Trace Analysis for Aspect Application

Maximilian Strzer, Jens Krinke, Silvia Breu
Universitat Passau
Passau, Germany

{stoerzer, krinke, breu@fmi.uni-passau.de

May 30, 2003

Abstract What remains is to check whether the observer im-
plemented by the aspect really captures all necessary
Aspect] is a language implementing aspect orientstdte changes of observed data. Unfortunately, this is
programming on top of Java. Usually aspect applicatioot necessarily visible in any case. Static program anal-
influences not only observable behavior but changgsis could be used for this purpose but data flow anal-
program flow internally. To test if an aspect works agsis of aspect oriented programs has not yet evolved
intended, we suggest trace analysis to capture thesecineugh. Thus, we propose a low-cost low-tech dynamic
ternal changes. We demonstrate how trace analysis aaalysis approach: Using program traces, changed be-
be used for impact analysis. It can also be used to vdlavior becomes observable as here analysis of the inter-
date that refactorings which replaced scattered codertaf program flow is possible. So this can be an adequate
an aspect did not change system behavior. mean to analyze the effects of advice application to a
given system.

) . For the methods presented here, one should always

1 Motivation keep in mind that the quality of the results is strongly
dependent on the coverage achieved by the test suite.
Aspect oriented programming (AOP) is a new paradigBusically, traces are test results—only on a more fine
in programming, extending traditional programmingrained level. Despite chances for false neggfjas
techniques, first introduced inl[5]. Its basic idea is tow, we cannot guarantee their absence. The more
encapsulate so callemtoss cutting concernghich in- traces are examined, the more reliable results of trace
fluence many modules of a given software system imadalysis are. Generally, the chances to miss a change
new module calledspect in behavior strongly depend on the program coverage
Aspects can be used to add new functionality to g@movided by the test suite.

existing system which cannot be added without invasiveq,;, approach relies on comparison of two traces for
changes to the whole system using conventional tefisingje test: One trace is generated with the (base) sys-
niques. To see if the aspect works as intended testingds, without applied aspects and the other is generated
usually the only practicable approach, as program Ve ihe woven program. By identifying patterns of dif-

ification is often too costly and techniques applicab{%rences, we can observe changed behavior in terms of
for AOP are not mature yet. However, tests are of Ii”Eﬁvergenceindsuperimposition

ited value as they can only show the presence of bugs h - f thi . ized as foll
but never show their absence. Additionally, tests are ofT e remaining of this paper is organized as follows.

limited usefulness, if the changed behqﬂiofa system Sec(’;ion 2 (_jes(;:rti)bes hOIW aspect apg_l#:ation imp_a Ctl an
is not observable directly in the output. e determined by analyzing trace differences, includ-

Consider a simple example: An aspect should be é g an example. The next section explains how this ap-
plied to add an observer for sbme data to a system rgach can be used to validate systems where cross cut-

the data provided by the system should be displayed rsgg concerns have been refactored into aspects. Related

an additional GUI window. Instead of modifying theV rk is discussed in section 4, followed by conclusions.

system to explicitly add the observer pattern an aspect

can be applied instead, performing this task. 2For this paper, by using the terfalse negativeswe refer to

changes in behavior which are not reported by the analySise
1Changed behavior throughout this paper refers to a changedpnsitiveswould be reported behavioral changes, which are actually

put/output behavior of a given system. not present in the program (which is impossible for our analysis).

2 Determining Aspect Impact results in a relatively small set of additional calls in the
traceTa (depending on how much the aspect changes
For the following we assume that for a given systegystem behavior). These additional calls reflect the im-
S a set of regression tesfS is available so that tracespact of the aspect on program flow. The programmer
T(S1)andT(S,I) can be generated for identical inpuhow can examine thesehangesto check whether all
| € 7. SystemS is generated fron® by applying an changes are expected or some of the changes are un-
aspectA. The weaving operation is denoted 8s= expected side effects of aspect application. However,
S®A. would he have to examing completely he unnecce-
sarily had to examine large parts of the trace which did
not change at all.

