
Multi-Query Computationally-Private
Information Retrieval with Constant

Communication Rate

Jens Groth1, Aggelos Kiayias2, and Helger Lipmaa3,4

1 University College London, UK
j.groth@ucl.ac.uk

2 Department of Informatics, University of Athens, Greece
aggelos@di.uoa.gr

3 Cybernetica AS, Estonia
lipmaa@research.cyber.ee
4 Tallinn University, Estonia

Abstract. A fundamental privacy problem in the client-server setting is
the retrieval of a record from a database maintained by a server so that
the computationally bounded server remains oblivious to the index of the
record retrieved while the overall communication between the two par-
ties is smaller than the database size. This problem has been extensively
studied and is known as computationally private information retrieval
(CPIR). In this work we consider a natural extension of this problem:
a multi-query CPIR protocol allows a client to extract m records of a
database containing n `-bit records. We give an information-theoretic
lower bound on the communication of any multi-query information re-
trieval protocol. We then design an efficient non-trivial multi-query CPIR
protocol that matches this lower bound. This means we settle the multi-
query CPIR problem optimally up to a constant factor.

Keywords. Computationally private information retrieval, multi-query
CPIR, lower bound on communication.

1 Introduction

A (single-server) computationally-private information retrieval (CPIR) proto-
col enables a client to query a database without revealing which data it is ex-
tracting. Several cryptographic techniques based on various computational hard-
ness assumptions have been proposed for CPIR with sublinear communication.
In this paper, we go beyond the well-studied single-query case and investigate
communication-efficient CPIR protocols for the case where the client has multi-
ple queries. A multi-query CPIR protocol allows a client to extract m records of
a database containing n records of ` bits each. We give an information-theoretic
lower bound on the communication and design a multi-query CPIR protocol
that matches this lower bound (up to a constant factor). Our focus in this paper

2 Jens Groth, Aggelos Kiayias and Helger Lipmaa

is on the theory of multi-query CPIR giving an asymptotically communication-
optimal multi-query CPIR protocol under a reasonable cryptographic assump-
tion; we leave the tasks of optimizing the computational overhead and the con-
stant factor gap between the upper and lower bounds on the communication as
open problems.

oblivious transfer (OT) or symmetric CPIR (SCPIR) protocol. A two-
message SCPIR protocol is usually required to be secure in the sense of semisim-
ulatability, first defined by Naor and Pinkas [12].

1.1 Background

Private Information Retrieval was introduced in [3]. Kushilevitz and Ostro-
vsky [9] showed that it is possible to do CPIR with sublinear communication.
Cachin, Micali and Stadler [2] gave the first CPIR-protocol for retrieving one bit
out a database where the communication complexity is polylogarithmic in the
database size. The communication-wise best single-query CPIR protocols up-to-
date are by Gentry and Ramzan [6] and Lipmaa [10] that allow the retrieval of
an `-bit record from the database.

Turning to our problem, there are three trivial solutions to m-query CPIR:
One option is parallel repetition of a single-query CPIR. In the case of repeating
Gentry and Ramzan’s CPIR [6] this would result in a communication of Θ(m ·
log n+m · `+m · k), where k is a security parameter specifying the length of an
RSA-modulus. As we will see this is not optimal.

Another option is to use a single-query CPIR protocol to fetch one m`-bit
element from an

(
n
m

)
-element database. As our lower bound shows, this solution

has asymptotically optimal communication Θ(m·log2(n/m)+m·`+k) when com-
bined with Gentry and Ramzan’s CPIR, but unfortunately increases the server’s
computation to Ω(

(
n
m

)
), which for many choices of n and m is superpolynomial

in the security parameter.
A third option is to transmit the entire database to the client and is inefficient

in terms of communication.
Ishai, Kushilevitz, Ostrovsky and Sahai [7] proposed batch-codes for encoding

a database over many separate blocks such that a client can extract m records
by querying only a smaller number of records from each block. Our solution uses
a related strategy and part of this paper consists of encoding the database in
separate blocks that can be queried by separate smaller CPIR protocols. The
batch-codes by Ishai, Kushilevitz, Ostrovsky and Sahai, however, do not apply
directly to our problem. One reason is that their batch-codes are optimized with
respect to keeping the total number of records in all the blocks low in order to
keep the computational complexity low, whereas our solution actually uses an
encoding where the total number of records in all the blocks becomes quite large.
Another difference between the works is that they only consider the case where
the database and the blocks use the same alphabet, for instance `-bit strings,
while we in some instances will encode the database into blocks of records from
a different alphabet.

Multi-Query CPIR with Constant Communication Rate 3

1.2 Our Contribution

We design a computationally efficient two-message multi-query CPIR protocol
with Θ(m` + m · log2(n/m) + k) bits of communication, where k is a security
parameter specifying the size of an RSA modulus. Server computation is dom-
inated by Θ(n`) group operations, where in both cases the constant in big-Θ
is reasonably small. The client’s privacy is based on a variant of the Φ-hiding
assumption [2, 6]. In our construction, we use a multi-query CPIR variant of
Gentry and Ramzan’s single-query CPIR [6] that works for a restricted set of
parameters (m,n, `). We present a reduction demonstrating that any multi-query
CPIR protocol that works for a restricted set of parameters can be used as a
building block to construct a communication-optimal CPIR protocol for any set
of parameters.

We also prove that any perfectly correct multi-query (non-private) in-
formation retrieval protocol has an information theoretical lower bound of
Ω(m · log2(n/m) +m`) bits of communication. Thus, our proposed multi-query
CPIR has optimal communication complexity up to a constant factor.

