
Trace Analysis for Aspect Application

Maximilian Sẗorzer, Jens Krinke, Silvia Breu
Universiẗat Passau
Passau, Germany

{stoerzer, krinke, breu}@fmi.uni-passau.de

May 30, 2003

Abstract

AspectJ is a language implementing aspect oriented
programming on top of Java. Usually aspect application
influences not only observable behavior but changes
program flow internally. To test if an aspect works as
intended, we suggest trace analysis to capture these in-
ternal changes. We demonstrate how trace analysis can
be used for impact analysis. It can also be used to vali-
date that refactorings which replaced scattered code by
an aspect did not change system behavior.

1 Motivation

Aspect oriented programming (AOP) is a new paradigm
in programming, extending traditional programming
techniques, first introduced in [5]. Its basic idea is to
encapsulate so calledcross cutting concernswhich in-
fluence many modules of a given software system in a
new module calledaspect.

Aspects can be used to add new functionality to an
existing system which cannot be added without invasive
changes to the whole system using conventional tech-
niques. To see if the aspect works as intended testing is
usually the only practicable approach, as program ver-
ification is often too costly and techniques applicable
for AOP are not mature yet. However, tests are of lim-
ited value as they can only show the presence of bugs
but never show their absence. Additionally, tests are of
limited usefulness, if the changed behavior1 of a system
is not observable directly in the output.

Consider a simple example: An aspect should be ap-
plied to add an observer for some data to a system and
the data provided by the system should be displayed by
an additional GUI window. Instead of modifying the
system to explicitly add the observer pattern an aspect
can be applied instead, performing this task.

1Changed behavior throughout this paper refers to a changed in-
put/output behavior of a given system.

What remains is to check whether the observer im-
plemented by the aspect really captures all necessary
state changes of observed data. Unfortunately, this is
not necessarily visible in any case. Static program anal-
ysis could be used for this purpose but data flow anal-
ysis of aspect oriented programs has not yet evolved
enough. Thus, we propose a low-cost low-tech dynamic
analysis approach: Using program traces, changed be-
havior becomes observable as here analysis of the inter-
nal program flow is possible. So this can be an adequate
mean to analyze the effects of advice application to a
given system.

For the methods presented here, one should always
keep in mind that the quality of the results is strongly
dependent on the coverage achieved by the test suite.
Basically, traces are test results—only on a more fine
grained level. Despite chances for false negatives2 are
low, we cannot guarantee their absence. The more
traces are examined, the more reliable results of trace
analysis are. Generally, the chances to miss a change
in behavior strongly depend on the program coverage
provided by the test suite.

Our approach relies on comparison of two traces for
a single test: One trace is generated with the (base) sys-
tem without applied aspects and the other is generated
by the woven program. By identifying patterns of dif-
ferences, we can observe changed behavior in terms of
divergenceandsuperimposition.

The remaining of this paper is organized as follows.
Section 2 describes how aspect application impact can
be determined by analyzing trace differences, includ-
ing an example. The next section explains how this ap-
proach can be used to validate systems where cross cut-
ting concerns have been refactored into aspects. Related
work is discussed in section 4, followed by conclusions.

2For this paper, by using the termfalse negatives, we refer to
changes in behavior which are not reported by the analysis.False
positiveswould be reported behavioral changes, which are actually
not present in the program (which is impossible for our analysis).

2 Determining Aspect Impact

For the following we assume that for a given system
S, a set of regression testsT is available so that traces
T(S, I) andT(S′, I) can be generated for identical input
I ∈ T . SystemS′ is generated fromS by applying an
aspectA. The weaving operation is denoted asS′ =
S⊕A.

2.1 Determining Impact from Traces

When applying an aspect to a given systemS, the pro-
grammer should know exactly how and where the as-
pect influences the behavior of a system. Unfortunately,
AspectJ language elements usually have global effects,
so that aspects can influence large parts of a given sys-
tem. As a result, the possibility to modularly reason
about code is lost [2]. On the other hand, the influence
of an aspect is not visible in the code of the modified
system (obliviousness of base [3]).