Diff -like comparison of the generated traces can
When applying an aspect to a given syst8nthe pro- drastically reduce the size of the parts to be analyzed by
grammer should know exactly how and where the asvealing where program flow has changed. The result
pect influences the behavior of a system. Unfortunatedy, a trace comparison dfs and Tp is only a small—
AspectJ language elements usually have global effeet@mpared with the size of the traces—set of trace dif-
so that aspects can influence large parts of a given siggence®D.
tem. As a result, the possibility to modularly reason In general, evaluatin® derives very strongintsfor
about code is lost]2]. On the other hand, the influentiee impact of aspect application. Two kinds of differ-
of an aspect is not visible in the code of the modifieghces can be identified:
system (obliviousness of base [3]). i i

Although with the AspectJ Development To&dDT Prlmgry effects: These gfrects. capturdirect aspect
a helpful development environment for AspectJ (e.g. in influence dge to agiwce. P””.‘ary effects are always
Eclipse) is available, more sophisticated tool support to em.bedd.e'd n advice execution, so they can easily
determine aspect application impact on program behav- be |d_ent|f|ed inthe trac_e; and mapped to the source
ior is not available. So, programmers have to rely on Ioca_tlon where they_0r|g|r_1at_e from. An example of
detailed tests instead. To tackle the problem that as- a primary effect is given in figufg 1.
pects do not always change the observable behavior ofo primary effects, two sub-cases apply:

a given system, traces of test cases can be used. The

generated traces reveal the internal program flow anc® Superimposition:Often, aspects are used to add
thus are more fine grained than traditional output based Some additional behavior to a given system. This
tests. is visible in the traces as a primary effect, which

To determine the impact of an aspéctvhich is ap- extendghe original trace. So all calls of the origi-
plied to a systens, traces of the original system and the ~ hal system still occur in the same order.
system with applied aspeBt= S& A can be compared.
However, this comparison requires some constraints:

2.1 Determining Impact from Traces

e Changes or AmputationUsing around -advice

it is possible to prevent the execution of the orig-
inally called method and to replace the call with
something else. In this case, parts of the original
trace argeplacedwith different calls.

Identical Input. Certainly, the input for both systems
has to be identical when generating the traces. This
is usually the case when a regression test stiite

is available. Secondary Effects: Besides primary effects, the trace

difference D includes changes which cannot be
identified directly as an effect of advice or another
source code location. These effects are usually the
result of a changed system state due to aspect ap-
plication resulting in additional or other method
calls. As secondary effects in general are a strong
In the following, we assume that these constraints hintfor changed system behavior, we consider sec-
hold for the generated tracdgS,1). To analyze the ondary effects adivergenceof traces.
impact of aspech, we now generate traces for both ver-
sions of the programTs = T(SI) for the base system
SandTa=T(S®A,l) for the woven system. ¢ Introduction of fields:AspectJ allows introduction
Aspects are often used to add some additional behav- of fields includingstatic initializations Execution
ior to a system while keeping the overall program flow of such initializations results in new calls to con-
(in a sense afuperimposition Thus, an aspectusually structors which are not presentin the original trace.

Deterministic Execution. Traces are incomparable if
system behavior includes random behavior—this
case must be excluded. This is an important re-
striction as usually any concurrency in a system
can lead to nondeterministic behavior.

Secondary effects can occur due to three reasons:

connection completed connection completed

<-- void telecom.Connection.complete(): ... <-- void telecom.Connection.complete(): telecom.Local
> --> execution(ADVICE: void telecom.Timing.ajc$afterst
> --> Timer telecom.Timing.getTimer(Connection): tele
> <-- Timer telecom.Timing.getTimer(Connection): tele
> --> void telecom.Timer.start(): telecom.Timer
> <-- void telecom.Timer.start(): telecom.Timer
> --> telecom.TimerLog(): telecom.TimerLog
> <-- telecom.TimerLog(): telecom.TimerLog
> --> execution(ADVICE: void telecom.TimerLog.ajc$aft
> Timer started: 1049378141427
> <-- execution(ADVICE: void telecom.TimerLog.ajc$aft

> <-- execution(ADVICE: void telecom.Timing.ajc$aftert
<-- void telecom.Call.pickup(): ... <-- void telecom.Call.pickup(): telecom.Call

Figure 1: Primary effect—execution of advice.