1.3 Challenges and Techniques

Known techniques suffice for communication-optimal CPIR in the extreme cases,
where the number of queries is very small or very large. If m = Ω(n) the server
can send the entire database to the client in the clear, giving a communication
complexity of n` = O(m`+m log(n/m)) bits. If m = O(1) we can invoke Gentry
and Ramzan’s single-query CPIR m times in parallel to get a communication
complexity of O(` + k) = O(m` + m log(n/m) + k) bits. We are interested in
finding a communication-efficient CPIR protocol for the case where m is in
between the two extremes. Indeed, if m = o(n), then downloading the entire
database at a cost of n` bits would be sub-optimal and when m = ω(1) simply
repeating Gentry and Ramzan’s protocol has an additive overhead of Ω(mk)
bits, which would make it a sub-optimal choice.

A first step towards resolving this issue is Gentry and Ramzan’s observa-
tion [6] that while they focused on the single-query case, it is also possible to get
a restricted multi-query CPIR protocol with their techniques. We will use such a
restricted multi-query CPIR scheme as a building block in our construction. The
restricted protocol is only communication-optimal for certain choices of (m,n, `)
though. It encodes the queries as hidden prime-powers, however, when n grows,
the size of these primes grows as well. When ` = Ω(log n) or m = O(nε) for
a constant ε > 0 this turns out not to be a problem, but when ` is small and
m = ω(nε) the increase of the prime size causes a loss of bandwidth of up to a
factor log n.

To eliminate the up to a factor log n overhead in the communication com-
plexity we will encode the database in such a way that it can be split into smaller
pieces that can be processed by the restricted multi-query CPIR protocol. One
part of this encoding consists of dividing the database into smaller blocks that
will be treated separately. With smaller blocks, we need smaller primes in the

4 Jens Groth, Aggelos Kiayias and Helger Lipmaa

Gentry-Ramzan CPIR to specify a particular index of a record and this improves
the communication complexity. To spread the queries evenly on the blocks, we
first let the client choose a random permutation of the database. To preserve
the sublinear communication complexity, the client does this by sending the
server a seed for a pseudorandom number generator from which the longer full
permutation can be generated.

Another part of our encoding is best explained by an example. Suppose we
have a database of 4 one-bit records and the client wants retrieve two records.
We can encode the database as a 6-record database containing 2-bit elements
for each possible pair of queries (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) the client
could have. This encoding increases the size of the database and the size of the
records, but reduces the number of queries the client needs to make. When the
client’s encoding of queries as primes permits the extraction of many bits at
a time, then this encoding improves bandwidth since fewer queries are needed.
Batch-codes [7] address a related encoding problem, however, as explained in
the section on related work neither of their batch-codes suffice for minimizing
communication in our scheme.

With respect to the lower bound on communication, the challenge is that
we must consider all possible multi-query CPIR protocols. Most known CPIR
protocols consist of encoding the queries in a single message that is sent to the
server, which information-theoretically leads to a lower bound of log2(

(
n
m

)
) =

Ω(m · log(m/n)). Furthermore, obviously m `-bit strings cannot be communi-
cated using less than m` bits. For these protocols it is therefore straightforward
to get a lower bound of Ω(m·log2(n/m)+m`) bits. However, the lower bound also
needs to cover the case of multi-query CPIR protocols that work in a different
way and may use more rounds. This makes proving the lower bound non-trivial;
we do not know of prior work giving such a lower bound even in the single-query
case.

1.4 Roadmap

In Sect. 2, we present the necessary preliminaries. In Sect. 3, we prove a lower
bound for the communication complexity of multi-query CPIR (even when pri-
vacy is not required). In Sect. 4, we construct a basic restricted multi-query
CPIR protocol based on Gentry and Ramzan’s work [6]. In Sect. 5, we design a
new multi-query CPIR protocol for any parameter values.

2 Preliminaries

Notation. All our algorithms take as input a security parameter k. In the
following we say a function f is negligible if f(k) = k−ω(1). We write f(k) ≈ g(k)
if |f(k)−g(k)| is negligible. We write (outC , outD)← 〈C(x), D(y)〉 if C on input
x and D on input y output respectively outC and outD after interacting with
each other.

Multi-Query CPIR with Constant Communication Rate 5

Multi-query CPIR. Consider a database with records x1, . . . , xn ∈ {0, 1}`.
Informally, a multi-query CPIR protocol is a protocol that allows a client to
extract m different records xi1 , . . . , xim from the database, without revealing
which records it extracted. Formally, a multi-query CPIR protocol consists of
two interactive polynomial time Turing machines C and D that we call respec-
tively the client and the server. Both parties get as input a security parameter
k written in unary and additional parameters m,n, `. The server takes as an
input n elements x1, . . . , xn ∈ {0, 1}`. The client takes as an input a set of
m different indexes i1, . . . , in ∈ {1, . . . , n}. (Note that since we are interested in
minimal communication in the case of fixed m, we can assume that all m indexes
are different.) The client and server interact, and in the end the client outputs
y1, . . . , ym ∈ {0, 1}` or a special failure symbol ⊥. (C,D) is a multi-query CPIR
protocol if it satisfies the standard correctness and privacy properties as defined
below. Intuitively, correctness means that in the case of an honest client and an
honest server, the client always retrieves correct elements xi1 , . . . , xim . Privacy is
defined in the sense of indistinguishability: given two input tuples i0, i1 chosen
by a malicious server, the server should not be able to guess which of the two
tuples the client actually uses.