Although with the AspectJ Development ToolsAJDT
a helpful development environment for AspectJ (e.g. in
Eclipse) is available, more sophisticated tool support to
determine aspect application impact on program behav-
ior is not available. So, programmers have to rely on
detailed tests instead. To tackle the problem that as-
pects do not always change the observable behavior of
a given system, traces of test cases can be used. The
generated traces reveal the internal program flow and
thus are more fine grained than traditional output based
tests.

To determine the impact of an aspectA which is ap-
plied to a systemS, traces of the original system and the
system with applied aspectS′ = S⊕A can be compared.
However, this comparison requires some constraints:

Identical Input. Certainly, the input for both systems
has to be identical when generating the traces. This
is usually the case when a regression test suiteT
is available.

Deterministic Execution. Traces are incomparable if
system behavior includes random behavior—this
case must be excluded. This is an important re-
striction as usually any concurrency in a system
can lead to nondeterministic behavior.

In the following, we assume that these constraints
hold for the generated tracesT(S, I). To analyze the
impact of aspectA, we now generate traces for both ver-
sions of the program:TS = T(S, I) for the base system
SandTA = T(S⊕A, I) for the woven system.

Aspects are often used to add some additional behav-
ior to a system while keeping the overall program flow
(in a sense ofsuperimposition). Thus, an aspect usually

results in a relatively small set of additional calls in the
traceTA (depending on how much the aspect changes
system behavior). These additional calls reflect the im-
pact of the aspect on program flow. The programmer
now can examine thesechangesto check whether all
changes are expected or some of the changes are un-
expected side effects of aspect application. However,
would he have to examineTA completely, he unnecce-
sarily had to examine large parts of the trace which did
not change at all.

Diff -like comparison of the generated traces can
drastically reduce the size of the parts to be analyzed by
revealing where program flow has changed. The result
of a trace comparison ofTS andTA is only a small—
compared with the size of the traces—set of trace dif-
ferencesD.

In general, evaluatingD derives very stronghints for
the impact of aspect application. Two kinds of differ-
ences can be identified:

Primary effects: These effects capturedirect aspect
influence due to advice. Primary effects are always
embedded in advice execution, so they can easily
be identified in the traces and mapped to the source
location where they originate from. An example of
a primary effect is given in figure 1.

For primary effects, two sub-cases apply:

• Superimposition:Often, aspects are used to add
some additional behavior to a given system. This
is visible in the traces as a primary effect, which
extendsthe original trace. So all calls of the origi-
nal system still occur in the same order.

• Changes or Amputation:Using around -advice
it is possible to prevent the execution of the orig-
inally called method and to replace the call with
something else. In this case, parts of the original
trace arereplacedwith different calls.

Secondary Effects: Besides primary effects, the trace
differenceD includes changes which cannot be
identified directly as an effect of advice or another
source code location. These effects are usually the
result of a changed system state due to aspect ap-
plication resulting in additional or other method
calls. As secondary effects in general are a strong
hint for changed system behavior, we consider sec-
ondary effects asdivergenceof traces.

Secondary effects can occur due to three reasons:

• Introduction of fields:AspectJ allows introduction
of fields includingstatic initializations. Execution
of such initializations results in new calls to con-
structors which are not present in the original trace.

... ...
connection completed connection completed
<-- void telecom.Connection.complete(): ... <-- void telecom.Connection.complete(): telecom.Local

> --> execution(ADVICE: void telecom.Timing.ajc$after$t
> --> Timer telecom.Timing.getTimer(Connection): tele
> <-- Timer telecom.Timing.getTimer(Connection): tele
> --> void telecom.Timer.start(): telecom.Timer
> <-- void telecom.Timer.start(): telecom.Timer
> --> telecom.TimerLog(): telecom.TimerLog
> <-- telecom.TimerLog(): telecom.TimerLog
> --> execution(ADVICE: void telecom.TimerLog.ajc$aft
> Timer started: 1049378141427
> <-- execution(ADVICE: void telecom.TimerLog.ajc$aft
> <-- execution(ADVICE: void telecom.Timing.ajc$after$t

<-- void telecom.Call.pickup(): ... <-- void telecom.Call.pickup(): telecom.Call
... ...