This is the reason for the additional construct@nalysis is the only possible way to see how an aspect
call in figure[2. has been integrated into a given system.

e Introduction of methods and ancestorsit first)
sight introduction should not change the semad-2 Tracing the AspectJ Telecom Example

tics of a given system. However, this is wron
g y 9 a'Fo create traces for Java programs, we used AspectJ and

method introduction can override an implementa-~ ~. - . : .
: %pdolled a specialized tracing aspect. Strictly speaking,
tion of a superclass and thus change the meth : .

. we would have to verify that the tracing aspect does not
actually executed by a virtual call. : . ; .

_ T _ change behavior of a given system—thus distorting the
This effect—callecbinding interferencen [9]— analysis results. But we think this assumption is rea-
is observable in the trace difference, although th@nable as the tracing aspect never calls any method or
static analysis to reveal binding interference prehanges any values of the base system. On the other
posed in[9] is preferable as no false negatives cRnd, this aspect supplies a very simple way to generate
occur. Anyhow, this analysis is restricted to bindraces for any given system. We could have used any
ing interference only. other tracing technique without any effect on the results

instead.

e Change of behaviorDue to a prior advice appli- .
To evaluate the usefulness for trace analysis, we cre-

cation the system state—i.e. field values of some i .
y ed traces for thimlecom example available with the

objects—might have changed. An altered syste R) .
sta{te can regult in a comp?etely changed prggr%pecw distribution for two system configurations: the
flow which obviously results in trace differences. gsetel_ec_om system and the woven system with ap-

plied Timing aspect. The input is always generated

By examining only the trace differenc& a pro- by the BasicSimulation test driver. Excerpts of
grammer can easily find the parts of his system inflthe traces for the two versions is shown in figdres 1 and
enced by the aspect. He can thus validate that his @s-
pect was not unexpectedly applied to some parts of theThe traces only differ bylocks of additional calls
system. Besides that, the trace is not modified, in particular it

As a drawback, the proposed trace analysis does does not diverge. All calls traced in the base system
show when an aspect has accidentathybeen applied preserved their order in the system with applied aspect.
to some parts of the system. However, this is a genefdlis suggests that application of tiéming aspect
problem of any impact analysis. As an advantage of odees not modify the overall system behavior but only
approach, the programmer only has to check the tre&tgperimposes some additional behavior.
differences for the intended changes—he does not need closer examination of the additional calls supports
to examine the whole trace. If an expected changetligs assumption as from the base system gelyersare
not present, the aspect has to be improved. called; any modification only affects data of the aspect

To summarize, analysis of trace differences can showvariables introduced by it.
which impact the application of an aspect has on a givenFigure[2 shows how the new fiefaner introduced
system by explicitly showing changes in program floday theTiming -aspect is initialized by calling the con-
So, the search space to validate aspect correctnesstrisctor of theTimer -class. This represents a sec-
greatly reduced. For testing aspects that do not direabiydary effect, although our assumption that the seman-
influence the observable behavior of a system, traies of the base system is only extended is still valid,

--> void telecom.AbstractSimulation.run(): ... --> void telecom.AbstractSimulation.run(): ...

> --> telecom.Timing(): telecom.Timing
> <-- telecom.Timing(): telecom.Timing
--> telecom.Customer(String, int): ... --> telecom.Customer(String, int): ...

