-
ure 5: only two of the test cases have differences in running
time for the limitsk = 50 andk = 100. For all others,
even the amount of reported duplicates does not change for
k > 20 (not shown).

One of our test case (see Figure 10) was different than all
others: First of all, we could not test fork-limits bigger than
25, as the running time was already at 46 hours. Also, the
amount of reported duplicates was incredibly high: more
than 500 with a weight bigger than 50 and more than 1000
with a weight bigger than 20. These extreme high numbers
are stemming from massive code duplication in that partic-
ular software. We have found a high amount of files, which
just have been copied and slightly changed for slightly dif-
ferent purpose.

6. Related Work

An approach very similar to ours is [10], which is based
on (traditional) program dependence graphs. Starting from
every pair of matching nodes, they construct isomorphic
subgraphs for ideal clones which can be replaced by func-
tion calls automatically. Unlike our approach, their sub-
graphs are only subtrees which are not maximal, as they
visit every node only once during subgraph construction.
Like us, they cannot analyze big programs due to limita-
tions of the underlying PDG generating infrastructure.

Another structure comparing work is [3], where a pro-
gram under observation is transformed to an AST first. For
every subtree in the AST a hash value is computed and
identical subtrees are identified via identical hash values.
To also detect similar (not identical) subtrees, the subtrees
have to be pairwise compared. The authors suggest many
improvements as future work which are similar to our ap-
proach.

An approach which obeys but not compares syntactical
structure is [13], where metrics are calculated from names,
layout, expression and (simple) control flow of functions.
Two functions are considered as clones if their metrics are
similar. This work can only identify similar functions but
not similar pieces of code. A language independent ap-
proach is [4] which is looking for specific patterns in a com-
parison from every line to every other. Another text-based
approaches is [2]. These approaches can be used to ana-
lyze very large programs, as they are not relying on pairwise
comparison.

An application in the same setting is the detection of
plagiarism: Given two programs, one has to detect if one
program is in part or completely duplicated in the other.
Most plagiarism detecting systems are comparing the lex-
ical structure of the programs [14, 16]. Other system are
again based on metrics; however, studies show that metrics-
based systems are only partly successful because of the
tradeoff between recall and precision, both for detection of
plagiarism [15] and detection of similar code [11].

The opposite problem to identifying similar or identi-
cal parts of programs is identifying the differences between
programs. [7, 6] is an approach to identify program differ-
ences based on program dependence graphs. However, that
approach relies on the existence of a mappingφ that maps
every vertex of one program to a vertex of the other if the
representing program components are the same in both pro-
grams. The authors suggest a special program editor that
keeps such a mapping. Instead, our approach could be used
to find such a mapping.

The matching of similar (attributed) graphs is used in
other areas like computer vision [9] and graph visualization
[1] too.

7. Summary and future work

We have presented a technique for identifying similar
code based on finding maximal similar subgraphs in fine-
grained program dependence graphs. As this problem is
not solvable in polynomial time, ak-limiting technique is
used. A prototype implementation shows that this approach
is feasible even with the non polynomial complexity of the
problem and results in high precision and recall.

This is work in progress and some obstacles remain to be
solved: First off all, high amounts of duplicated code cause
exploding running times. Secondly, large duplicated code
sections cause many duplicates to be reported, as duplicates
are basically reported for every predicate within. These du-
plicates are overlapping and have to be merged before re-
ported to the user.

Our future plans include:

• A reimplementation on top of a simpler infrastructure
to enable an evaluation for large programs. Due to the
underlying infrastructure for PDG generation, our pro-
totype is only able to analyze programs up to limited
size.

• An adaption of our prototype for detection of plagia-
rism. We are using JPlag [14] in education with great
success. However, a manual check is still needed as
students are aware of our tool usage and try to hinder
the detection through simple modifications. A plagia-
rism detection tool based on our approach should not
be so easily confused.

• A full evaluation of precision and recall. That we did
not find false positives does not mean that there aren’t
any—we were unable to check all reported duplicates.
Also, we have not really checked recall as we are not
able to check all test programs for code duplication
manually. A cross check against other tools is desir-
able.

• A general implementation for other types of graphs.
Graphs are one of the main representation for data in
reengineering and a detection of similar subgraphs is
often helpful. This implementation could be based
on GXL [5], a proposed standard exchange format for
graphs.

• An automatic substitution of identified duplicated code
through new functions or macros. As the underlying
infrastructure contains enough semantic information
in the PDGs, theisomorphicsubgraphs can be identi-
fied and replaced by new parameterized function calls
which do not change the semantic of the program.

References

[1] S. Bachl.Erkennung isomorpher Subgraphen und deren An-
wendung beim Zeichnen von Graphen. Dissertation, Univer-
sität Passau, 2000. (In German).

[2] B. S. Baker. On finding duplication and near-duplication in
large software systems. InProceedings: Second Working
Conference on Reverse Engineering. IEEE Computer Soci-
ety Press, 1995.

[3] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. InProceedings;
International Conference on Software Maintenance, 1998.

[4] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. InProceed-
ings; IEEE International Conference on Software Mainte-
nance, 1999.

[5] R. C. Holt, A. Winter, and A. Scḧurr. GXL: Towards a stan-
dard exchange format. InProceedings 7th Working Confer-
ence on Reverse Engineering WCRE, 2000.

[6] S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering
versions of programs.ACM Transactions on Programming
Languages and Systems, 11(3), 1989.

[7] S. B. Horwitz and T. W. Reps. The use of program depen-
dence graphs in software engineering. InProceedings of the
Fourteenth International Conference on Software Engineer-
ing, 1992.

[8] S. B. Horwitz, T. W. Reps, and D. Binkley. Interprocedu-
ral slicing using dependence graphs.ACM Transactions on
Programming Languages and Systems, 12(1), 1990.

[9] H. Kälviäinen and E. Oja. Comparisons of attributed graph
matching algorithms for computer vision. Technical report,
Lappeenranta University Of Technology, Finland, 1990.

[10] R. Komondoor and S. Horwitz. Using slicing to identify du-
plication in source code. InEigth International Static Anal-
ysis Symposium (SAS), 2001.

[11] K. Kontogiannis. Evaluation Experiments on the Detection
of Programming Patterns Using Software Metrics. InPro-
ceedings Fourth Working Conference on Reverse Engineer-
ing, 1997.

[12] J. Krinke and G. Snelting. Validation of measurement soft-
ware as an application of slicing and constraint solving.In-
formation and Software Technology, 40(11-12), 1998.

[13] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. InProceedings of the International Confer-
ence on Software Maintenance, 1996.

[14] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: Find-
ing plagiarisms among a set of programs. Technical Report
2000-1, Fakulẗat für Informatik, Universiẗat Karlsruhe, Ger-
many, 2000.

[15] K. L. Verco and M. J. Wise. Plagiarism̀a la mode: a com-
parison of automated systems for detecting suspected pla-
giarism.The Computer Journal, 39(9), 1996.

[16] M. J. Wise. Detection of similarities in student programs:
YAP’ing may be preferable to plague’ing. InProceedings
of the 23rd Technical Symposium on Computer Science Ed-
ucation, volume 24(1) ofSIGSCE Bulletin, 1992.