Figure 1: Primary effect—execution of advice.

This is the reason for the additional constructor
call in figure 2.

• Introduction of methods and ancestors:At first
sight introduction should not change the seman-
tics of a given system. However, this is wrong as
method introduction can override an implementa-
tion of a superclass and thus change the method
actually executed by a virtual call.

This effect—calledbinding interferencein [9]—
is observable in the trace difference, although the
static analysis to reveal binding interference pro-
posed in [9] is preferable as no false negatives can
occur. Anyhow, this analysis is restricted to bind-
ing interference only.

• Change of behavior:Due to a prior advice appli-
cation the system state—i.e. field values of some
objects—might have changed. An altered system
state can result in a completely changed program
flow which obviously results in trace differences.

By examining only the trace differencesD, a pro-
grammer can easily find the parts of his system influ-
enced by the aspect. He can thus validate that his as-
pect was not unexpectedly applied to some parts of the
system.

As a drawback, the proposed trace analysis does not
show when an aspect has accidentallynot been applied
to some parts of the system. However, this is a general
problem of any impact analysis. As an advantage of our
approach, the programmer only has to check the trace
differences for the intended changes—he does not need
to examine the whole trace. If an expected change is
not present, the aspect has to be improved.

To summarize, analysis of trace differences can show
which impact the application of an aspect has on a given
system by explicitly showing changes in program flow.
So, the search space to validate aspect correctness is
greatly reduced. For testing aspects that do not directly
influence the observable behavior of a system, trace

analysis is the only possible way to see how an aspect
has been integrated into a given system.

2.2 Tracing the AspectJ Telecom Example

To create traces for Java programs, we used AspectJ and
applied a specialized tracing aspect. Strictly speaking,
we would have to verify that the tracing aspect does not
change behavior of a given system—thus distorting the
analysis results. But we think this assumption is rea-
sonable as the tracing aspect never calls any method or
changes any values of the base system. On the other
hand, this aspect supplies a very simple way to generate
traces for any given system. We could have used any
other tracing technique without any effect on the results
instead.

To evaluate the usefulness for trace analysis, we cre-
ated traces for thetelecom example available with the
AspectJ distribution for two system configurations: the
basetelecom system and the woven system with ap-
plied Timing aspect. The input is always generated
by the BasicSimulation test driver. Excerpts of
the traces for the two versions is shown in figures 1 and
2.

The traces only differ byblocks of additional calls.
Besides that, the trace is not modified, in particular it
does not diverge. All calls traced in the base system
preserved their order in the system with applied aspect.
This suggests that application of theTiming aspect
does not modify the overall system behavior but only
superimposes some additional behavior.

A closer examination of the additional calls supports
this assumption as from the base system onlygettersare
called; any modification only affects data of the aspect
or variables introduced by it.

Figure 2 shows how the new fieldtimer introduced
by theTiming -aspect is initialized by calling the con-
structor of theTimer -class. This represents a sec-
ondary effect, although our assumption that the seman-
tics of the base system is only extended is still valid,

... ...
--> void telecom.AbstractSimulation.run(): ... --> void telecom.AbstractSimulation.run(): ...

> --> telecom.Timing(): telecom.Timing
> <-- telecom.Timing(): telecom.Timing

--> telecom.Customer(String, int): ... --> telecom.Customer(String, int): ...
... ...

Figure 2: Secondary effect—static initializations, constructor calls.

because the constructor only affects fields of the new
timer -object and does not call any other methods.