Figure 2: Secondary effect—static initializations, constructor calls.

because the constructor only affects fields of the nealues and crashes. So our aspect for limiting costs was
timer -object and does not call any other methods. a little naive here, but it demonstrates how the traces

Indeed, theTiming -aspect is an observer, so thiallows us to relate the crash to the applied aspect.
aspect only superimposes additional behavior for the
basetelecom application: It captures the duration of2 3
phone calls. Timing is always started before a connec-
tion is established and ends after the connection termyithout additional explanation, we modified our ap-
nated (and indeed is implemented as after advice faoach in the last section not to compare the base with
call completion and hangup). the woven system, but compared two woven systems

We also conducted some experiments with thth different sets of applied aspects. In principle, we
Biling -aspect, which is basically an observer thafave relaxed the traces we compare. More formally,
calculates some derived data (the costs for each calie comparison is done on traces for two sys&rand
leading to similar results. Due to space limitations w&, whereS,; is produced by application of a set of as-
do not present this example in more detail here. pects:S =S DA D... DA S is allowed to be com-

As an example for diverging traces we added a ng@gsed from a base syste®with a set of applied as-
aspectCostLimit to thetelecom -example which pects:S, = S® A1 P ... ® An. The traces to compare
checks the total costs of all calls for a customer and dge therl; = T(S;,1) andT, = T(S,1).
nies connections if a certain limit is exceeded. In a first In the last example, the failure could have also been
test run, the system did not act as expected, it crasheuced while comparing the base system with the wo-

Identifying Failure Inducing Aspects

soon after a call has been denied: ven system where all three aspeEising , Billing

jim calls crista... and CostLimit .have bgen applied. In that case .it

Limit exceeded - no call possible! would not be obvious which of the three aspect has in-

crista accepts... . .

Exception in thread "main" java.lang.NullPointerE... duced the f"f‘llure_- _FOI’ Iarge_SySt_ems V_Vlth a Iarge_ set
at telecom.Customer.pickup(Customer java.... of aspects, identifying the failure inducing aspect is a

at telecom.AbstractSimulation.run(Abstrac...
at telecom.BasicSimulation.main(BasicSimu...

cumbersome task. We uBelta Debuggindl10] in that
case: When aspects are seen as the deltas, this will auto-
Although this example is very small, evaluation of thmatically compute a minimal set of aspects responsible
printed call stack does not reveal enough informatigor the failure.

to track down the problem. Obviously theckup -
method gets awull -value for the expectecCall -
object and crashes, but where does this value origin

from? Trace analysis can also be applied to multi-threaded
Now consider the trace for this example, which igrograms, as long as the execution inside threads is still
shown in part in figur¢]3. Here the problem becomefterministic. As trace output generated by different
apparent: The trace shows that no connection objectifeads is arbitrary interleaved, it must be able to iden-
created any more due to the around advice—the whelg trace messages from each thread which can be eas-
part of the trace creating this object is missing. Whefy achieved in Java. Analysis can then be performed by

calling pickup , the trace immediately returns, reflectcomparing traces for each single thread.
ing moving up the call stack. Finally the stack trace is

printed.)])

The advice application is a primary effect which re3 Valldatlng UnChanged Behavior
sults in the exception as secondary effect. The excep-
tion can be traced back to tleound -advice. As a Besides the development of new systems, AOP can also

2.4 A Note on Multi-threaded Programs

matter of fact, ourCostLimit -aspect returnsull be used to refactor pre-AOP software. For example,
when denying a call. This changed return-value causes can improve the program structure by encapsulat-
the NullPointerException as the program pro-ing scattered code or crosscutting concerns into aspects.

ceeds. The base program is not preparednidlt - However, this may change the program behavior. If

jim calls crista... jim calls crista...