Definition 1 (Perfect correctness). A multi-query CPIR protocol (C,D) has
perfect correctness if for any k, any m,n, ` = poly(k) and any i = (i1, . . . , in)
and x = (x1, . . . , xn) with ij ∈ {1, . . . , n} and xj ∈ {0, 1}`, we have that if
(outC , outD)← 〈C(1k,m, n, `, i), D(1k,m, n, `,x)〉, then outC = (xi1 , . . . , xim).

Definition 2 (Computational privacy). A multi-query CPIR protocol has
computational privacy if for all non-uniform polynomial time adversaries A we
have

Pr

[
b← {0, 1}, (m,n, `, i0, i1, state)← A(1k),

(outC , outA)← 〈C(1k,m, n, `, ib),A(state)〉 : outA = b

]
≈ 1

2
,

where m,n, ` = poly(k) and ij = (ij1, . . . , i
j
m) with 1 ≤ ij1 < . . . < ijm ≤ n.

3 Lower Bound on (m, n, `)-CPIR Communication

Let the database contain n records of size `. An (m,n, `) information retrieval
is a two-party protocol between a client and a server that enables the client
to receive any m out of the n records. In this section we will establish a lower
bound for any perfectly correct (m,n, `) information retrieval protocol, private
or not. If the protocol consists of the user indicating the desired indices and the
server sending the elements of those indices a straightforward lower bound of
log2

(
n
m

)
+m` bits applies. Establishing that the same lower bound applies also

in the general case requires more work. We show that Ω(m · log(n/m) +m · `) is
in fact the lower bound for any perfectly correct information retrieval protocol.
The lower bound is information theoretical and holds even when the client and
server are computationally unbounded. The lower bound assumes the protocol

6 Jens Groth, Aggelos Kiayias and Helger Lipmaa

to have perfect correctness, so any choice of fixed random tapes also gives a
perfectly correct protocol, which means it suffices to prove the lower bound for
any fixed pair of random tapes. We will therefore in the following without loss
of generality assume that the client and server are deterministic.

Denote by X the set of all subsets of n elements of size m and by Y the
set of all n-tuples over the alphabet Σ = {0, 1}`. The output of any (m,n, `)
information retrieval protocol belongs to the set Z of m-tuples over Σ. We denote
by f : X × Y → Z the output of the information retrieval.

Any protocol computing f can be represented by a binary tree (cf. [8]) so that
each internal node v is labeled by a function cv : X → {0, 1} or sv : Y → {0, 1}.
The root of the tree is the initial node of the protocol and an execution involves
following a path from root to leaf according to the functions of the nodes. Note
that the program of the client is determined by all the cv(·) functions where the
program of the server is determined by all the sv(·) functions. For the purpose
of obtaining the most general lower bound we make no assumptions on the
complexity of these functions. Finally, each leaf holds a value z ∈ Z = {0, 1}`m
which is the output of the client.

For any such protocol we define the equivalence relation between two inputs
(x1, y1) ∼ (x2, y2) if they lead the protocol to the same output leaf. For each leaf
λ there is a different equivalence class Rλ, and the set of all equivalence classes
of ∼ is thus parameterized by the set of all leaves. It holds that for any λ, the
set Rλ is a combinatorial rectangle: (x1, y1) ∈ Rλ, (x2, y2) ∈ Rλ implies that
(x1, y2), (x2, y1) ∈ Rλ. This follows from the fact that the leaves define unique
paths from the root and in each node the path the protocol takes only depends
on one of the two inputs. A fooling set Fz for some z ∈ Z, on the other hand,
is a subset of X × Y for which it holds that for any (x1, y1), (x2, y2) ∈ Fz with
f(x1, y1) = f(x2, y2) = z we have that either f(x1, y2) 6= z, or f(x2, y1) 6= z.
Fooling sets are useful for lower bounds as they can only be covered by as many f -
monochromatic rectangles as their cardinality (a rectangle R is f -monochromatic
iff ∃z : (x, y) ∈ R ⇒ f(x, y) = z). The number of monochromatic rectangles in
turn yields a lower bound on the number of leaves in any protocol tree which
then implies a lower bound on the tree’s height (which is equal to the total
communication) [8]. In a nutshell, the number of leaves in the protocol tree for
any protocol computing the function f must be at least

∑
z∈Z |Fz| where Fz is

a fooling set for the output value z ∈ Z.

Lemma 1. Fix n,m, `. Let z = (z1, . . . , zm) be such that {z1, . . . , zm} ({0, 1}`.
Define L(z) := lexmin

(
{0, 1}` \ {zj}mj=1

)
, where the function lexmin(A) denotes

the lexicographically smallest element of the set of strings A. The set

Fz =
{

(I, y1, . . . , yn) | I = {i1, . . . , im} ⊆ {1, . . . , n}, yij = zj , yi′ = L(z)
}

is a fooling set of size
(
n
m

)
, where the indexes have the ranges j = 1, . . . ,m, i′ ∈

{1, . . . , n} \ {i1, . . . , im}, and 1 ≤ i1 < · · · < im ≤ n.

Proof. It is obvious that |Fz| =
(
n
m

)
and that any input (x, y) ∈ Fz

satisfies that f(x, y) = z. We next show that Fz is a fooling set. Let

Multi-Query CPIR with Constant Communication Rate 7

(I; y1, . . . , yn), (I ′; y′1, . . . , y
′
n) ∈ Fz. Observe that it should be I 6= I ′, thus

there is at least one location in I that is not in I ′. Without loss of general-
ity, say i1 ∈ I \ I ′. It follows that f(I; y′1, . . . , y

′
n) = (z′1, . . . , z

′
m) 6= z since

z′1 = L(z) 6= z1. ut

Observe that if 2` > m then trivially {z1, . . . , zm} ({0, 1}` for any possible
output tuple z ∈ Z = {0, 1}`m, i.e., there would be 2`m possible outputs for
which the lemma above applies. On the other hand, when 2` ≤ m the number of
possible outputs for which the lemma applies is at least (2` − 1)m. This follows
from the fact that there are at least that many m tuples that ommit a specific
`-bitstring. While this lower bound can be made more tight it will be sufficient
for our communication complexity argument.