Indeed, theTiming -aspect is an observer, so this
aspect only superimposes additional behavior for the
basetelecom application: It captures the duration of
phone calls. Timing is always started before a connec-
tion is established and ends after the connection termi-
nated (and indeed is implemented as after advice for
call completion and hangup).

We also conducted some experiments with the
Billing -aspect, which is basically an observer that
calculates some derived data (the costs for each call),
leading to similar results. Due to space limitations we
do not present this example in more detail here.

As an example for diverging traces we added a new
aspectCostLimit to the telecom -example which
checks the total costs of all calls for a customer and de-
nies connections if a certain limit is exceeded. In a first
test run, the system did not act as expected, it crashes
soon after a call has been denied:

jim calls crista...
Limit exceeded - no call possible!
crista accepts...
Exception in thread "main" java.lang.NullPointerE...

at telecom.Customer.pickup(Customer.java:...
at telecom.AbstractSimulation.run(Abstrac...
at telecom.BasicSimulation.main(BasicSimu...

Although this example is very small, evaluation of the
printed call stack does not reveal enough information
to track down the problem. Obviously thepickup -
method gets anull -value for the expectedCall -
object and crashes, but where does this value originate
from?

Now consider the trace for this example, which is
shown in part in figure 3. Here the problem becomes
apparent: The trace shows that no connection object is
created any more due to the around advice—the whole
part of the trace creating this object is missing. When
callingpickup , the trace immediately returns, reflect-
ing moving up the call stack. Finally the stack trace is
printed.

The advice application is a primary effect which re-
sults in the exception as secondary effect. The excep-
tion can be traced back to thearound -advice. As a
matter of fact, ourCostLimit -aspect returnsnull
when denying a call. This changed return-value causes
the NullPointerException as the program pro-
ceeds. The base program is not prepared fornull -

values and crashes. So our aspect for limiting costs was
a little naive here, but it demonstrates how the traces
allows us to relate the crash to the applied aspect.

2.3 Identifying Failure Inducing Aspects

Without additional explanation, we modified our ap-
proach in the last section not to compare the base with
the woven system, but compared two woven systems
with different sets of applied aspects. In principle, we
have relaxed the traces we compare. More formally,
the comparison is done on traces for two systemS1 and
S2, whereS2 is produced by application of a set of as-
pects:S2 = S1⊕A1⊕ . . .⊕An. S1 is allowed to be com-
posed from a base systemS with a set of applied as-
pects:S1 = S⊕An+1⊕ . . .⊕Am. The traces to compare
are thenT1 = T(S1, I) andT2 = T(S2, I).

In the last example, the failure could have also been
induced while comparing the base system with the wo-
ven system where all three aspectsTiming , Billing
and CostLimit have been applied. In that case it
would not be obvious which of the three aspect has in-
duced the failure. For large systems with a large set
of aspects, identifying the failure inducing aspect is a
cumbersome task. We useDelta Debugging[10] in that
case: When aspects are seen as the deltas, this will auto-
matically compute a minimal set of aspects responsible
for the failure.

2.4 A Note on Multi-threaded Programs

Trace analysis can also be applied to multi-threaded
programs, as long as the execution inside threads is still
deterministic. As trace output generated by different
threads is arbitrary interleaved, it must be able to iden-
tify trace messages from each thread which can be eas-
ily achieved in Java. Analysis can then be performed by
comparing traces for each single thread.

3 Validating Unchanged Behavior

Besides the development of new systems, AOP can also
be used to refactor pre-AOP software. For example,
we can improve the program structure by encapsulat-
ing scattered code or crosscutting concerns into aspects.
However, this may change the program behavior. If

jim calls crista... jim calls crista...
--> Call telecom.Customer.call(Customer): ... | --> execution(ADVICE: Call telecom. ...

--> telecom.Call(Customer, Customer): ... | Limit exceeded - no call possible!
--> boolean telecom.Customer.localTo ... | <-- execution(ADVICE: Call telecom. ...
<-- boolean telecom.Customer.localTo ... <
... <

[new long distance connection from Jim(650) ... <
... <

<-- Call telecom.Customer.call ... <
crista accepts... crista accepts...