--> Call telecom.Customer.call(Customer): ... | --> execution(ADVICE: Call telecom. ...
--> telecom.Call(Customer, Customer): ... | Limit exceeded - no call possible!
--> boolean telecom.Customer.localTo ... | <-- execution(ADVICE: Call telecom. ...
<-- boolean telecom.Customer.localTo ... <
<
[new long distance connection from Jim(650) .. <
<
<-- Call telecom.Customer.call ... <
crista accepts... crista accepts...
--> void telecom.Customer.pickup(Call): ... --> void telecom.Customer.pickup(Call): ...
--> void telecom.Call.pickup(): ... <
<
<-- void telecom.Customer.addCall ... <
<-- void telecom.Customer.pickup(Call): ... <-- void telecom.Customer.pickup(Call): ...
crista hangs up... <
<
<-- void telecom.AbstractSimulation.run(): ... <-- void telecom.AbstractSimulation.run(): ...
> Exception in thread "main" java.lang.NullPoint...
> at telecom.Customer.pickup(Customer ja...
> at telecom.AbstractSimulation.run(...)
> at telecom.BasicSimulation.main(...)

Figure 3: Primary effect—execution of advice.

these changes result in wrong program executions, t8i Example: AnChoVis

must be avoided. . o
The presented approach can be used to validate Ap.a second gxample, AnCho\ﬁs, a small V|§ual|zat|0n

plication of refactorings: Changes in program behavi{) O.I for chopping and slicing, has been examined. Ana-

become apparent if traces diverge. The approach new Y the produced program traces for standard aspects

used is very similar th 2]2: We start with the old syg_evealed a well known pattern: logging. By looking into

temSand refactor it into a new base syst&htogether :he ;‘iﬁe wehdlstct?]vere(tj. that ftth's functionality is scat-
with the refactored aspeét We are now comparing the ered throughout the en _|re Software. o
Therefore, we have tried to encapsulate logging into

old systemSwith the new systen8 = S*®A. Again, ; _ | J
this is done by comparing the tracBs=T(S,1) and a" aspect in two different ways. First, as a simple as-
Ta=T(S,1) for identical inputd € 7. pect which uses the existingg class of the system. It

If refactoring has not changed program semanticldﬂs:fmeS a pointcut which calls thetering - method

both traces should be identical. If the traces have dii-. . A
ferences, we know that a modified control flow is moSIX'tmg_ method (_)f the Io_gge_r. The original imple-
likely and the encapsulation of crosscutting concerﬁ%emat'on concerning logging in the base system has
into an aspect changed system behavior. een removed. The traces for program runs with the
scattered and the aspect version have been compared
and the (filtered) results are completely identical traces

3.1 Acceptable Changes in Traces in case of equal program runs. As can be seen, the refac-
' toring process didn’'t cause any changed or unwanted

In contrast to pure refactorings that should not changgogram behavior.

program behavior, changes are acceptable if they addn the second aspect version, the aspect does not

additional functionality to the system, e.g. method caligly include the logging calls but also the implement-

for debugging purposes. Other sound alterations dng functionality which was formerly in theog class

syntactic: Depending on how the refactoring is implef the original system. Besides slightly different con-

mented, the class from where a method is called gfructor calls of the logging functionality, the filtered

even method names can change. For example, imtigces are again identical.

ine the following design decision: Shall just the method

calls concerning a specific aspect be encapsulated or

the class(es) implementing those as well? However, 4 Related Work

these behavioral changes are acceptable as they do not

alter the base system’s behavior and its control flowhe so calledlevelopment aspegtike tracing or pro-

they just may add further functionality. filing are the well known examples for the benefit of
Such syntactic differences can easily be removed agpects|[[4]. However, we simply use these aspects for

applying a filterf to the traces before comparisdi;= program instrumentation to get the traces which are the

f(T(S1))andTa = f(T(S"®AI)). basis for our analysis.

fore each method execution, and after execution the

Our approach is very similar teelative debugging not show false positives, only false negatives, and static
[1], where a specialized debugger is used to automatialysis will show false positives and not false negatives
cally compare an old program version with a new onmstead.