Theorem 1. Consider parameters n,m, ` with n ≥ m. The communication
complexity of any protocol solving the (m,n, `) information retrieval problem
is Ω(m · log2(n/m) +m · `).

Proof. Consider first the case ` > 1. There are at least (2`−1)m possible outputs
of the information retrieval protocol for which the corresponding fooling set
has cardinality

(
n
m

)
according to lemma 1. It follows that the communication

complexity is lower-bounded by⌈
log2

((
n

m

)
· (2` − 1)m

)⌉
≥
⌈

log2

(
n

m

)
+m · log2(2` − 1)

⌉
≥
⌈

log2

(
n

m

)⌉
+m(`− 1) .

In order to obtain the asymptotic bound, we use the fact
(
tm
m

)
≥ tm for any

t,m ≥ 1 and by setting t = n/m we obtain the statement of the theorem. Next,
consider the case ` = 1 and 2m < n. In this case, there are 2 choices where the
fooling set has cardinality

(
n
m

)
. It follows that the communication complexity

would be at least log2

(
n
m

)
= Ω(m · log(n/m)). Finally in case ` = 1 and 2m ≥ n

trivially the communication is at least m bits, from which the statement of the
theorem follows. ut

4 Restricted Multi-Query CPIR

In Sect. 5, we will construct a multi-query CPIR with communication complexity
O(m`+m · log(n/m) + k), where k is a security parameter. As a building block,
it will use a multi-query CPIR protocol (C,D) with communication complexity
k. Since communication is bounded by k, such a CPIR cannot handle all choices
of (m,n, `). What we will need from the building block is that it can be used
whenever

m ≤ αk

`+ log2 n
, (1)

for some constant 0 < α < 1.

8 Jens Groth, Aggelos Kiayias and Helger Lipmaa

In this section, we provide a construction of such a building block—that we
call a restricted multi-query CPIR—based on the previous single-query CPIR
of Gentry and Ramzan [6] and their observation that it can be extended to
the multi-query setting. The security of the restricted multi-query CPIR re-
lies on the Φ-hiding assumption by Cachin, Micali and Stadler [2]. It is a 2-
message multi-query CPIR protocol, so we will describe it by three algorithms
(Query,Response,Extract) that generate respectively the client’s query, the
server’s response, and finally allow the client to extract the records from the
response.

In the following, Π will be a deterministic polynomial-time algorithm that
takes n as input and generates n (small) prime numbers. K will be a probabilistic
polynomial time key generator that takes as input the security parameter k and
an integer π < 22αk with factors in the list generated by Π, where α is a constant
parameter. On such an input it generates a triple (G, g, q), such that G is a group
with efficiently computable operations, q is a positive integer, and g is an element
of this group with ord(g) = πq. We require that the description of G and group
elements are at most k/3 bits each and that K satisfies the following assumption:

Definition 3 (Decision Subgroup Assumption). There exists some α ∈
(0, 1) such that for all probabilistic polynomial-time A,

Pr

[
b← {0, 1}, (1n, π0, π1, state)← A(1k), (G, g, q)← K(1k, πb) :

A(G, g, state) = b

]
≈ 1

2
,

where the adversary outputs positive integers π0, π1 < 22αk with factors in Π(n).

As an example, we may choose N = PQ as a k/3-bit RSA modulus, where
P = 2πr+ 1 and Q = 2st+ 1 and r, s, and t are large random positive integers,
and select g as a random element of Z∗N that satisfies ord(g) = πq for some q
with gcd(π, q) = 1. When Π generates a set p1, . . . , pn where 2n < p1 < · · · < pn
it is shown by Gentry and Ramzan [6] that the assumption above reduces to a
variant of the Φ-hiding assumption5:

Pr

[
b← {0, 1}, (1n, π0, π1, state)← A(1k), N ← RSAK(1k, πb) :

A(N, state) = b

]
≈ 1

2
,

where A outputs π0 and π1 as described above, and RSAK outputs a k/3-bit
RSA-modulus N . To avoid factorization attacks due to Coppersmith when a
large factor of φ(N) is known, in this instantiation, the parameter α should be
appropriately selected. Specifically, due to the fact that when a factor of φ(N)
that is larger than N1/4 is known then it is possible to factor N (Coppersmith [5,
4], cf. [1] and the related discussion in [6]) we need to choose

α ≤ 1/25 .

5 Strictly speaking Gentry and Ramzan only show this for π being a prime power,
however, their proof carries over without change to the more general case where π
can be a composite number.

Multi-Query CPIR with Constant Communication Rate 9

Indeed, with this choice we have that π < 22k/25 which is smaller than
2(k/3−1)/4 ≤ N1/4 as long as k ≥ 75.

Given (Π,K), we can construct a 2-message (m,n, `)-CPIR following the
protocol of Gentry and Ramzan. This restricted (m,n, `)-CPIR protocol works
for choices of the parameters that satisfy Eq. (1):

Query: Let p1, . . . , pn be the primes generated by Π. Let π1, . . . , πn be
the smallest prime powers of p1, . . . , pn that are larger than 2`, i.e.,
πi = p

d`/ log2 pie
i . Let i1, . . . , im be different indexes of the elements the

client wants to extract from the database. Define π =
∏m
j=1 πij and run

(G, g, q)← K(1k, π). Send (G, g) to the server, and store q for later use.
Response: Given a database of `-bit elements x1, . . . , xn, use the Chinese

remainder theorem to compute x′ so x′ ≡ xi mod πi for 1 ≤ i ≤ n and
send c = gx

′
to the client.