--> void telecom.Customer.pickup(Call): ... --> void telecom.Customer.pickup(Call): ...
--> void telecom.Call.pickup(): ... <
... <
<-- void telecom.Customer.addCall ... <

<-- void telecom.Customer.pickup(Call): ... <-- void telecom.Customer.pickup(Call): ...
crista hangs up... <

... <
<-- void telecom.AbstractSimulation.run(): ... <-- void telecom.AbstractSimulation.run(): ...

> Exception in thread "main" java.lang.NullPoint...
> at telecom.Customer.pickup(Customer.ja...
> at telecom.AbstractSimulation.run(...)
> at telecom.BasicSimulation.main(...)

Figure 3: Primary effect—execution of advice.

these changes result in wrong program executions, this
must be avoided.

The presented approach can be used to validate ap-
plication of refactorings: Changes in program behavior
become apparent if traces diverge. The approach now
used is very similar to 2.2: We start with the old sys-
temSand refactor it into a new base systemS? together
with the refactored aspectA. We are now comparing the
old systemSwith the new systemS′ = S? ⊕A. Again,
this is done by comparing the tracesTS = T(S, I) and
TA = T(S′, I) for identical inputsI ∈ T .

If refactoring has not changed program semantics,
both traces should be identical. If the traces have dif-
ferences, we know that a modified control flow is most
likely and the encapsulation of crosscutting concerns
into an aspect changed system behavior.

3.1 Acceptable Changes in Traces

In contrast to pure refactorings that should not change
program behavior, changes are acceptable if they add
additional functionality to the system, e.g. method calls
for debugging purposes. Other sound alterations are
syntactic: Depending on how the refactoring is imple-
mented, the class from where a method is called or
even method names can change. For example, imag-
ine the following design decision: Shall just the method
calls concerning a specific aspect be encapsulated or
the class(es) implementing those as well? However, all
these behavioral changes are acceptable as they do not
alter the base system’s behavior and its control flow;
they just may add further functionality.

Such syntactic differences can easily be removed by
applying a filterf to the traces before comparison:TS=
f (T(S, I)) andTA = f (T(S?⊕A, I)).

3.2 Example: AnChoVis

As a second example, AnChoVis, a small visualization
tool for chopping and slicing, has been examined. Ana-
lyzing the produced program traces for standard aspects
revealed a well known pattern: logging. By looking into
the code we discovered that this functionality is scat-
tered throughout the entire software.

Therefore, we have tried to encapsulate logging into
an aspect in two different ways. First, as a simple as-
pect which uses the existingLog class of the system. It
defines a pointcut which calls theentering method
before each method execution, and after execution the
exiting method of the logger. The original imple-
mentation concerning logging in the base system has
been removed. The traces for program runs with the
scattered and the aspect version have been compared
and the (filtered) results are completely identical traces
in case of equal program runs. As can be seen, the refac-
toring process didn’t cause any changed or unwanted
program behavior.

In the second aspect version, the aspect does not
only include the logging calls but also the implement-
ing functionality which was formerly in theLog class
of the original system. Besides slightly different con-
structor calls of the logging functionality, the filtered
traces are again identical.

4 Related Work

The so calleddevelopment aspects, like tracing or pro-
filing are the well known examples for the benefit of
aspects [4]. However, we simply use these aspects for
program instrumentation to get the traces which are the
basis for our analysis.

Our approach is very similar torelative debugging
[1], where a specialized debugger is used to automati-
cally compare an old program version with a new one.
This is achieved by inserting breakpoints and assertions
to compare the values of fields at the same execution
point in both programs. Instead of tracing method calls,
we could use a different tracing aspect which traces val-
ues of fields. Thus, our approach can also be used for
relative debugging.