This is achieved by inserting breakpoints and assertions

to compare the values of fields at the same executi

point in both programs. Instead of tracing method callgé]eferences

we could use a different tracing aspect which traces val-)

ues of fields. Thus, our approach can also be used f6} D- Abramson, |. Foster, J. Michalakes, and
relative debugging. R. Soct. Relatlye depugg!ng: A new methodol-

In [8], profiling is used for software maintenance. In ©9Y for debugging scientific application<Com-
that work,path spectragenerated by path profiling are ~ munications of the ACMB9(11):69-77, 1996.

compared for one program with two different inputs.[2) c_ Clifton and G. Leavens. Observers and assis-
Detected differences are evidence for diverging behav- " {gnts: A proposal for modular aspect-oriented rea-

ior. In contrast, our approach use thame inputout soning. InProc. FOAL Workshop2002.
two versionsof a program. Comparing two versions

with path spectra was mentioned but rejectedin [8] bel3] R. Filman and D. Friedman. Aspect-oriented pro-
cause of difficulties establishing a correspondence be- gramming is quantification and obliviousness. In
tween paths in two versions. Our approach has no prob- Proc. Workshop on Advanced Separation of Con-
lem identifying correspondence in tracing and explicitly ~ cerns, OOPSLA 200@000.
identifies and uses not corresponding parts.

Traces are often used for software maintenance tasllé,]
an exemplary tool is Jinsight][6]. Traces can be too
large and compaction techniques likelih [7] can be used.

G. Kiczales, E. Hilsdale, J. Jugunin, M. Kersten,
J. Palm, and W. G. Griswold. Getting started
with Aspect]. Communications of the ACM
44(10):59-65, October 2001.

) [6] G. Kiczales, J. Lamping, A. Menhdhekar,

5 Conclusions C. Maeda, C. Lopes, J. Loingtier, and J. Irwin.
Aspect-oriented programming. IRroc. Euro-

We have presented a low-cost low-tech dynamic anal- pean Conference on Object-Oriented Program-

ysis approach to analyze aspect application. This ap- ming pages 220—-242. 1997.

proach is based on comparison of traces for the base and

woven system with identical inputs. Our approach id6] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky,

able to distinguish primary effects, which are due to as- J. Vlissides, and J. Yang. Visualizing the execu-

pect application directly, and secondary effects, which tion of java programs. In S. Diehl, edit@pftware

are most likely due to behavioral changes. Visualization pages 151-162. 2002.

As traces capture an actual program run, not onl
obvious aspect influences from advice application ar
captured, but also more subtle behavioral changes due
to introduction or (in general) secondary effects are re-
vealed. [8] T. Reps, T. Ball, M. Das, and J. Larus. The

Our approach can also be used to validate that refac- use of program profiling for software maintenance
toring a pre-AOP system into an AOP-system does not with applications to the year 2000 problem. In
change system behavior, thus supporting future reengi- Proc. 6th European Software Engineering Confer-
neering tasks. Two examples demonstrated the effec- ence (ESEC/FSE 97)pages 432—-449, 1997.
tiveness of our approach.

In this paper we only presented the application of ouf!
approach to small examples. However, the typical prob-

Iems of large traces apply_. On the other hand, trace arﬁg] A. Zeller. Yesterday, my program worked. Today,
ysis can be used to examine only parts of the system and’ i yoes not. Why? IfProc. 7th European Software

thus is useful nonetheless. Engineering Conference (ESEC/FSE 9pages
As long as static program analysis cannot be used 53 267, 1999.

for this purpose because data flow analysis of aspect

oriented programs has not yet evolved enough, our ap-

proach can be used instead. Moreover, our approach

can be used best together with static analysis: It will

7] S. Reiss and M. Renieris. Encoding program exe-
cutions. Ininternational Conference on Software
Engineering pages 221-230, 2001.

M. Storzer and J. Krinke. Interference analysis for
AspectJ. InProc. FOAL Worksho2003.

	Motivation
	Determining Aspect Impact
	Determining Impact from Traces
	Tracing the AspectJ Telecom Example
	Identifying Failure Inducing Aspects
	A Note on Multi-threaded Programs

	Validating Unchanged Behavior
	Acceptable Changes in Traces
	Example: AnChoVis

	Related Work
	Conclusions