Extract: For each 1 ≤ j ≤ m, compute cj = cqπ/πij and gj = gqπ/πij , and
find xij so that cj = g

xij

j . Output (xi1 , . . . , xim).

Observe that the extraction step requires solving m instances of the discrete
logarithm problem within the cyclic groups 〈gj〉 for j = 1, . . . ,m, where the
order of each such subgroup is πij . Given that πij is a power of the prime pij ,
the extraction requires O(m

√
pn(`/ log2 p1)) steps using Giant-Step Baby-Step

techniques when the user computes the xi-s as is done in the Pohlig-Hellman al-
gorithm [13]. The server’s computation consists of one Θ(`n)-bit exponentiation
as in [6].

Now that we have given the protocol, let us explain the constraints on the
parameters. By definition we have 1 ≤ m,n, ` = kO(1) but we need more limiting
constraints since we use only k bits of communication. Since πi are chosen as
the smallest prime powers of pi that are larger than 2` we have πi < 2`pn =
2`+log2 pn . This means π < 2m(`+log2 pn) so we have π < 22αk whenever

m ≤ 2αk
`+ log2 pn

.

Using the constraints in the example given by Gentry and Ramzan based on
RSA moduli, we may use Π that generates the first n primes larger than 2n. We
can use the following crude bound on the primes 2n < p1 < · · · < pn < 2n2 for
n ≥ 2. For n ≥ 2 we therefore can use the restricted multi-query CPIR protocol
whenever Eq. (1) holds.

We observe that when n = 1 we do not need any security assumption, since
the client only has one choice of index to query and therefore privacy is not a con-
cern. We also remark that if the key generation algorithm has negligible failure
probability, we still have computational privacy if the client reveals the indices
i1, . . . , im on key generation failure. This means we can get perfect correctness
in the CPIR. In conclusion, we have the following theorem:

Theorem 2. If the decision subgroup assumption (definition 3) holds for a con-
stant 0 < α < 1, there exists a 2-message multi-query CPIR with perfect correct-

10 Jens Groth, Aggelos Kiayias and Helger Lipmaa

ness, computational privacy and k bits of communication for parameters (m,n, `)
satisfying Eq. (1).

Proof. Follows from discussion above. ut

Discussion. Recall that by Eq. (1), k = Ω(m log2 n + m`), thus the restricted
protocol has communication Ω(m log2 n + m`). It may seem that we achieve
no gain over the m-times parallel repetition of Gentry-Ramzan’s CPIR protocol
that has communication Θ(m log2 n+m`+mk) for some security parameter k.
However, the gain is actually quite significant, especially when k � log n.

For example, consider the case ` = 1. Then, m-times repetition of the Gentry-
Ramzan protocol gives us a multi-query protocol with communication m·k. Now
suppose that m =

√
k and n = k2/3. The number of bits used in the transcript

is k3/2. On the other hand, when we use the restricted multi-query protocol,√
k ≤ αk

1+log2 k
and thus we get a protocol with communication k. Thus for large

values of m the protocol of this section outperforms the m-times repetition of
Gentry-Ramzan’s single-query CPIR protocol.

5 Communication-Optimal Perfectly Correct
Multi-Query CPIR

Our optimal communication reduction of arbitrary multi-query CPIR to the
restricted multi-query CPIR will use the restricted CPIR protocol from [6] de-
scribed above and a pseudorandom number generator PRG. Our transforma-
tion operates in four different modes depending on the choice of the parameters
(m,n, `). We examine these modes of operation in the following four subsections.
The most challenging case is the one that m is relatively large but not as large
as to enable the trivial protocol that sends the whole database to be a good
solution. We start with the easier cases first.

5.1 Multi-Query (m, n, `)-CPIR for Constant n/m

When n = O(m) it is asymptotically communication-optimal to send the entire
database to the client. For concreteness, we fix the implicit constant in the big-O
notation to be 9 and send the entire database to the client whenever n ≤ 9m.
It is obvious this is a 1-message multi-query CPIR protocol that has perfect
correctness and privacy, and optimal communication of n` ≤ 9m` = O(m`) bits.
In this case, the server does not do any computation except what is needed for
the transmission of the database.

5.2 Multi-Query (m, n, `)-CPIR for Small m

We will now give a simple extension of the restricted multi-query CPIR that is
communication-optimal when m ≤ k2/3 and n > 9m. We do this by chopping the
`-bit records into smaller pieces of size e. This gives us d`/ee databases containing

Multi-Query CPIR with Constant Communication Rate 11

e-bit strings. We run the restricted multi-query CPIR protocol (C,D) to extract
m records in each of these databases. In order to do this we have to select the
parameter e suitably so that the parameter restriction for the restricted CPIR
is satisfied.

1. Define e = min(`, bαk/m− log2 nc).
2. The server splits (x1, . . . , xn) into d`/ee databases {(xh,1, . . . , xh,n)}d`/eeh=1 ,

where all xh,i are e-bit strings and xi is the concatenation of
x1,i, . . . , xd`/ee,i.

3. The client and server run d`/ee restricted multi-query CPIR pro-
tocols in parallel for h ∈ {1, . . . , d`/ee}: (xh,i1 , . . . , xh,im) ←
〈C(1k,m, n, e, i1, . . . , im), D(1k,m, n, e, xh,1, . . . , xh,n)〉.