In [8], profiling is used for software maintenance. In
that work,path spectragenerated by path profiling are
compared for one program with two different inputs.
Detected differences are evidence for diverging behav-
ior. In contrast, our approach use thesame inputbut
two versionsof a program. Comparing two versions
with path spectra was mentioned but rejected in [8] be-
cause of difficulties establishing a correspondence be-
tween paths in two versions. Our approach has no prob-
lem identifying correspondence in tracing and explicitly
identifies and uses not corresponding parts.

Traces are often used for software maintenance tasks,
an exemplary tool is JInsight [6]. Traces can be too
large and compaction techniques like in [7] can be used.

5 Conclusions

We have presented a low-cost low-tech dynamic anal-
ysis approach to analyze aspect application. This ap-
proach is based on comparison of traces for the base and
woven system with identical inputs. Our approach is
able to distinguish primary effects, which are due to as-
pect application directly, and secondary effects, which
are most likely due to behavioral changes.

As traces capture an actual program run, not only
obvious aspect influences from advice application are
captured, but also more subtle behavioral changes due
to introduction or (in general) secondary effects are re-
vealed.

Our approach can also be used to validate that refac-
toring a pre-AOP system into an AOP-system does not
change system behavior, thus supporting future reengi-
neering tasks. Two examples demonstrated the effec-
tiveness of our approach.

In this paper we only presented the application of our
approach to small examples. However, the typical prob-
lems of large traces apply. On the other hand, trace anal-
ysis can be used to examine only parts of the system and
thus is useful nonetheless.

As long as static program analysis cannot be used
for this purpose because data flow analysis of aspect
oriented programs has not yet evolved enough, our ap-
proach can be used instead. Moreover, our approach
can be used best together with static analysis: It will

not show false positives, only false negatives, and static
analysis will show false positives and not false negatives
instead.

References

[1] D. Abramson, I. Foster, J. Michalakes, and
R. Socǐc. Relative debugging: A new methodol-
ogy for debugging scientific applications.Com-
munications of the ACM, 39(11):69–77, 1996.

[2] C. Clifton and G. Leavens. Observers and assis-
tants: A proposal for modular aspect-oriented rea-
soning. InProc. FOAL Workshop, 2002.

[3] R. Filman and D. Friedman. Aspect-oriented pro-
gramming is quantification and obliviousness. In
Proc. Workshop on Advanced Separation of Con-
cerns, OOPSLA 2000, 2000.

[4] G. Kiczales, E. Hilsdale, J. Jugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started
with AspectJ. Communications of the ACM,
44(10):59–65, October 2001.

[5] G. Kiczales, J. Lamping, A. Menhdhekar,
C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. InProc. Euro-
pean Conference on Object-Oriented Program-
ming, pages 220–242. 1997.

[6] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. Vlissides, and J. Yang. Visualizing the execu-
tion of java programs. In S. Diehl, editor,Software
Visualization, pages 151–162. 2002.

[7] S. Reiss and M. Renieris. Encoding program exe-
cutions. InInternational Conference on Software
Engineering, pages 221–230, 2001.

[8] T. Reps, T. Ball, M. Das, and J. Larus. The
use of program profiling for software maintenance
with applications to the year 2000 problem. In
Proc. 6th European Software Engineering Confer-
ence (ESEC/FSE 97), pages 432–449, 1997.

[9] M. Störzer and J. Krinke. Interference analysis for
AspectJ. InProc. FOAL Workshop, 2003.

[10] A. Zeller. Yesterday, my program worked. Today,
it does not. Why? InProc. 7th European Software
Engineering Conference (ESEC/FSE 99), pages
253–267, 1999.

	Motivation
	Determining Aspect Impact
	Determining Impact from Traces
	Tracing the AspectJ Telecom Example
	Identifying Failure Inducing Aspects
	A Note on Multi-threaded Programs

	Validating Unchanged Behavior
	Acceptable Changes in Traces
	Example: AnChoVis

	Related Work
	Conclusions