4. The client computes xi1 , . . . , xim by concatenating the restricted multi-
query CPIR outputs {(xh,i1 , . . . , xh,im)}d`/eeh=1 for each index.

5. The client outputs (xi1 , . . . , xim).

The above protocol runs in the same number of rounds as the restricted multi-
query CPIR protocol. If ` ≤ bαk/m − log2 nc we just need one copy of the
restricted protocol, so we get a communication complexity of k bits. If ` >
bαk/m− log2 nc we get a communication complexity of

d`/(bαk/m− log2 nc)e · k <
(`

αk/2m
+ 1
)
k =

2m`
α

+ k = O(k +m`) ,

provided

bαk
m
− log2 nc ≥

αk

2m
.

The latter condition holds for large enough k, because m ≤ k2/3 and log2 n =
O(log2 k) implies

k ≥ 2m(1 + log2 n)
α

asymptotically, which in turn implies

αk

m
− log2 n− 1 ≥ αk

2m
.

Note that one can further optimize this protocol, since for each h the client’s
uses the same indices and therefore may choose to use the same initial query
every time.

Lemma 2. The multi-query (m,n, `)-CPIR protocol described above for m ≤
k2/3 is correct and private under the assumption that the underlying restricted
CPIR protocol satisfies these properties. Moreover, if the restricted CPIR protocol
has perfect correctness the CPIR protocol above has perfect correctness as well.

Proof. By the choice of e we guarantee that

m ≤ αk

e+ log2 n

12 Jens Groth, Aggelos Kiayias and Helger Lipmaa

as required by Eq. (1). A hybrid argument shows that (perfect) correctness fol-
lows from the (perfect) correctness of the restricted multi-query CPIR protocol.
Another hybrid argument shows that if an adversary has advantage ε in break-
ing the privacy of the CPIR protocol, then we can break the restricted CPIR
protocol with probability

ε

d`/ee
>

ε

(`+ 1)

where the last inequality holds for values of

k ≥ 2m(1 + log2 n)
α

.

5.3 Multi-query (m, n, `)-CPIR for Large Values of m and
` ≤ log2(n/m)

We will now consider the case, where 9m < n ∧ k2/3 < m ∧ ` ≤ log2(n/m). Let
b, d ∈ N be two parameters to be specified below. We split the database into⌈
n
bd

⌉
blocks of size bd, and on each of these blocks we will use the restricted

multi-query CPIR protocol. Note that if it happens that the clients’ queries are
evenly distributed then we only need to extract an average of mbd

n records from
each of these blocks.

To ensure the uniformity of its queries, the client will choose a seed s ←
{0, 1}k for a pseudorandom number generator. From this pseudorandomness
seed, the client and the server can generate a pseudorandom permutation of
the n elements. From now on we can therefore assume that the client’s indices
i1, . . . , im are randomly distributed. Still, we cannot expect that each block has
exactly mbd

n records that need to be extracted. We will therefore choose a = bm/n
and extract 2ad records from each block. We will choose b, d such that ad is large
enough to give us negligible probability that the pseudorandom permutation
places more than 2ad records in any single block.

Recall that the restricted multi-query CPIR lets us extract 2ad records from
each block provided that, following Eq. (1),

2ad ≤ αk

`+ log2(bd)
.

When ` is small, for instance when ` = 1, this means that we need k bits to
extract

2ad ≤ αk

`+ log2(bd)
<

αk

log2(bd)

database bits, giving us a non-constant communication rate.
We will get around this problem by using an encoding of the block that

gives a more efficient utilization of the bandwidth. The encoding divides each
block of size bd into d segments of b records. We then encode each segment by
enumerating all possible combinations of a elements that can be drawn from
this segment. This gives us a segment of

(
b
a

)
strings of length a`. On average we

Multi-Query CPIR with Constant Communication Rate 13

desire to extract two (a`)-bit records from each of the d segments. In reality, the
2ad records we need to extract from the block are pseudorandomly distributed
on the d segments, but by extracting 3d (a`)-bit strings from the d segments,
we are guaranteed to cover any distribution of 2ad records in the block. This is
an immediate corollary of the following simple counting lemma:

Lemma 3. Let a, b, d ∈ N and let S1, . . . , Sd be disjoint sets with |Si| = b. For
any A ⊆ ∪di=1Si with |A| = 2ad, there exists a family of sets G1, . . . , Gt such that
(i) for each Gj there is some Si with Gj ⊆ Si, (ii) |Gj | = a, (iii) A ⊆ ∪tj=1Gj
and (iv) t ≤ 3d.

Proof. Let A1, . . . , Ad be the partition of A across S1, . . . , Sd with |Ai| = ai
and

∑d
i=1 ai = 2ad. Each Ai can be covered by dai

a e subsets of size a from Si.
It follows that we can cover A with a number of sets that equals

∑d
i=1d

ai

a e ≤
d+ (

∑d
i=1 ai)/a = 3d.

In conclusion, on each block we use the restricted multi-query CPIR to ex-
tract 3d out of d ·

(
b
a

)
possible (a`)-bit strings. According to Eq. (1), we can use

the restricted multi-query CPIR protocol to do this if we choose b, d such that

3d ≤ αk

a`+ log2(d
(
b
a

)
)
. (2)

Let us now give the constraints we have on the choices of b, d and give a
possible choice of variables that gives us optimal communication complexity:

– We want ad = mb/n · d to be so large that there is negligible probability of
more than 2ad records falling into the same block.

– We need Eq. (2) in order to use the restricted multi-query CPIR protocol.
– Finally, we want d ·

(
b
a

)
to be polynomial in k so that the encoded database

contains kO(1) elements and hence it is processed in polynomial time in k.

We first use a Chernoff-bound on the probability that for any given bd block
there will be more than 2ad records that we want to extract. For a fixed bd
block, the probability of more than 2ad indices needing extraction is smaller
than the probability of more than 2ad indices ending up in the same block if
we allow repetition. The latter probability is Pr[X > 2ad] where X is a random
variable with X =

∑bd
i=1Xi and X1, . . . , Xbd are independent Bernoulli trials

with probability p = m/n. By using a Chernoff bound we get

Pr[X > 2ad] < e−ad/3 . (3)

For the latter condition to hold, we choose a = d log k
log(n/m)e and b = adn/me

giving(
b

a

)
≤ (e

b

a
)a ≤ (ed n

m
e)

log k
log(n/m)+1 < elog k+1 · 2log(n/m)·(log k

log(n/m)+1) = kO(1).

14 Jens Groth, Aggelos Kiayias and Helger Lipmaa

When including d = kO(1) we will therefore have ad = kO(1) so the server will
run in polynomial time. We observe for future use that at the same time(

b

a

)
≥ (

b

a
)a ≥ d n

m
e

log k
log(n/m) ≥ max(k,

n

m
) ≥ k.

As we will see the above constraints on the parameters will be sufficient to
get an optimal communication complexity. Note that in order to get perfect
correctness, the client can check whether indeed all blocks need extraction of at
most 2ad records. In the unlikely case this is not the case, the client can send the
indices that it wants to extract in the clear. This latter protocol is obviously not
private, but is only invoked with negligible probability. We have the following
protocol construction:

1. Set a = d log k
log(n/m)e and b = adn/me and d = dmin(ma ,

αk/4

a`+2 log (b
a)

)e.

2. The client generates a seed s ← {0, 1}k for the pseudorandom generator
and checks that ψ = PRG(s) is a permutation of the indices so at most
2ad records need to be extracted from each block of size bd.

3. In the unlikely event ψ does place more than 2ad records to be extracted in
the same block, the client sends i1, . . . , im in clear to the server (encoded so
it uses approximately log

(
n
m

)
bits of communication). The server responds

with (xi1 , . . . , xim), which the client outputs and halts.
4. The client sends s to the server and the server permutes the indices ac-

cording to ψ = PRG(s).
5. The server divides the database into blocks of bd consecutive records and

encodes each block as a database consisting of d
(
b
a

)
records of length a`

such that each segment of
(
b
a

)
records contains all possible choices of a `-bit

records from the corresponding segment of b records in the block.
6. The client and the server run the restrict multi-query CPIR protocol (C,D)

on the dn/bde encoded blocks of d
(
b
a

)
records to get 3d (a`)-bit strings. This

corresponds to extracting the up to 2ad records from each of the original
blocks.

7. The client decodes the output and reverses the permutation of the indices
to get the output (xi1 , . . . , xim).

First, the bound on the error probability given in Eq. 3 is neg-
ligible as it is bounded by e−ad/3 and it holds that ad = a ·
dmin(m/a, (αk/4)/(a`+ 2 log

(
b
a

)
))e > k2/3 since m > k2/3 and ` ≤ log(n/m)

and log
(
b
a

)
= log(kO(1)).

Regarding communication complexity, let us first compute it when

m

a
>

αk/4
a`+ 2 log

(
b
a

)

Multi-Query CPIR with Constant Communication Rate 15

so d = d(αk/4)/(a`+ 2 log
(
b
a

)
)e. We send the pseudorandom seed of length k

and run the CPIR protocol dn/bde times for a total communication of

(dn/bde+ 1) k <
nk

bd
+ 2k ≤ nk/(b · αk/4

a`+ 2 log2

(
b
a

)) + 2k

=
4n
αb
· (a`+ 2 log2

(
b

a

)
) + 2k ≤ 20

α
· na
b
· log2

n

m
+ 2k

≤40
α
·m log2

n

m
+ 2k ,

where we have used that a` + 2 log
(
b
a

)
≤ a log(n/m) + 2 log((eb/a)a) ≤

a log(n/m) + 2a log(edn/me) ≤ 5a log(n/m).
Next, we look at the case d = dm/ae. We have a communication complexity

of

(dn/bde+ 1) k <
nk

bd
+ 2k ≤ nka

bm
+ 2k ≤ 4k.

Also, in the rare cases where the client ends up sending the indices in the clear
we have a communication complexity of log

(
n
m

)
+m · ` = O(m · log2(n/m) + k).

Lemma 4. The CPIR protocol for n > 9m,m > k2/3, ` ≤ log2(n/m) is correct
and private. It has perfect correctness if the restricted multi-query CPIR protocol
has perfect correctness.

Proof. The protocol is perfectly correct because the restricted CPIR protocol
is correct. We just need to verify that the restricted protocol can actually be
applied, i.e., for sufficiently large k we have

3d ≤ αk

a`+ log2 d ·
(
b
a

) .
To see this holds, observe d ≤ k because

α/4 +
a`+ 2 log2

(
b
a

)
k

≤ 1

which follows from α/4 < 1 and a`+2 log2

(
b
a

)
= O(log2 k) (for sufficiently large

k). From the choice of d in the protocol we now get

d ≤
⌈ αk/4
a`+ 2 log

(
b
a

)⌉ ≤ ⌈ αk/4
a`+ log2 d ·

(
b
a

)⌉ < αk/3
a`+ log2 d ·

(
b
a

)
where the second inequality follows from d ≤ k ≤

(
b
a

)
(for sufficiently large choice

of k.)
With the choice of parameters we are guaranteed that the restricted multi-

query CPIR of communication complexity k bits can be used on each block of size
bd. An adversary with a probability of ε of breaking the privacy of the protocol

16 Jens Groth, Aggelos Kiayias and Helger Lipmaa

can therefore be converted into an adversary that breaks the restricted multi-
query CPIR with probability ε

dn/bde except for the negligible probability that the
privacy breach is due to a bad pseudorandom seed. Similarly, a hybrid argument
shows that the multi-query protocol is correct. When the pseudorandom seed
is bad, we step down to a non-private but perfectly correct CPIR. Therefore, if
the restricted multi-query CPIR has perfect correctness, then we have perfect
correctness of our CPIR. ut

5.4 Multi-Query CPIR for ` > log2(n/m)

The final case is where 9m < n ∧ k2/3 < m ∧ ` > log2(n/m). We split each
database record into `′ := d`/dlog2(n/m)ee records of length dlog2(n/m)e bits
each. We now need to extract `′ ·m out of `′ · n records of length dlog2(n/m)e.
Using the previous construction, we get a multi-query CPIR protocol that can
do this with communication complexity O

(
`′m · log2

(
`′n
`′m

)
+ k
)

= O(m`+ k).

5.5 Summary: Communication-Optimal Multi-Query CPIR

Combining the four protocols, we get a communication-optimal multi-query
CPIR:

1. If n ≤ 9m send the entire database to the client
2. Else if m ≤ k2/3 use the CPIR protocol from Section 5.2 with communica-

tion complexity O(m`+ k)
3. Else if ` ≤ log2(n/m) use the CPIR protocol from Section 5.3 with com-

munication complexity O(m · log2(n/m) + k)
4. Else if ` > log2(n/m) use the CPIR protocol from Section 5.4 with com-

munication complexity O(m`+ k)

For sufficiently large k this protocol works for all choices of (m,n, `). The
communication complexity is O(m` + m · log2(n/m) + k), which is optimal up
to a constant for perfectly correct CPIR. As a corollary to the lemmas in this
section, we get the following:

Theorem 3. The CPIR protocol given above is correct and private. It has per-
fect correctness if the restricted multi-query CPIR protocol has perfect correct-
ness.

Acknowledgments. Several reviewers have offered helpful comments on this
paper. We would like in particular to thank an anonymous reviewer from ICALP
2009 for a long and insightful review.

The first author was supported by Engineering and Physical Sciences Re-
search Council grant number EP/G013829/1. The second author performed the
work at the University of Connecticut, Department of Computer Science and En-
gineering, partly supported by NSF grants 0447808,0831304,0831306. The third
author was supported by Estonian Science Foundation grant #8058 and the
European Union through the European Regional Development Fund.

Multi-Query CPIR with Constant Communication Rate 17

References

1. Johannes Blömer and Alexander May. A Tool Kit for Finding Small Roots of
Bivariate Polynomials over the Integers. In Ronald Cramer, editor, Advances in
Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 251–267, Aarhus, Denmark, May 22–26, 2005. Springer-Verlag.

2. Christian Cachin, Silvio Micali, and Markus Stadler. Computational Private In-
formation Retrieval with Polylogarithmic Communication. In Jacques Stern, edi-
tor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes
in Computer Science, pages 402–414, Prague, Czech Republic, May 2–6, 1999.
Springer-Verlag.

3. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Infor-
mation Retrieval. In 36th Annual Symposium on Foundations of Computer Science,
pages 41–50, Milwaukee, Wisconsin, October 23–25 1995. IEEE.

4. Don Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. In Maurer [11], pages 178–189.

5. Don Coppersmith. Finding a Small Root of a Univariate Modular Equation. In
Maurer [11], pages 155–165.

6. Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval
with Constant Communication Rate. In Luis Caires, Guiseppe F. Italiano, Luis
Monteiro, Catuscia Palamidessi, and Moti Yung, editors, The 32nd International
Colloquium on Automata, Languages and Programming, ICALP 2005, volume 3580
of Lecture Notes in Computer Science, pages 803–815, Lisboa, Portugal, 2005.
Springer-Verlag.

7. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and
their applications. In Proceedings of the Thirty-Fifth Annual ACM Symposium
on the Theory of Computing, pages 262–271, Chicago, IL, USA, June 13–16 2004.
ACM Press.

8. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

9. Eyal Kushilevitz and Rafail Ostrovsky. Replication is Not Needed: Single Database,
Computationally-Private Information Retrieval. In 38th Annual Symposium on
Foundations of Computer Science, pages 364–373, Miami Beach, Florida, Octo-
ber 20–22, 1997. IEEE Computer Society.

10. Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communica-
tion. In Jianying Zhou and Javier Lopez, editors, The 8th Information Security
Conference (ISC’05), volume 3650 of Lecture Notes in Computer Science, pages
314–328, Singapore, September 20–23, 2005. Springer-Verlag.

11. Ueli Maurer, editor. Advances in Cryptology — EUROCRYPT ’96, volume 1070 of
Lecture Notes in Computer Science, Saragossa, Spain, May 12–16, 1996. Springer-
Verlag.

12. Moni Naor and Benny Pinkas. Oblivious Transfer and Polynomial Evaluation. In
Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Com-
puting, pages 245–254, Atlanta, Georgia, USA, May 1–4, 1999. ACM Press.

13. Stephen Pohlig and Martin Hellman. An Improved Algorithm for Computing
Logarithms over GF (p) and Its Cryptographic Significance. IEEE Transactions
on Information Theory, 24:106–110, 1978.

